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We show that in a double two-photon correlated-spontaneous-emission laser, generation of
squeezed light is compatible with atomic inversion by using the atomic coherence between two
lower levels. The resulting device can yield, via resonant stimulated amplification, bright beams of

squeezed light.

I. INTRODUCTION

The search for a bright source of squeezed light has
been one of the strong motivations in the quest for lasers
and masers based on two-photon transitions between lev-
els of the same parity. Most of the work on these devices
has centered around the possibility of intense and short-
pulse generation and wide tunability,' as well as on the
novel dynamical properties of these systems, associated
with the fact that in this case we have an analogy with a
first-order phase transition, instead of a second-order one
as in the ordinary one-photon laser.>* The possibility of
using these devices for generating squeezed light stems
from the work of Yuen,* who showed that an effective
two-photon Hamiltonian (with terms quadratic in annihi-
lation and creation operators) generates squeezed states
of the radiation field. It was soon realized, however, that
in lasers and masers the spontaneous-emission noise asso-
ciated with an inverted system ends up destroying any
possibility of obtaining squeezed light at steady state.”
Only transient squeezing becomes then possible.® This is
the reason why parametric amplifiers have been preferred
as generators of squeezed light.%” In these systems the
atoms are far from saturation, due to the fact that the
fields are of low intensity and off resonance with respect
to the atomic transitions. Under these conditions the
spontaneous-emission noise is negligible.® On the other
hand, one usually gets only feeble sources of squeezed
light in this way, as has been the case in recent experi-
mental observations of this phenomenon.’

The search for intense sources of squeezed light is more
timely. than ever, in view of the far reaching potential ap-
plications. These are, among many others, in improving
sensitivity limits of optical interferometers,'® in spectros-
copy with resolution below the natural linewidth,'! or in
noise quieting in active devices.!”? Compatibility of
squeezing with stimulated emission and atomic inversion
is therefore a highly desirable goal.

Interest in two-photon oscillators has recently been re-
vived by the experimental demonstration of the
continuous-wave operation of a two-photon micro-
maser.”> New theoretical work has appeared, dealing
with the differences between effective Hamiltonian and
three-level models,'* and with the role of atomic coher-
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ence.!>!® 1In fact, it has been shown!® that if the atoms
are pumped into an appropriate superposition of the las-
ing states, quenching of spontaneous-emission noise may
occur, thus leading to the simultaneous presence of
squeezing and gain in a resonant process. The corre-
sponding devices are called “correlated-emission-lasers”
(CEL), and are presently under experimental investiga-
tion.!’

In the present work, we show that contrary to common
belief, it is possible to have population inversion and
phase-noise squeezing in a laser. We show that apprecia-
ble intensity of squeezed light is produced, via stimulated
emission, even when about 50% of squeezing in the phase
is obtained, for the field inside the cavity (which corre-
sponds to perfect squeezing outside'®).

In the following section we define our model writing
down the corresponding Hamiltonian, as well as the mas-
ter equation for the reduced density matrix of the field in
the linear approximation. In Sec. III, we derive a
Fokker-Planck equation and a phase-locking condition,
while in Sec. IV we show that squeezing in the phase is
compatible with stimulated gain and even population in-

version of the atomic system. Our conclusions are sum-

marized in Sec. V. Details of the derivation of the master
equation are given in Appendix A, while in Appendix B
we present a microscopic theory of the degenerate para-
metric amplifier and compare it to the treatment based
on an effective Hamiltonian approach.

II. MODEL

We consider a system of four-level atoms interacting
with a single-mode field of frequency v. The atoms (see
Fig. 1) are pumped into a coherent superposition of
states. The Hamiltonian for the system, in the rotating-
wave approximation, is given by

H=H,+H,, (2.1)
with
Hy=%va'a+ S dwlid i, (2.1a)
i=a,b,c,d
and
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FIG. 1. Atomic levels relevant to the two-photon laser. The
atoms are injected in a coherent superposition of levels |a ) and
le), |a) and |d), and |c) and |d ), but with no initial popula-
tion in level |b). Levels |c) and |d) are considered to be al-
most degenerate. The field oscillates, with frequency v. In this
work, two-photon resonance is assumed, but the level |b) is de-
tuned by A with respect to the one-photon resonance.
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H,=#%g(ala){b|+alb){c|+alb){d|)+H.c. (2.1b)

Here a (a') is the field destruction (creation) operator,
#w; is the energy of level i and |i) are the atomic states
(i=a,b,c,d). We have assumed that only the |a Y —|b),
|bY—|c), and |b ) —|d ) transitions are allowed with the
corresponding atom-field coupling coefficient being equal
to g. The operating frequency of the laser is given by v.

Assuming that the atoms are injected into the cavity at
a rate r, with initial population p; (i =a,c,d) and initial
coherences P, Pgs» and pg [with p; =p}} and
Pii= |p,-j]exp(i 6;;)] we obtain the following master equa-
tion for the reduced density matrix of the field (for
derivation see Appendix A):

. a
p=""5[paaL\(aa fp—a'pa)+(polytpaglstpaLtolstpuliLylpa’a—apa’)

Hpeal Lot paLrLsNaap—apa)t(pLolstpyLiLs)paa—apa)]— %w fap—apa™)

—i(Q—v )aTap—l—H.c. ,

where £L;=T/(I'—A;), with I" being the atomic decay
constant which, for simplicity, we have taken to be equal
for all four levels, Aj=w,—w,—v, Ar=w,—w,—v,
A=w,—w;—v, AN=0,—0.,—2v, As=0,—w;—2v,
and A;=w,—®,. The linear gain coefficient a is given by
a=2rg?/T? and y=Q/2Q is the usual cavity loss, with
Q being the cavity quality factor. € is the bare cavity
eigenfrequency.

Equation (2.2) is similar to the corresponding equation
for a two-photon three-level CEL [Eq. (1) of Ref. 16], but
they have some substantial differences. Since here we do
not have any initial excitation to level |b), there is no
term linear in the coupling constant which has the form
of an injected signal. Secondly, the absorption term
[second in term in Eq. (2.2)] is phase dependent in the
present case, due to the presence of p; and p,.. As we
show below the presence of these extra terms helps to ex-
tend the range of populations for which squeezing is still
possible. .

1. FOKKER-PLANCK EQUATION
AND PHASE LOCKING

In order to study the phase noise, we convert Eq. (2.2)
into an equivalent Fokker-Planck equation for the
Glauber-Sudarshan P representation P(e,€*,t), in the
usual way'® (ale) =€|e)). We then get

0 « =_i _ 3
atP(e,E ,1) ae(deP) e (d 4 P)
d? d?
+2 D «P)+——(D_P
8686*( e+ 862( «P)
32
+ 86*2(D5*€*P) ) (3.1

(2.2)
|
with ,
d.=(d «)*=Ret+G"e", (3.1a)
D =(D s 5V =poL 3L +pagL3LS (3.1b)

a
R="Hpaul 1y —PecL —PaaL3 —Peali Ly —pactols)

—%—z’(ﬂ—v) , (3.1c)
G =T lpea L1— L) Lo+ paal L= L3)Ls] (3.10)
DE*E=—08£paa(.,C1+.,£’f) . (3.1¢)

Introducing now polar coordinates as e=re'¢ we obtain
the drift and diffusion coefficients associated with phase
and amplitude variables ¢ and r. We get then?®

d,=rRe(R +Ge)+0(1/r) , (3.2)
dy=Im(R —Ge*?)+0(1/r%) , (3.3)
D,,=1[D_« +Re(D 4 se¥)], (3.4)
D¢¢=%{[De*é—Re(De*e*ezi"’)] : (3.5)

Comparison of (3.1) with the corresponding Fokker-
Planck equation for the degenerate amplifier® shows the
essential differences between the two processes. In the
case of the parametric amplifier, one gets a Fokker-
Planck equation like the one given by (3.1) but with
R=—y,, G*=ke/yy D=ke/2y,y, D _«=0, where v,
and y, are the cavity losses for the pumping mode 1 and
the signal mode 2, respectively, € is the classical driving
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field, and « is the coupling constant between the pump
and the signal modes.

One should, however, notice that the derivation of the
Fokker-Planck equation for the parametric amplifier is
based on the effective Hamiltonian approach® which ig-
nores the atomic fluctuations. In order to make a direct
comparison with the present work we derive, in Appen-
dix B, the effective Hamiltonian model starting from a
microscopic atomic model of the problem. Then we
show that atomic fluctuations can indeed be neglected in
the limit of large detuning and for intensities far below
saturation.

It is clear that the injected coherences p,, and p,,; in
the present model correspond to the field €, and that our
equations differ from those in Ref. 6 essentially because
of the presence, in our case, of population-dependent
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terms, as well as the extra coherence p.;. We notice, in
particular, the presence in (3.4) and (3.5) of the term
D, which is proportional to p,, [cf. Eq. (3.1€)], and
tends to increase the diffusion coefficients. We show
however that, by properly preparing the initial coher-
ences, it is still possible to simultaneously obtain squeez-
ing and stimulated emission gain.

We focus our attention on the special case when the
levels |c) and |d ) are almost degenerate (Ag<<T'), the
two-photon resonance conditions A,=A;=0 are satisfied
and the intermediate level |6 ) is detuned by an amount A
such that A;=A;=—A;=A. Under these conditions
Ly=Ly=LI=L=T/(T—iA) and L,=Ls=Li=~1.
We also consider |p.,|=pgl, pee=pag- With these
simplifications we obtain

172
; AT 2 +A .
(pY={d )=—aﬁ< e —2Pce—2 —_— cosf,;si
¢ ¢ 2(F2+A2) P 1pcd| A2 cdSINLL
6.,1+6 6
—4]p,, |cos ii—"—"+2¢ cos %" ]>+v—9+0(1/r2) : (3.6)
2|p.,] 6,,+6 0
(24 ca ca da
D;y=—|.L]? - +2 e
3= 2 M |paa— 7 c0s | = $+u =11 3.7
where p=tan" (A /T'), and we have used that 6, —6,;,=0,,.
From (3.6) we get both a frequency pulling equation
172
_ aAl 24 A2 .
=0+ m Paa —chc _lecd | AZ COSchSln‘LL N (3.8)
|
and a phase-locking equation This polarization is, however, a source for the square of
the electric field, since a two-photon process is involved.
) 0 0 +0 This means that the usual locking equation is now
($)= 2;1 AFZ [peq lcos —;d— Rcos —-&zi+2¢ > . satisfied by 2¢, which can have only one stable value.
r“+a Since this value is defined modulo 27, it turns out that ¢
(3.9) is given modulo 7, yielding therefore two stable values
for the phase of the field. A nonlinear treatment of this
Phase-locki f model may then reveal which of the two values is more
hase-locking occurs for probable, through an analysis of the overall probability
) distribution for the field. This nonlinear approach will be
6,16
p=gy=——2——% Z da —(1t1)rsgn Acos—f- ] . (3.10) presented elsewhere.

The existence of two stable solutions of the locked
phase is a peculiar feature of this two-photon device. The
same kind of result was obtained in Ref. 16, and it can be
understood heuristically in the following way. Since the
injected coherences p,;, p,., and p,, are zero in this case,
one has to consider the field produced by the two-photon
polarization p,, and p,4, which add up when |p,.|=p.|
to a two-photon polarization, proportional to

[paclcos[(8,,—6,4) /2] expli(8,.+86,4)/2] .

IV. LASING AND SQUEEZING

Under the phase-locking condition (3.10) the diffusion
coefficient D 5, becomes

D¢¢[¢=¢OED(¢O)

Paa ™2

6,
=4ir2*|=.£l2 pca%cos[ 2d JH . @

‘6n_the' other hand, from (3.2) we have
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(r)=Ad, )= <%Re{paa‘£l_PchZ_Pdd‘LB_pchGLZ&_Pcd‘LgLZ

+e 2i¢[Pca (L 1 —_"CZ )°£4+pda (’Cl -

which yields the linear gain. This expression is composed
of three types of terms. Those proportional to the popu-
lations represent the usual contributions to the gain in a
laser, and yield a positive contribution when population
inversion holds. The terms proportional to p., and p,,
stand for an extra contribution to the gain, due to the in-
jected polarization associated with the coherent superpo-
sition of level |a ) with levels |¢ ) and |d ). They lead to a
klystron-type gain (not stimulated-emission-type gain),
and were already present in Ref. 16. The terms propor-
tional to p. are new, and are responsible for lasing
without inversion in a degenerate quantum-beat laser.?!

Under the detuning conditions described earlier, the
expression for the net gain G, defined by

(ry=LGr), 4.3)
simplifies considerably and we obtain
G =al£lzlpaa " Pec —Pdd _2|pdc |COSOdc
A
+2—-1:|pca |cos |6, +2¢——g— ]
A R
+2F|Pda|005 04a +2¢——2~ —y. (44

Under the phase-locking condition (3.10) and with
lpcal = |Pda |’ Pec =Pdd ™ lpcd I’ G becomes

G =a|.LI} g —4p . cOs* %
6
+4 %pwcos —;—d —y. (4.5)

This expression can be optimized with respect to 6.,
so that the maximum gain is obtained for

08 [6—; =%% . (4.6)
When this condition is satisfied
G=ap,—Y, 4.7)
and
2
D (4= 1Ll p,, [1— 21 “.8)

where we have used that |p . |>=pap. (pure state), and
r2=T7, the average number of photons.

Expression (4.7) has a remarkable simplicity: the gain
depends only on the population of the upper level and it
does not depend on the initial population density of the

,£3).,£5]}—12-r—+0(1/r)) ,

T

(4.2)

lower levels |c) and [d ). It is therefore possible to have
a net stimulated emission gain and, hence, lasing even in
the noninversion regime. This result has its physical ori-

‘gin in the quantum interference which is brought about

by the initial preparation of the atomic system in a
coherent superposition of levels.?! This interference elim-
inates the absorption of radiation by the atoms while still
allowing emission. This effect is present even if one does
not introduce the coherence between states |c ) and |d ):
Just p,. is sufficient to suppress absorption.!* We show
below, however, that the extra coherence leads to a rath-
er unexpected effect, viz., it extends the region for which
upper-level population and squeezing are compatible.
The extra coherence brings up yet another unexpected re-
sult: the linear gain does not depend on the detuning [cf.
4.71.

In order to calculate the amount of squeezing obtain-
able in this system, we recall that the phase uncertainty
in steady state is given by?°

(5¢)*)=-L1 +(:8¢)%) , 4.9)
4n
where the first term is the contribution due to shot noise
arising from vacuum fluctuations and the second term is
due to spontaneous-emission noise. This last term is re-
lated to the drift coefficient d, and the diffusion
coefficient D 4, [Eqs. (3.3) and (3.5)] byzo

(:(8¢)%) =D(¢o)|ddy /30|24, » (4.10)
where the derivative of the drift coefficient is evaluated at
the phase-locking point. It follows then from (3.9) and
(4.6) that

od 2
P 2aA
- =— , 4.11
3 |s=4, D2+a2P= @1
and, therefore, from Eqgs. (4.8), (4.9), and (4.11),
1 r?
8¢2)=— [14+— 4.12)
((8¢)*) py- A2

We see that {(8¢)?) gets smaller than the shot-noise con-
tribution (47)”! so long as A>T [from Eq. (48) we see
that this condition corresponds to a negative phase-
diffusion coefficient in the P representation]. On the oth-
er hand, it follows from (4.6) that

IPca|2 _ Paa _ Paa

r2/A%% = = .
4ch 4pcc 2(1 “Paa )

(4.13)
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FIG. 2. Plot of 7 {(8¢)) i, vs the nonlinear intensity param-
eter (B/a)n for (A/I)=8=10.

Maximum squeezing is obtained when the equahty holds,

so that
(8P === |14 50— .14
8’1 2(1 paa)
For p,, =0 the maximum amount of squeezing is at-

tained. We notice, however, that in the present case
squeezing persists up to p,,=%. This result should be
contrasted to those of Ref. 16, where no squeezing was
found if there was population inversion. We see, there-
fore, that the addition of a fourth level indeed extends the
range of upper-state population for which squeezing is
still present and helps to conciliate populatlon mversmn
and squeezing.

Ideally, one would like to get close to 50% squeezing
inside the cavity, which means that p,, should be much
smaller than unity. It is important to notice, however,
that even in this case one may still have a bright source of
squeezed light because the gain is independent of the de-
tuning [see Eq. (4.7)], and can be larger than the gain of a
usual two-photon laser with incoherent pumping to the
upper level.

Indeed, it has been shown by a nonlinear analysis of
the three-level system®® that in the above-threshold re-
gime ((8¢4)%) increases when 7, the number of photons,
increases. For a particular choice of parameters one ob-
tains

[3(B/a)]/?

I+ |A/T]

(8¢)) . =— (4.15)

Here B/a=4g?/T? is the nonhneanty parameter in
lasers.”” In Fig. 2 we plot 7{(8¢)*),;, versus the non-
linear intensity parameter (3/a)7 for |A/I'|=10. The
curve indicates that {(8¢)*) , increases slowly with the
increase of 7. A typical value for /a is 10™7. For ex-
ample, one still has 48% squeezing even when the laser
intensity reaches 7 =0.1(a/B) which corresponds to 10°
photons in the cavity. Thus a bright output is compatible
with a large amount of intracavity squeezing (very near
to the ideal 50%).

V. DISCUSSION AND CONCLUSION

We have shown that it is possible to reconcile two-
photon lasing with squeezed-light generation, so long as
the injected atoms are prepared in a coherent superposi-
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tion of states. The resulting device is based on a com-

“bination of two recently developed ideas: the correlated-
emission laser'>'® and the laser without inversion.?! It
has been proven in previous works® that a usual two-
photon laser with incoherent pumping cannot generate
squeezed field output due to noise contributions from
spontaneous-emission fluctuation and vacuum fluctuation
(shot noise). In the two-photon laser, the noise is a sum
of these two noise sources. Therefore, even after quench-
ing the spontaneous-emission noise, we are still left with
the shot noise, i.e., we still cannot reach noise squeezing.
In order to obtain noise squeezing, one needs to introduce
atomic coherence into the system. This is how the two-
photon CEL can achieve noise squeezing below the vacu-

In degenerate parametric oscillators
(DPO), interaction between the pump field and the non-
linear material is far off resonant, and creates a small
amount of upper-level population and a full but small
coherence between the upper and ground Ievels
Paa <<Pae =V PuPec- Because of the small upper-level
population, the spontaneous emission can be neglected,
but this in itself would only lead to noise quenching, not
to noise squeezing. It is the atomic coherence that leads
to squeezing in the DPO. In this sense (that atomic
coherence leads to noise squeezing) the DPO and CEL
are similar. However, the gain, which stems from both
Paa and p,., is quite different for the DPO and the CEL.

--Because of the far off resonance in the DPO, the gain is
very small. In the CEL operating on two-photon reso-
nance, both the population and the coherence can be
large compared to the DPO case. Consequently, the gain
in the CEL is much higher than that in the DPO, provid-
ed the other conditions are the same. It is precisely in
this sense that we call the two-photon CEL a bright
source of squeezed radiation.

While the possibility of a bright squeezed-light source
was already present in Ref. 16, here we have shown that
the inclusion of degenerate lower levels increases the

‘range of atomic populations for which squeezing is possi-

ble, to the point where even population inversion
(paq > 4) is permitted. We speculate that the addition of
more coherently prepared lower levels might help to in-
crease this range even further. Nonlinear terms might,
however, reduce this range, as has been shown for the
three-level case in Ref. 22. A nonlinear analysis of our
model is planned to be presented elsewhere.
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APPENDIX A: DERIVATION OF EQ. (2.2)

————1In the interaction picture, the Hamiltonian (2.1) can be

rewritten as

V=(Q—v)a Ta+gla ’la)(bl+aem2tlb)(c!
e ‘lb><d|+H c. (A1)
where Aj=w,—w,—v, A2=a)b——a)c~v, and A;=w,
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—wy —v with v being the field frequency. An equation of
motion for the reduced density operator of the field p is
obtained by taking a trace over atoms which leads to

p= —i(Q—v)[aTa,p]
—([VasPpa 1 [ VoesPep 1+ Viaspap 1 +H.c.) .

In Eq. (A2), § denotes the full atom-field density operator
and V,,=gaexpliA), Vi, =gaexpliAyt), and ¥V,
=ga exp(iAs¢). The atomic matrix elements 5, , g, and
Pap can be evaluated to the first order in the coupling
constant g by solving the equations of motion for the cor-
responding matrix elements using a perturbation theory.

(A2)

|

—I(t—14)

Pra)=—1ir [* dtse

J ATV DPaa Ve Do+ Vo (pag Jo()
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For example,

ba =" ViaPaa T+ VoePeat VoaPaa —Pob Vea) »  (A3)

whose first-order solution is given by

ﬁba(t)= =i ft;dT{[Vba(T)paa + Vbc(T) ca

+Vea(TIpaa 1p(t0) = plig)ppy Vi (7))

(A4)

where ¢, is the time of injection of the atom. If we sum
over all the atoms which are injected at a rate », we ob-
tain

(t)pbb Via } . (AS)

In writing Eqg. (A5), we have assumed that the atomic lifetime is 1/T (wﬁich is assumed to be the same for all atomic
levels) and we have replaced p(t,) by p(¢) in the usual Markovian approximation. In a similar manner

Pe(t =""‘f dtee e tof dr{ Ve (T)pppp(t)—

ﬁdb(t)=—lrf dtoe —rte- to

The integrations in Eqgs. (A5)-(A7) are simple and
straightforward. After carrying out these integrations,
the expressions for py,, P, and Py, can be substituted in
Eq. (A2). The resulting equation is given by Eq. (2.2) of
the text.

APPENDIX B: MICROSCOPIC MODEL
OF THE DEGENERATE PARAMETRIC AMPLIFIER

We show in this appendix how the degenerate paramet-
ric amplifier Hamiltonian can be obtained from a model
which takes into account the atomic fluctuations. For
the four-wave-mixing problem, this question has been
considered in Ref. 8. We consider for simplicity a two-
level atom which interacts with both the pump and the
signal modes. The Hamiltonian describing the system is
taken to be

#iw
H=%wala, +2ﬁwa;a2+—2—oa3+ﬁgl(a%o+ +alo_)

+h’g2(azcr++a;a_)+(6a§+eTa2) (B1)
where 03= ab, o,=la)al, o,=b){bl,
Ia)(bl, —=(o4), ]a) and |b ) are the upper and

lower atomic states, a; and aT are the annihilation and
creation operators for the signal (i=1) and pump (i =2)
modes, and € is a classical driving field for the pump
mode.

In order to simplify our treatment, we have used an
effective Hamiltonian for the two-photon process; it can
be obtained from a three-level atomic model by adiabati-
cally eliminating the intermediate state, when the level is
highly detuned from the one-photon resonance, so that
its population can be neglected. We assume this to be

[pca ab(T)+pcchb( )+Pchdb(7')]} ’

ft ATV (1)) =P da Vo TV F Pt Veo (T)Fpaa Vo (T} -
0

(A6)

(A7)

the case.

From the above Hamiltonian, and after adding the usu-
al loss terms and their respective fluctuation forces, we
get the following equations of motion for the atomic and
field operators:

d1=—iwa1—%a1—2ig1aTa_+F1 , (B2)
d2=_2i(1)a2— az—ig20_+€+F2 N (B3)
a'3=—r(a3—a§Q)~—2ig1(o+al—a{za )
21g2(0'+(12'_(120' )+F3 ) (B4)
d_=_‘l‘a)00_—l—‘0'__+ig10'3al+ig20’3a2+F_ 5 (BS)

where for simplicity we have assumed that all atomic de-
cay rates coincide, and o$! is a diagonal matrix which
yields the equilibrium values, at zero field, of the atomic
populations. The Langevin noise operators on the right-
hand side of the above equations are specified by their
first and second moments. Thus, for F; and F, we
have!>?* (1,j =1,2)

(Fi())=0, (FI(OF;(t'))=8,yny8(t—1'),
(F)F;('))=0, : (B6)
(F{OF](')) =87, (ng + 18t —¢')

where 1, is the number of thermal photons in the cavity,
while for the atomic noise operators we have!%%
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(Fr(F_(t"))=T(o,(t)+os)6(t —¢') , (B7)

(F(0)F5(1") '
=0, (t)+o,(t)+o+c50)8(r ~1'), (BY)

(F_(t)F,4(t"))=T{o_(£))8(t —1t') , (B9)

among the nonvanishing correlation functions.
We remove now the high-frequency terms from the
above equations by introducing the new operators

a;=ae i a,=a,e M, F_=g_e U, (B10)
and the corresponding fluctuation forces
Fi=Fe™i®, F,=Fpe % F_=F ¢~% (Bl
as well as the new driving field,

e=ze it ' (B12)

The new operators satisfy the equations of motion

a, —%al_zzgla’{a_+ﬁl, (B13)
~ Ya_ . =
az=—7a2—zgza~+?+F2 , (B14)
s e QY Do (% 2 T2
6y=—T(o;—~0§)—2ig(F a{—a o )
—2ig,(5 4@, —a 5 _)+F; , _B13).
Z:T'_=—i(w0~2w)5_~l"ﬁ_+ig103ﬁ%+ig20362+ﬁ'_ .

(B16)
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We now transform these equations into c-number equa-
tions, in the usual way,'®?* choosing the normal ordering
a',o,,03,0._,a. We thus get four c-number Langevin
equations of the variables €,,¢€,,5_,0;. We then get

61—'_"“_'61 Zlgle’fz_'i‘gl > (B17)
R Y2 .
€2=—'—2—€2—lg22_+€+72 > (BIS)
3,=—I(2;,—2%9)—2ig, (S, —ef?3_)
—2ig,(2,6,— XS )+ F; , (B19)
S_=—iloy—20)2_—T3_+ig, el +ig, 36, +F_ .
(B20)

The functions & on the right-hand side of the above
equations must satisfy the relations

<7k(t)>=0 >
(F()F (1)) =(2Dy; }8(¢ —1t') ,

(B21)
(B22)

where the diffusion coefficients Dy, are determined by the
requirement that the equation of motion for the second
moments are identical to the corresponding operator
equations. This implies that some of the diffusion

~—coefficients change, when one goes from the operator to

the c-number description.!>?+2

Thus, for instance, from the operator equation (B16),
we get

%(&,(t)a_(m=~[i(m0~2w)+r/2]<a_(z)a_(t))+ig1<a3&;zz%+5_a3a%>+ig2<c~r_a3az+a3a_zzz>

+{a_F_)+{(F_&_).

+2ig,{F_a,) .

On the other hand, from (B20) we obtain

Requiring that (B24) and (B25) should coincide, we find
that

(B23)
Bringing all the terms into normal order, and using that {&_F_ }=(F_&5 _) =0, we get
%(a_(z)a_(m= —[ilwy—20)+T /20T _(t)F _(2)) +2ig {050 _a 1) +2ig (& _a ?) +2ig, {00 _a,)
(B24)
%(z_(r)z_(:))——— —[i(wy—=20)+T2S_()2_(1)) +2ig  (Z;5_€}) +2ig,(333_¢,) +{(2D5 5 ) . (B25)
|
2Dy 5 =T(3,+33), (B27)
2D2+23=_PE+ » (B28)

2Ds s =2ig,3_ei+2ig,3 €, .

In the same way we find that the diffusion coefficients
of the fields not change, while the other relevant atomic
diffusion coefficients are given by

(B26)

2Ds 5 =T(Z,+2, +37+35) —dig (2 e]—€f’2_)
—4dig,(3,6,— 2 ) . (B29)

We now proceed to the adiabatic elimination of the
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atomic variables, assuming that I'>>y,7,. As a first
step, we set the time derivative of 2_ equal to zero in
(B20), so that

_,g16%+g262£3_ 1 E

={— B30

~""1+is T 145 T (B30)
where we have defined

8=(wy—20)/T . (B31)

Substituting this result into the equations for €;, €,, and
3, yields
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where we have defined
2 2/[\2
Qk:%;S—=QkR+iQkI’ k=1,2 (B35)
2g,g,/T?
=—= Q. B36)
1+is it (

We eliminate now the variable =;, setting the time
derivative equal to zero in (B34) and solving for 2,

g€’ tgqes F_

3,= |29+ F,/T+2i - —
él=—1’—‘—e,+r Q,le 1%, +Qete,)S, + F, I 1+i8 T2
Dig ¥ F_ g1€1+g262 g+
_ z81.1 I (B32) I D, (B37)
1+i6 T 118
ig, F_ Y
é2=—%ez+—§(ﬂe%+ﬂzez)23+€+i72— 1+35 5 where
(B33) D_1+2QIR|€1! +232R|€2[2+4QRR6( 62) (B38)
. We now insert (B37) into (B32) and (B33), so that
2, =—T(3;—35%)
’ &= — Tl +(Qye, e+ Qete,) ST /D+F,,  (B39)
—T[20x || +20,, |6, |2 +4Q, Rel et %,) 1=, 1 5 et (Qile e +efe
24+ F_  2ilge+g,6) F , 14 )
+‘;73+2i§%T BIEERS 6=- ot Q0T D tEr S, (340
(B34)  where the noise forces #; and F; are given by
|
, (Qqle, %€, +Qete,)Fs 2 | Qilel’e+Qete, _
Fi=F+ D T D (g,€}*+g,65)—g €t T
: Qe l?e + Qete
_ 1_2.li5 1€ 11) 1 2(g1€%+g262)T+ , (B41)
; Qet+ Qe F_ i Qe+, F
g 1l 1 252 1 1 2%2 _+
F=F+ (Qel'*‘ﬂzez) 1+18 D (g 1612+82€2) 4 T  1=is D (8,161 18,6) T

From (B41) and (B42), and using (B26)-(B29) one can
now calculate the correlation functions of #| and ¥,. For
our purposes, however, it is sufficient to notice that, if the
following conditions are met:

18, 10efl<<1, [Q,6|<<1, (B43)
which correspond to large detuning and small one- and
two-photon Rabi frequencies (compared with I'), then

(B39) and (B40) can be written as

él=_%el~mwl[1+0(1/8>lel

—2ik[1+0(1/8) et e, +F, , (B44)
é2=—%62—iAa)2[1+0(1/8)]62
—ik[1+0(1/8)]et+e+F, . (B45)

(B42)
[
where
Aw;=2g%|€|°259/T5 , (B46)
Aw,=g33%3/T8 , (B47)
and
k=g.8,251/T6 . (B48)

We notice that Aw, and Aw, correspond to frequency-
pulling terms, associated with the dispersive part of the
atomic refractive index (there are also contributions from
the absorptive part, which change the values of ¥, and y,
and are of higher order in 1/8). These terms can be ab-
sorbed into redefined frequencies and absorption
coefficients for modes 1 and 2. The remaining contribu-
tion {excluding for the moment the fluctuation forces) can
be obtained from the Hamiltonian
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H=t%wala,+2%0ala, +#x(a?a, +ala?)

+(eal +e*ay) , ~ (B49)
which is precisely the degenerate optical parametric

Hamiltonian (with frequency-pulling terms ignored).
As for the fluctuation forces, the terms added to F
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and F, in (B41) and (B42) represent additional contribu-

-——tion to noise stemming from the atomic operators. It is

clear that only for sufficiently large detunings and low in-
tensities may these contributions be ignored. One gets
then, in this limit, the Langevin equation for the degen-
erate amplifier.
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