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We present an exact nonlinear derivation of the spectrum of fluctuations in the difference of output in-
tensities for the signal and idler beams generated by intracavity two-photon gain, when the cavity decay
rates are the same for the two modes, and taking into account the atomic fluctuations. For the field in-
side the cavity, we show that the variance in the difference of intensities may be up to 50% below the

shot-noise value. We also consider the case of different decay rates, and show that the noise in the
output-intensity difference vanishes at zero frequency, for single-ported cavities, and as long as the only

source of field decay is the transmission through the mirror. Within this general approach, we show that
for the two-photon laser there is a strong correlation between signal and idler output beams when the
relay-level detuning is larger than the power broadening. We calculate, in lowest order, the correction to
the noise spectrum of the difference of intensities due to the population of the relay level.

PACS number(s): 42.50.Ar, 42.50.Dv, 42.52.+x, 42.65.Ky

L. INTRODUCTION

Quantum-noise reduction (squeezing) has been ob-
served in many systems [1]. In the optical parametric os-
cillator (OPO), a nonlinear medium placed inside a cavity
down-converts an injected pump beam of frequency w,
into two beams (conventionally termed signal and idler
beams) at the cavity eigenfrequencies w; and w, (where
wo=w;t,). A large phase-quadrature squeezing of the
transmitted signal mode occurs in the degenerate OPO
(@;=®,) near the threshold of oscillation [2]. Experi-
mentally, Wu, Xiao, and Kimble [3] achieved a noise
reduction of 63% below the vacuum (classical) level in a
balanced homodyne detection of the (nearly) degenerate
transmitted-signal beam. Changing the relative phase be-
tween the local oscillator and the pump fields, the two
quadratures of the output field were measured to demon-
strate the strongly phase-sensitive noise reduction.

In the nondegenerate OPO, the main concern has been
the generation of “twin photon beams.” It was first
shown by Reynaud and co-workers [4,5] that the fluctua-
tions in the intensity difference between the transmitted
signal and idler beams are reduced well below the classi-
cal level. Since then, this technique has been studied
both theoretically [6—8] and experimentally [9]. Recent-
ly, a noise-reduction factor of 86% below the classical
level was achieved [10]. Many applications have been
developed, including generation of sub-Poissonian light
using active-control techniques [11] and enhancement of
the sensitivity of absorption and polarization-rotation
measurements [12].

The underlying nonclassical property; not found in the
degenerate case, is the simultaneous creation of the
“twin” signal and idler photons in the parametric down-
conversion. In a lossless cavity, the intracavity field
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‘would thus increase in such a way that the number of sig-
nal and idler photons would be exactly equal (zero fluc-
tuation). Since the cavity dissipation is a random process

‘acting independently on each mode, at steady state the

field inside any real lossy cavity has finite fluctuations in
the intensity difference. However, if all the removed pho-
tons are detected (this will be the case for ideal detectors
provided the dissipation in the cavity and in the mirrors
is negligible), the lossless zero-noise photon configuration
is, after a large time interval, exactly reproduced at the
photodetectors, resulting in a noiseless difference between
the photocurrents for the signal and idler beams when the
detection time is long enough. In the frequency domain,
it means that the noise spectrum vamshes at zero fre-
quency.

Since a single feature of the parametric down-
conversion is involved in the underlying principle of the
noise reduction—namely, the simultaneous twin-photon
generation—we would expect the result to be valid for
any oscillator sustained by a genuine nondegenerate two-
photon process (as opposed to cascade transitions, in
which an intermediate state gets populated, and there is a
delay in the emission of the second photon). For in-
stance, the same noise reduction was found for intracavi-
ty four-wave mixing [13] in the case of equal signal and
idler cavity decay rates (balanced case).

In Ref. [4] Reynaud derived the noise spectrum of the
difference in the transmitted intensities for the OPO, in
the case where the output mirror is the only source of the
decay rates of signal and idler beams, assumed to be equal
(balanced single-ported case). In fact, the only physical
property used was the conservation of the intensity
difference operator I, — I, by the parametric interaction

[H,I,—I,]=0, (1.1)
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where H is the parametric Hamiltonian.

Using the same single property, Graham, in an earlier
paper [14], obtained general (and exact) identities for the
steady-state intracavity field fluctuations generated in a
parametric process. The correlation between signal and
idler modes was shown to lie halfway between the max-
imum classical and quantum allowed values.

A similar nonclassical correlation was found, under
more special assumptions, for a nondegenerate two-
photon laser operating far above the threshold of oscilla-
tion [15]. For two-photon lasers, due to the presence of a
relay level which mediates the transition between the ex-
cited and final atomic states, equality (1.1) does not hold
anymore. Recently [16], however, we have recovered
Graham’s result using an approach suited to two-photon
lasers and masers, which takes into account the pumplng
contribution in these devices.

In this paper, we generalize the treatment in Ref. [16],
by developing a method, applicable also to two-photon
lasers and masers, which allows one to show the connec-
tion between the above-mentioned general results for the
intracavity field fluctuations and the noise spectrum of

the output field, calculated by Reynaud in the balanced

single-ported case.

Furthermore, we derive a new identity for the
transmitted field in the more general case of different de-
cay rates. We use a general and exact result for the intra-
cavity field fluctuations and the input-output theory of
Gardiner and Collet [17] to show that the noise spectrum
of the transmitted field vanishes at zero frequency when-
ever the cavity is single-ported, and as long as the only
source of field decay is the transmission through the mir-
ror (that is, as long as dissipation in the cavity and in the
mirror can be neglected). This derivation is the
mathematical counterpart of the physical picture dis-
cussed above. Lane, Reid, and Walls [6] obtained the
same result for the nondegenerate OPO, by linearizing
the equations of motion about their steady-state values.
We obtain instead an exact result valid not only for the
OPO, but for any oscillator sustained by a genuine non-
degenerate two-photon process, which includes resonant
processes in which atomic levels may be appreciably pop-
ulated. ,

The literature about twin-photon generation refers al-
most exclusively to parametric processes (although the
recent work by Blockley and Walls [18] is an exception).
In the light of our results, however, it becomes clear that
processes involving transfer of population, such as in the
resonant interaction with excited atoms, may also be used
to generate (eventually more powerful) correlated photon
beams. Furthermore, our results confirm that the role of
a pump field in the noise spectrum of the intensity
difference is of minor importance (especially in the bal-
anced case, see, e.g., Ref. [8]) for there is no need of a
phase reference in phase-insensitive measurements.

To have a deeper insight into this point, we consider in
detail a two-photon laser whose active medium consists
of an ensemble of three-level atoms in a ladder
configuration. When excited to the upper state, the
atoms interact with two cavity modes, resulting in the
configuration shown in Fig. 1. The intermediate level is
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FIG. 1. Atomic levels relevant for the two-photon laser.

detuned so as to avoid a two-photon cascade process,
whereas the upper and lower levels are resonantly cou-
pled to the cavity.

This system has been recently studied by Boone and
Swain [19]. They derived the master equation for the
field density matrix, which we shall use to compute the
field fluctuations.

We show that population effects of the finite-lifetime
upper state do not degrade the signal-idler correlation.
So long as the intensity difference is concerned, the only
important atomic parameters are the detuning (A) and
lifetime of the intermediate level. In the limit of large A,
the gain is a genuine two-photon process and the noise
spectrum in the balanced single-ported case is thus the
one calculated by Reynaud for the OPO. More generally,
for the nonbalanced single-ported case, but with negligi-
ble intracavity and mirror dissipation, we show that the
noise vanishes at zero frequency in this limit. We also
calculate the first-order correction in the inverse quadra-
tic power of the detuning A, which represents the degra-
dation of the twin-photon correlation due to the popula-
tion of the intermediate state.

One should remark that many other schemes of gen-
erating sub-Poissonian light with active systems have
been presented in the literature, some of them having al-
ready led to experimental demonstration. They involve
usually the control of one of the sources of quantum noise
in these devices, namely the pumping noise [20], the
spontaneous-emission noise [20,21], or the vacuum fluc-
tuations coming into the cavity through the coupling
mirrors [22]. Noise reduction may also be achieved in
one- and two-photon correlated-emission lasers and
masers [23]. The twin-photon-generation method has,
over these other procedures, the advantage of automati-
cally canceling out the fluctuations in the gain, since they
are the same for both beams. It does that, however, at
the expense of having to subtract two beams of about the
same intensity, thus leading in general to low-intensity
squeezed light.

This paper is organized as follows. In Sec. II we show
that the intracavity intensity-difference noise may be re-
duced 50% below the classical lower bound. We pay spe-

_cial attention to the role of the intermediate state in two-

photon lasers, thus assessing the limits of validity in this
case of the results concerning the output field, obtained in
Sec. III (for the balanced case) and Sec. IV (for the
single-ported case). In Sec. V, we study the corrections



to the previous result due to the population of the relay
level in a two-photon laser. We summarize our results in
Sec. VI.

IL. INTRACAVITY FIELD FLUCTUATIONS

In any intracavity light generator, the dynamics of the
field is governed by two distinct processes: (1) a gain
mechanism, based either on a parametric process, or on
an interaction with an excited (active) medium; (2) a loss
mechanism, associated with intracavity and mirror losses,
and with the transmission of the field through the mirror,
which provides the output field to be measured.

In Secs. II-IV we consider the intracavity generation
of two field modes, termed signal and idler. We calculate,
in a general and exact way, the fluctuations in the
difference between signal and idler photon numbers,
n,—ny, for a class of systems satisfying

4
dt

that is, systems in which the gain process is (exclusively)
based on the simultaneous generation of pairs of signal
and idler photons (“twin” photons). Formally, it means
that the gain does not couple the sum with the difference
of photon numbers. We analyze the consequences of Eq.
(2.1) for the intracavity field in this section, and for the
output field in Secs. III and IV.

Even though Eq. (2.1) may be trivially derived from
(1.1), it applies, however, for system for which (1.1) is not
valid anymore, as we shall see in this section.

The field-density-matrix operator p obeys a master
equation of the general form

{(ny=n Y gain=0, k=1,2 2.1

dp _dp

+Lp
dt dt g "

(2.2)

where .Lp is the loss contribution, coming from the in-
teraction of the field with its reservoir, which is assumed
to be in the vacuum state. This means that we do not
consider inputs at the coupling mirror M (see Fig. 2) oth-
er than the vacuum field. Our derivation in this section is
also valid for masers operating at very low temperatures
[16].
The loss contribution in Eq. (2.2) is thus

y
Lp= 3 —Qapal—afap—pala,), @3

k=1,2
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FIG. 2. Optical cavity for the two-photon oscillator. The
two output beams are separated and independently measured.
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where y is the cavity decay rate for mode k, and ak,az,:r
are the boson annihilation and creation operators for
mode k (nk=a;ak is the photon-number operator), re-
spectively.

From Egs. (2.2) and (2.3), the equation of motion for
the populations

Py o, (8)=Cn n,|p(t)[nyny)
is '
dp, , () dP
dt dt  |gain

+71(n +1)Pn1+1,n2+7’2(”2+1)Pn1,n2+1 .

n ‘flz

—(¥iny+yana)P,

2.4)

Using our basic assumption about twin-photon genera-
tion, Eq. (2.1), we find from Eq. (2.4)

dt
%((nz——nl W=y n ) +ydn,) +2y (n(ny—n,))

—2'}’2(’12(”2_”1)) . (2.6)

In the case of equal cavity decay rates (balanced case),
the dynamics of the average difference between photon
numbers is independent of the sum (and thus of the gain
process), as may be seen directly from (2.5) and (2.6). The
intracavity steady-state moments are, in such case, given
by

(n1>=<n2> s
_ {ny+ny)
-——

On the other hand, for a classical field distribution, we
must have

{{ny—n Y —(ny—n, )22 {n,+n,) .

2.7)

{(ny,—n, ) (2.8)

2.9)

We thus have a squeezing factor of 509 for the intracavi-
ty field in the balanced case, either above or below the
threshold of oscillation.

This is the first striking consequence of Eq. (2.1). Be-
fore going further, we make our study less abstract, con-
sidering how the twin-photon condition, Eq. (2.1), ap-
pears in some specific classes of systems.

The parametric process generating two nondegenerate
modes is described by a Hamiltonian operator H such
that

[H,nl""nz]:O . (2-10)
From the corresponding master equation

dp_ 1

ik [H,pl+Lp, (2.11)

one gets trivially Eq. (2.1), which leads to the results
(2.5)—-(2.8). This was the procedure followed by Graham

[14], thus showing that the noise-reduction effect arises
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from the intrinsic two-photon nature of the parametric
interaction, expressed by Eq. (2.10).

On the other hand, the twin-photon effect in two-
photon lasers and micromasers has a more subtle origin.
The atom-field Hamiltonian corresponding to the
configuration shown in Fig. 1 is, in this case,

H=H,+H; i
ﬁﬂe,alle)(1[+ﬁﬂ,fa2|1)(f[+Hc 212

where H,, and Hy are, respectively, the Hamiltonian for
the three-level atom and for the signal and idler modes;
Qe, and Q; are the e —i and i — f atom-field couplings,
in units of frequency. We have neglected, in Eq. (2.12),
the couplings between the upper mode (of frequency w,)
and the i — f transition, and between the lower mode (of
frequency w,) and the e —i transition, corresponding to
" the limit
|lo;—a,| >>A . (2.13)

As pointed out elsewhere [16], these crossed couplings
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Accordingly, we cannot obtain the field master equa-
tion for the two-photon laser by replacing the atom-field
Hamiltonian, Eq. (2.12), into Eq. (2.11), but we would
need instead to consider a Hamiltonian describing the
whole dynamics involved in the problem, including the
excitation. Alternatively, we may calculate the change of
the reduced density matrix of the field due to one atom,
and then write down the master equation by summing up

“the contributions of the successive excited atoms intro-

duced into the laser cavity [24].

In many papers about two-photon lasers, the excitation
to the upper state |e ) was incorporated in the form of an
effective two-photon Hamiltonian [25], satisfying Eq.
(2.10). However, this approach has been recently shown
to fail even in the large-detuning limit [19,26].

In order to analyze in detail the meaning of the large
detuning limit [i.e., the limit in which Eq. (2.1) holds], we
take the master equation derived by Boone and Swain
[19] from the microscopic Hamiltonian given by Eq.
(2.12) within the usual Scully-Lamb approach [24]. As-
suming that the atoms are excited to the upper state [e )
with a rate R and according to Poisson statistics one finds

X : d
may degrade the twin-photon correlation. —P | =R[—(g, ..+ fn . P
The Hamiltonian H in Eq. (2.12) does not commute ¢ "™ gain Mfa TR
w1t.h n,—n,, even in the large detuning limit. In fact, the +g"x _l’nz_lp)‘l1 “hmy1
twin-photon effect appears here as the result of the asso-
ciation of the large-A atom-field interaction and the Ffn —tnPu —1n. 1> (2.14)
atomic excitation scheme, which must not provide atoms ! L 2
in the intermediate state |7 ). where
| o _
25—( D+ D) |3+ A0+ —3—( +ny+2)
ny ny T2 nyThRy
gn1n1= 2'-— — ,4, e i e e s s i t:{:,A,,’ B R (2.15)
4 8, +n2+2)+—— 1+-§—(n1+n2+2)2+ —5—(n1 Fny,42)+ ?
e
and where A (n,n,) is any function.
Comparing (2.17) with (2.14), we see that, for the two-
2-3—(711 + 1) photon laser, Eq. (2.1) is satisfied when f, , << »,-
Fnyn,= T R s === (2.16)  Since the two-photon Rabi angles are large even near the

A2
1+A—2+ —5—(;;1 +n2+2)
r r?

represent both the e —f and the e—i transition rates
(when the field is in the Fock state |n,n,)). The constant
g stands for the atom-field coupling (g =Q,=Q;r) and T’
is the atomic decay rate. o

In systems without any phase reference, the field
coherencies {n,n,|plnin}y), ni5n, or ny+n,, are not
coupled to the populations, as we see for instance in Eq.
(2.14) above. In such a case, it is easily seen that Eq. (2.1)
holds if and only if the gain part of the master equation
has the form

dP

nyny

dt gain

=—4 (nrlnz)P,,l,,z

A= La= 1P _y, i, @17)

threshold of oscillation (because the nonsaturated gain is
proportional to the squared intensity), that is
gXm,+7,)/AT 2 1, the sufficient condition for Eq. (2.1)
is
gim, +m,)
A

as can be seen from Eqs. (2.15) and (2.16). Therefore, the
twin-photon effect occurs when the intermediate-level de-
tuning is much larger than the power-broadening
linewidth of the atomic transitions, given by the left-hand
side of Eq. (2.18). This is then the condition for the 50%

<A, (2.18)

- reduction in the intensity-difference noise to be attained.

In summary, we have shown that, for a large variety of
oscillators, the noise in, the intensity difference between

" signal and idler photon numbers may be reduced down to

50% below the classical lower bound. The important
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feature of the gain process is, in any case, the simultane-
ous creation of twin signal and idler photons. On the
other hand, it is clear that excitation to the intermediate
state may degrade that noise reduction. This will be dis-
cussed in Sec. V. Before that, we show in the next section
that the 50% noise reduction in the intracavity field may
result in complete elimination of noise at zero frequency
for the difference of output intensities.

ITI. NOISE SPECTRUM OF THE OUTPUT FIELD

In this section we apply the input-output theory of
Gardiner and Collet [17] to derive an expression for the
noise spectrum S(w) of the output signal-idler intensity
difference in terms of the intracavity correlation func-
tions. From the results of Sec. II we calculate S(w) for a
two-photon oscillator in the balanced case (i.e., when the
cavity damping times are equal), in a way which remains
independent of the particular details of the model, and
which reproduces the results for the nondegenerate OPO
[8,10].

The intracavity boson operators a,(t) (k =1,2) obey
the usual commutation rules

(3.1a)
(3.1b)

[ar(t),a;:(2)]=0,
[ak(t):az'(t)]=6k,k: ,

whereas the commutators between the operators at
different times involve the dynamics of the field interac-
tion with the active medium,

The output signal and idler operators are b(t),
k =1,2. We choose the normalization such that

I, =b{b;

is the number of transmitted photons per unit time. This
is the important physical quantity, since the measured
photocurrent will ultimately display the photocounting

b2y -+ b8, b, 1) -~ - By, ) =y 5/ Tlaf(e)) -

where T(T') is the time (anti)-ordering operator
T(O(1))0(t,))=0(t,)0(t.),

t, (t.)is the largest (smallest) time.
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field statistics [27]. We thus define the intensity operator
of the transmitted signal (idler) beam to be I,,. Accord-
ing to this normalization, and since there is no causal re-
lationship between the output fields at different times, the
comimutation rules are

[bk(t),bk:(t’)]=0 N
[bi(2),b5.(£)]=8) 18(¢ —t') .

(3.2a)
(3.2b)

The spectrum S(w) of the fluctuations in the intensity
difference of the signal and idler beams is given by

S(o)= [ "I, ~ L)\, —1,)(0))

—{I,—1,)*at (3.3)
where the average is taken over the steady-state distribu-
tion.

In order to calculate S(w) as a function of the intra-
cavity field, it is useful to write Eq. (3.3) in normal order-
ing. Using Egs. (3.2) and (3.3), we find

S()=(I,+1I,)
+ [ e — 1), —1,)(0):)

—{I,—1,)*dt . (3.4)

The signal and idler cavity decay rates associated with
the transmission through the output mirror M (see Fig. 2)
are and y My respectively, whereas ¥, and y, are the

total signal and idler cavity decay rates (v Z'yMk,

k=1,2), according to the definition used in Sec. II. They
correspond to losses due to transmission through the mir-
rors, as well as intracavity and mirrors absorption.

When the incoming field at the output mirror M is in
the vacuum state, the normally time-ordered correlation
functions obey the relation [17]

caf ()T [apty41) - ap(2,)]) , k=1,2 (3.5)

From Egs. (3.4) and (3.5), we may express S () as a function of the intracavity field moments

S(@)=yy (n, >+'yM2(n2)+2f0°°dt cos(wt)G (1) ,

(3.6)

where G (¢) is the normally time-ordered autocorrelation function in the steady state

G(t)=( :[(yM2n2 ~Ym,M )(t)—<1’M2"2 TR )][(‘VMznz — ¥, 11 )(0)— <?'M2”2 —Ym M 1)

= 3 (7 (@O0 an0 =72, O ¥ a1y~ 20,71 )10, (0))

k=1,2

The first two terms on the right-hand side of (3.6) corre-
spond to the shot-noise contribution. It is clear that the
noise spectrum will be below the shot-noise level whenev-
er the Fourier transform of G (¢) becomes negative,

In general, one needs a detailed dynamic analysis of

[

each particular two-photon oscillator under study in or-
der to compute the autocorrelation in Eq. (3.7). This is
hardly surprising, since the noise spectrum contains in-
formation about the decay rate of the fluctuations which
is not found in the steady-state statistical moments ob-
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tained in Sec. II for the intracavity field. Nevertheless, in
the balanced case, we can still calculate S(w) in a general
and exact way, for two reasons. First, because the dy-
namics of the photon-number difference n,; —n, is com-
pletely independent of the gain process (that is, of
n,+n,) when y;=v,, as we saw in Sec. II. Second,
when ¥y =V u,, the output intensity difference I, —1I, is
coupled only to the intracavity difference between photon
numbers, so that the correlation function in Eq. (3.7) be-
comes independent of n;+n,. We thus assume for the
moment that

M, =Y, =Vu > - (3.8)
YI=Y2=Y, ~(3.9)
which, using also Eq. (2.7), leads to N
G=yY S (—)¥af(0)n,—n)a,(0)) . (3.10)

k=1,2 .

This expression may now be explicitly calculated by us-
ing the quantum regression theorem [28], which for our
purposes may be summarized in the following way:

d _ _d -
E(B(t))—(b(t)) dt(A(O)B(t)C(O))

=(40B(C0)) , t>0 (.11

where 4, B, b, and C are operators undergoing a
Markoffian time evolution. It follows then from (2.5),
(3.9), (3.10), and (3.11) that

4 Gi=—yG ),

> (3.12)
so that

G(1)=G(0)e ™" . (3.13)
Therefore, using the commutation rules (3.1),

G(t)=y3e "[{(n,—n?)—(n;+n,)]. (3.14)

Since {(n, —n,)?)=1({n;+n,) [Eq. (2.8)], we finally ob-
tain the noise spectrum from Egs. (3.6), (3.7) and (3.14),

S (0/§)/Sepet

4

2
w/¥ -
FIG. 3. Spectrum of the fluctuations in the intensity

difference, in the balanced case. Full line: y /y,,=1.2; dashed
line: y/yy=1.
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Nt it 4470
o*+y?
In Fig. 3 we plot the spectrum S(w) for y/y,,=1.2

and y/y=1. We see that S(w) approaches the shot-
noise level

S(w)=yp{n,+n, (3.15)

Ssnot =Y m{ny+ny) (3.16)

when 0 >>v,y .

There is a dip in the spectrum for ® S,y ,,, represent-
ing the nonclassical noise reduction discussed earlier. As
pointed out in the literature [6,8] about the nondegen-
erate OPO, this noise reduction is degraded by any loss
not caused by the output mirror M,. In particular, the
maximum noise-reduction factor (which occurs at ©=0)

-given by

Sehot —S(0) Y™

S, shot . Y

decreases from one down to zero when y/y,, is in-
creased. This can be simply understood following the
reasoning outlined in the Introduction. After a long
counting time, many twin-photon pairs leave the cavity,
but a fraction of them (equal to ¥ ,, /¥ in the case of ideal

e (3.17)

“~“~detectors) will not be detected. Therefore, at =0, extra

losses introduce noise exactly as does a detector of quan-
tum efficiency 7=%,,/yY. One should notice, however,
that the two effects are not precisely equivalent, for the

_ presence of extra losses affects the intracavity field, while
“nonperfect detectors simply change the final outcome of

the measurement. In the next section we consider the un-
balanced single-ported case, which also leads to exact re-
sults in the dissipationless case.

- IV. QUANTUM-NOISE QUENCHING
AT ZERO FREQUENCY FOR UNEQUAL DECAY RATES

When the cavity decay and/or transmission rates are
different, the output intensity difference couples to the in-
tracavity sum of the signal and idler photon numbers. In
such cases, the spectrum of fluctuations in the intensity
difference S (w) depends on the details of the particular
gain process involved in the oscillation. In the nondegen-
erate OPO, for example, the spectrum is sensitive to the
pump fluctuations when signal and idler channels are un-
balanced.

Nevertheless, we show in this section that the
intensity-difference noise is suppressed at zero frequency
provided that the output mirror is the unique source of
intracavity field damping. As before, our proof is based
on general features of two-photon oscillators. In this sec-
tion we assume thus that

YM, ™Y1, Ymu,=V2- 4.1)

The first consequence of Eq. (4.1) is easily found using
Eq. (2.5), which yields the steady-state mean intensities in
the most general case and Eq. (3.5),
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L=y {n))=y,{ny)=I, . (4.2)

The output signal and idler intensities are equal, despite
the asymmetry of the cavity. This equation admits an
easy physical explanation. Since the active medium gen-
erates equal numbers of signal and idler photons, the

0)—7’1(n1>+?’2<”2>+2f dt 3 (—Vylaf0)yny(t)—yin,(0]a, (0)) .

k=12
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number of removed photons is also equal in the steady-
state regime. Therefore, it is not surprising that Eq. (4.2)
holds when all the removed photons are delivered to the
output beam.

Next, we show that the spectrum of fluctuations van-
ishes at zero frequency. Using Egs. (3.6) and (4.1), we
find

(4.3)

Although the correlation function appearing in Eq. (3.6) involves the whole dynamics of each particular system, its
dc Fourier component still does not depend on the two-photon gain process. Indeed, using again (2.5) and the quantum

regression theorem (3.11), we see that

SO =yln)+yy(ny) =2 "dt 3 —)kykz—(ak 0)ny(8)—n,y()]a,(0))
k

=1,2

and therefore
SO)=y{n)+y,{ny)

+2 3 (— )y, [{af(0)n,—n,)0)a,(0))
k

_<”k>(”2—”1 ).
In this equation, we used that
(al(0)(n,—=n,)()a,(0)) =(n, }{n,

since correlations go to zero for infinite time intervals.
Finally, using Egs. (2.5), (2.6) and (3.1), we find the
desired result,

S(0)=0

4.5)

—n,),

' (4.6)

In the nondegenerate OPO, S (0) was shown to be strong-
ly sensitive to asymmetrical extra losses [6]. Unfor-
tunately, we cannot go beyond the model of a single-
ported cavity without considering in detail the particular-
ities of the system (except in the balanced case, as shown
in the last section). This is done in the following section,
where detailed consideration is given to the role of the in-
termediate state in two-photon lasers.

V. QUANTUM NOISE IN TWO-PHOTON LASERS

Up to now we have avoided considering any particular
model of a two-photon oscillator. By doing that, we have
been able to derive general (and exact) identities concern-
ing twin-photon generation in two-photon oscillators. In
this section we change our approach in order to study the
two-photon laser in detail.

In Sec. II we showed that, in the limit of large
intermediate-level detuning [Eq. (2.17)], such a system
behaves indeed as a “genuine” twin-photon generator.
We now analyze the effect of a finite detuning A on both
the intracavity and output fields. We calculate the first-
order correction in the inverse quadratic power of A to
the general two-photon-like noise spectrum derived in
Sec. III, in the balanced case. We base our treatment on
the linear-noise approximation [29], instead of the exact
nonlinear calculations of the preceding sections.

(4.4)

Since the atomic decay is an incoherent random pro-
cess which introduces extra field fluctuations, it is usually
assumed that the fundamental condition for twin-photon
generation is

A>T (5.1)

instead of Eq. (2.18), where I' is the atomic decay rate.
In fact, we will show in a forthcoming paper that the
fluctuations in the intensity difference become sensitive to
the decay of the intermediate level when it is tuned closer
to resonance. However, the atomic decay is irrelevant to
the intensity difference provided that the intermediate
state is not populated. This is the sufficient condition ex-
pressed by Eq. (2.18): we can show that Eq. (5.1) holds in
this limit provided that the two-photon laser or maser is
not well below the threshold of oscillation (when the field
is essentially in the vacuum state). On the other hand, as
will be shown in this section, the noise reduction in the
intensity difference is degraded when Eq. (2.18) is violated
even for very small values of .
We consider a highly saturated two-photon transition,
which corresponds to large two-photon Rabi angles,
gAm, +1,)
Or AT >1,

where g is the atom-field coupling constant (assumed to
be the same for the e —i and i — f transitions). The con-
dition of small atomic decay rate [Eq. (5.1)] follows from
Egs. (2.18) and (5.2). We neglect terms of order 1/0,
(and thus of order I' /A) in the master equation (2.14),
while still taking into account intermediate-state popula-
tion effects in its lowest order. We thus write Eq. (2.14),
up to first order in g%(n,;+n,)/A? and in the balanced
case (¥, =y,=7) as

(5.2)

Pnan =R[_(gnlnz_i-fnlnz)Pnln2+fnl—l,n2Pn1—l

+gnl—l,nz-—1Pn1—l,n2—-1] ’

21y

—vln +ny)P, ,,—(ny TP, 11,n,

—(n2+l)Pn|,n2+l] ’ (5.3)
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where _ where o
2ny+ Dy +1) si. R [ 1 1]
- n+n,+2 5.4 A=—1 _ (5.15)
Enimy ™ (ny+ny+2)2 Iz (mtmt2) G4 2 (731
2g2(n1+1) i and -
fo == T T 69) AL —%] .
B= . .
In the saturated low-decay-rate regime of oscillation, 7 1 B —z 1

each excited atom has a non-negligible probability of
leaving a pair of twin photons before decaying, resulting
in a photon generation rate of the order of the atomic ex-
citation rate R. The steady-state mean intensities are
thus of order
A, ~R/y . - {5.6)
Far above the threshold of oscillation (R Jy >>1), we
expect, based on general grounds, the photon number dis-
trlbutlon to be sharply peaked—with a width of order
(R /y)"*—around the average value. Following Van
Kampen s approach [29], we expand the master equation
(5.3) in powers of (R /y)!/? to obtain the semiclassical
laser equation (macroscopic law) and a linear Fokker-
Planck equation for the fluctuations. We define the noise
operators &; and £, and the averages ¢1 and ¢2 in the fol-
lowing way: :

R R 172
n=|— + | — , (5.7
Sl ¢, ” &1
R R 1/2
¢t 7 &, (5.8)

where, guided by the above conSIderatlons, we assume
that

¢17¢2:§1’§2~1”' 7 ) o ,:, - ’ _

We outline the basic steps of the expansion in Appen-
dix A. Corresponding to the zero-order terms in the
width of the photon distribution, the semiclassical equa-
tions are (see also Ref. [19])

59)

déy 2414y _ e

dr (¢1+¢2)2[1 Bl +¢)]—¢, 284, , (5.10)
d¢2_ 24,9, _ B 7

i G PO, e

where =yt and B=g?R /A%y.
The steady-state solution of Eqgs. (5.10) and (5.11) is, to
first order in 3,

$1=11+p),
$=1(1—P) .

The resulting linear Fokker-Planck equation for the

(5.12)
' (5.13)

probability distribution (&, §Z'T)=P,, g (1) is
9m(£1,62,7) -
- +1
ar 3 g, 67 EB" e,

(5.14)

From (5.14) we find, up to first order in B, the steady-
state moments

(&)=(&)=0, (5.17)

Agh=1+18, (5.18a)

(8y=1-3B, (5.18b)
‘and

(&6 =4—1% (5.18¢)
The results displayed in Egs. (5.12), (5.13), and

(5.17)—(5.18c) justify, a posteriori, the ansatz [Egs.
(5.7)-(5.9)] which underlies the expansion of the master
equation.

From Egs. (5.7), (5.8), (5.12), (5.13), (5.18a), and (5.18b),
we derive the following results for the 1ntracav1ty fluctua-
tions:

((ny—<{n )%

oy =1+38, (5.192)
1

<(fl2—<n2>)2>
<n2>

displaying two interesting features of the saturated far-
above-threshold two-photon laser.

{) In the large detuning limit [Eq. (2.18)], the photon-
number dispersion for each mode follows a Poissonian
statistics, like the usual “one-photon” laser far above
threshold.

“(ii) For a finite detuning, although the effective gain in
the upper mode increases [at the expense of the lower
one, see Egs. (5.12) and (5.13)], the corresponding
photon-number statistics becomes super-Poissonian. Be-
sides, there is a small nonclassical noise reduction for the
lower mode.

‘We are mainly interested in the noise in the difference
of photon numbers. From Eqgs. (5.7), (5.8), (5.12), (5.13),
and (5.18), we find

{((n;,—n —<n1;n2>)2>
<n1+n2>

=1-18, (5.19b)

=1+p. (5.20)
As expected, the noise grows from the large detumng
value obtained in Sec. II, as the intermediate state is
tuned closer to resonance.

A similar effect occurs in the spectrum of the fluctua-
tions in the output intensity difference, which is calculat-
ed within the linear-noise approximation and up to first
order in B in Appendix B.

The resulting noise spectrum is
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P(w/Y)/B

w/§

FIG. 4. First-order correction to the spectrum of the fluctua-
tions, when ¢ /v, =1.2.

Y?’M

S(o)=yy{n, +n,) +P( ), (5.21)

where P(w) is the first order correction to the two-
photon spectrum,

7Y u(y?+30?)
P(w):ﬁ-—.%___ e
(y*+o*)
The function P(w)/B is plotted in Fig. 4 as a function
of w/y, for the case y/y,=1.2. It displays a nearly
constant noise level within the cavity bandwidth.

- (5.22)

VI. CONCLUSION

When the cavity damping times are equal, the dynam-
ics of the intensity difference in two-photon oscillators
becomes completely independent of the gain mechanism,
which allows one to derive its noise spectrum in a general
and exact way. Therefore, it is not surprising that such
different systems as the two-photon laser and the non-
degenerate OPO may generate output fields with identical
intensity-difference noise spectra.

Furthermore, we have shown that the twin-photon
effect in two-photon lasers is not degraded by the popula-
tion (and incoherent decay) of the upper resonant level.
This fact may in principle open a prospect for the genera-
tion of intense correlated laser beams. :
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—1/2[’£+é

2.4,

g = — - £
()

¢ ¢

l1—3(¢1+¢2)+

and
Frymy =280 (R /7) 7%, ]+O0(R /)Y,

where

2
—&8 R
g Ay
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~"APPENDIX A: VAN KAMPEN EXPANSION
OF THE MASTER EQUATION
FOR THE TWO-PHOTON LASER

We expand Eq. (5.3) around the average photon num-
bers to derive a linear Fokker-Planck equation for the
fluctuations defined in Egs. (5.7) and (5.8). Our deriva-
tion is based on the general method ‘developed by Van
Kampen for treating nonlinear stochastic processes [29].

. Equation (5.3) may be written as
P"x"z R —1p—1
y '—'?[(El EZ _]')gnlnz}.’nln2

HET =S, 0P

n1n2]

HE Py By DBy, s (AD

where Ek' is the oj)eratbr chénging ﬁk into n,+1. In
terms of the new continuous variables £, and £,, E, may

- be written as 4 differential operator given by "= -

R]™ s 1[r] &
E=1+ =] St | (A2)
R 1 3, 2 |v | o
It follows that
R —1/2 3 3
E—lE*l_].:___ = —_——t—
L ¥ _[‘.’51.,?52]“
R 4 _1 v . = t",;z
1R d d
e el B o
20y [agl - 9&;
+0((R/7/) 3/2) (A3)

Since n, depends on the time through ¢ [see Egs. (5.7)
and (5.8)], the relation between the time derivatives of

(1,65, 7)=P, ,,(t) and of P, , itself is given by
p 2
Py n, _9or_|R dé, 3 ddy A (A4)
Y aT '}’ dT agl dT a§2
where T=71.

We now expand the coefficients in Eq. (A1) to obtaln,
using Eqs (5 4) (5 8),

il iz 1= B+ 6511 BE, &) ]+0<<R/%>-1>,
(AS5a)
(ASb)
(A5c)
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Using the definitions in Egs. (5.7) and (5.8) and substituting the expansions in Egs. (A2)-(AS5) into Eq. (A1), we find

ar_[R]7[2r 491, ar 46
or Y ag, dr 7 a§2 d~r B ) o
172 : LT :
__|R ¢1¢2 _ 8 - o or
2¢19, _ﬁ_ _L é Ez_ &+6;
<¢1+¢22“ B“”‘“”[ %, ' 2% [¢,+¢2 ¢1+¢2]
0% e |22 . 23 ~(&m) +86, 2T+ 3 L (gm+i 2 Lk
(6,4, SR K-SV a§2 = aék 2 5, keg

(A6)

Collecting the terms of order (R /y)l’ 2 and R /y we find, respectlvely, the semiclassical equations (5.10) and (5.11)
and the Fokker-Planck equation, whose final form, Egs. (5.14)—(5.16), is obtained by replacing the steady-state semiclas-

sical solutions, ¢, and ¢,, into the coefficients of Eq. (A6).

APPENDIX B: OUTPUT-NOISE SPECTRUM OF THE TWO-PHOTON LASER WITH A FINITE DETUNING

We calculate the spectrum of the ﬁuctuatlons in the output intensity difference for the two-photon laser, up to first
order in B=(g2/A%)(R /y). In the balanced case, the normally tlme-ordered correlation function of Eq. (3.7) becomes

G(1) —'}’M 2 (_)k(a (0)[("2 n,)(t)—(nz—nl)s]ak(())) »V _ - (B1)

k=12

where the average is taken over the steady-state photon
distribution, whose width is of order (R /y)!/2. We thus
need to consider only the values of (n,—n,)(t) differing
from the steady-state mean {n,—n,;)g by an amount of
order (R /y)'/%. Using the noise operator defined in Egs.
(5.7) and (5.8), we thus set

172

(ny—n)t)={n,—n g+ (% (&;—8))

in Eq. (B1), so that ‘
G(1)=G,(1)—G,(1) , ' (B2)
where l

G (=1} (R /1) (a](0)g(t)a;(0))

—(al(0)E (1)a,y(0))]. (B3

As in Secs. III and IV, we may now use the regression
theorem in order to calculate G(t). From the Fokker-
Planck equation (5.14)~(5.16), we have

d <§1) _ B 1 1 (§1>
a0 (e [T - | ke ) B

Therefore, by the quantum regression theorem, we find
from Eqs. (B3)and (B4)

L= =[—1—=1_ (B5)
d(yt) |G2(2) 2 31 G, (1)
Integrating Eq. (B5) up to first order in 3, we find

Gl(t) et B 1 1 GI(O)
G |7 T 1T =3 1] 6,00 (B6)
so that

G () —G,(t)=e " T[G,(0)—G,(0)—2BytG,(0)] . (BT

From Egs. (B2), (B3), and (B7), and using the commu-
tation rules given by Eq. (3.1), which in terms of the noise
operators may be written as
172

a,:r(t), - §k¥(t)’=[az(t),nk'(t)]
=_5k,k'all'(t) » (B8)
we finally get
G(t)=—'y%,,-2—1§/—(1—23+ﬁyt)e ~re (B9)

Computing the Fourier transform of the above function,
and substituting into the general expression (3.6), we ob-
tain the final result for the noise spectrum S(o),
displayed in Eqgs. (5.21) and (5.22).
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