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Environmental effects in the quantum-classical transition for the delta-kicked harmonic oscillator
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We discuss the roles of the macroscopic limit and different system-environment interactions in a quantum-
classical transition for a chaotic system. We consider the kicked harmonic oscillator subject to reservoirs that
correspond in the classical case to purely dissipative or purely diffusive behavior, a situation that can be
implemented in ion trap experiments. In the dissipative case, we derive an expression for the time at which
guantum and classical predictions become diffe(breeaking tim¢ and show that complete quantum-classical
correspondence is not possible in the chaotic regime. For the diffusive environment we estimate the minimum
value of the diffusion coefficient necessary to retrieve the classical limit and also show numerical evidence
that, for diffusion below this threshold, the breaking time behaves, essentially, like that in the case of a system
without a reservoir.
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I. INTRODUCTION with an environmenf4—6], which leads to elimination of the

The problem of understanding the classical world fromdua@ntum signatures, so that quantum and classical evolutions
guantum theory is subtle and especially challenging whefémain a}llke_. In systems that, when |solat¢d, exh|b|t. dynam|—
dealing with classically chaotic systems. cal localization, it was showfir—1Q that noise and dissipa-

Even the definition of classical chaos cannot be directlytion can strongly alter the situation and under certain condi-
translated into quantum mechanics. Exponential sensitivitfions restore classical-like momentum diffusion. For
to initial conditions, used to define classical chaos, relies oparticular choices of environment, it has also been shown
the concept of individual trajectories in phase space, which ithat this reconciliation is possible under some conditions that
absent in quantum formalism. The use of classical phasmvolve a scaling relation for the effective Planck constant,
space distributions, instead of trajectories, seems to be thtae nonlinearity parameter and the strength of the system-—
way in which to circumvent this problem, since they can bereservoir interactiori7,10-15.
readily compared with quasiprobability distributions defined  One of the aims of this paper is to further explore the joint
for the corresponding quantum system. role of the macroscopic limit.s<1) and interaction with

One expects, however, that the dynamics of the quanturhe environment in the quantum-classical correspondence. In
and the corresponding classical system should differ aftefa ticular, we are also interested in regions where the condi-
some time, even if the initial distributions coincide. ThiS yjong for classicality do not hold and examine the time scales
time, often called Ehrenfest time or breaking time, Wh'leat which the quantum-classical correspondence breaks down.

large for integrable systems, can be very short for ChaotiQN : o i

" . e should emphasize that this time scale is different from
systems. In .that case it r_]as been shefjrto be. proportional the one in the I?ocalization problem studied in Ref&-10
to the logarithm of the inverse of an effective Planck con- .

stant,fi., Which is the ratio between the Planck constant and'"ce this phenomenom can_be absef“ in the mod(_al We con-
a typical action of the system. For integrable systems, on th |dgr[16]. Anot.her goal of this paper is to ana]yze in detail
other hand, it scales as an inverse powerfigf. In fact, tl gmpgc_t of different forms of the system—enwronmelnt Cou-
guantum corrections become important when the distributio®!ing within the framework of a model that can be imple-
is able to explore the nonlinearities of the potential, whichmented experimentally. _ _ _
can occur on a logarithmic time scale due to the exponen- 10 do this, we revisit the kicked harmonic oscillator
tially fast stretching of the distribution imposed by chaotic (KHO), which has been the subject of studies both in classi-
dynamics. cal [17] and quantum descriptiorj46,18,19. Despite some
One way to face this problem is to go to the macroscopigeculiarities and numerical difficulties presented by the
limit, namely, 7.— 0, which results in an infinite breaking KHO, the possibilities for implementation with current avail-
time 7,. Nevertheless, for any physical systefiyg is not  able technology for ion trag0] turn this model into a very
zero and therefore; has a finite value which can be short, attractive one. Moreover, in ion traps, one is able to create
even for macroscopic systems. It has been argued that, due aatificial reservoirs[21] and different kinds of system-—
the shortness of the separation time, even components of tlvironment interactions have already been produced experi-
solar system would exhibit quantum features, which is inmentally [22]. This favorable scenario becomes complete
contradiction with observatiof2,3]. with the possibility of tuning the effective Planck constant by
Reconciliation of quantum and classical predictions inchanging experimentally accessible parametggg.and its
this case is provided by irreversible coupling of the systenscaling properties are related to the so-called Lamb—Dicke
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parameter(defined later in this papgrwhich can be modi- potential is position dependent, with periodicity given by the

fied either by changing the trap frequency or the directions ofvave vectork.

the laser beams that interact with the ion. The differential equations of motion due to this Hamil-
We analyze two limiting cases of environment coupling:tonian can be replaced by a discrete map. Between two kicks

zero temperature, which leads in the classical limit to dissithe system evolves according to

pation without diffusion, and a reservoir that leads to diffu- w2 _

sion without dissipation. This is not an unrealistic situation: X+vXx=0, (2

the first may be mimicked by the sideband cooling mechawhile at kicking timesnr there is just a shift in momentum,

nism in ion traps, under proper conditions, while the second,q that

corresponds to white-noise position-independent random . . _

force, coupled to the oscillator. The latter of the two is Xp=Xn, Py =Pnt+Aksinkx), 3)

known to be. the most important source of decoheren_ce 'Where the variables immediately after and before a kick are
actual experiment22]. We present analytical and numerical indicated, respectively, by the presence or absence of the “+"

results concerning the “distance” between quantum and Cla%’uperscript. After this integration we can connect the solu-

sical pre_d|ct_|ons and the break_mg time. More speplflcally, Mions before each kick using the following map:
the dissipative case, expressions for the breaking time in

three different parameter regions are derived and their physi- Xnt1 = COLvT)X, + Sin(vr)/mu p, + Ak sin(kx,)], (4d)
cal consequences are discussed. In the most interesting re-

gion, we have a result similar to the one obtained recently by p ., = — mw sin(v7)x, + cogv7)[p, + Aksin(kx,)]. (4b)
lomin and Zaslavsky23] using another method. For the dif- i ) ) ) ,

fusive environment we establish the minimum value of the!USing dimensionless variablesandu defined by

diffusive constant in order to restore classical predictions, v = kx
and we provide numerical evidence that the breaking time
behaves like the one for the system without a reservoir if the u= kp/my (5)

diffusion constant is kept below this threshold. We also show

that the purely diffusive reservoir has a much stronger imthe map becomes

pact on the quantum-classical correspondence than the dissi- Drey = COS @)y + sin(@)[Ug + K sin(v,)], 63)
pative one.

In Sec. Il we present the main features of the classical i )
model, both in the absence and the presence of coupling with Unsy = = Sin(a)v, + coga)[u, + K sin(wy)],  (6b)
the environment. In Sec. lll, we introduce the quantumyherek=AK?/mv anda=wvr are, respectively, the renormal-
r_nod_el,_and discuss Its connection with e_xpenmer_ltal realizaized kicking strength and the ratio between the period of the
tion in ion traps and with the corresponding classical modelkijcks and the period of the oscillator. The system’s phase
Section IV is divided into three parts that show the results forspace is unbounded and mixed, and exhibits stable islands
the system without a reservoir or one that interacts with dissyrrounded by a stochastic web along which the system dif-
sipative or diffusive reservoirs. Appendices A and B containfyses. The web is characterized by its thickness that broadens
detailed derivations of some of the results presented in th@shnnks as the value of the Chaoticity parame[@'rncreases
body of the text. (decreases For a=2x/q (q is an integey, the stochastic
web displays crystalg e 9.={3,4,8), or quasicrystal sym-
metry (Q# (). These basic features can be seen in Fig. 1,
where a stroboscopic plot for the map E¢®, is shown for
g=6 andK=2.0 for different initial conditions.

The classicab-kicked harmonic oscillator has been stud-  Another useful way in which to study the dynamics is to
ied for both isolated24] (without a reservojrand dissipa- follow the time evolution of the phase-space probability dis-
tive [25] cases. Here we review the basics features of thesgibution. This method is especially suitable for problems
models and present also the effects of interaction with a difwhere the notion of a single deterministic trajectory is absent
fusive environment. as in the case of noisy and quantum dynamics. For numerical
evaluation of the density dynamics, one usually evolves an
ensemble of trajectories generated according to the initial
distribution and then, by counting the fraction of trajectories

We consider a particle of massin a harmonic potential that lies in each cell of phase space, one recovers the density
subjected to a sequence of periodically appldike pulses. at a given time. However, this method presents some draw-
The Hamiltonian that describes this situation is backs in our case, due to the unboundedness of the phase
space and the consequent escape of trajectories. One way to
get rid of this problem is to extend the phase space bound-
aries to be sure that, for the time scale one wants to simulate,
no trajectories are lost. Nevertheless, increase of the phase
where v is the oscillator frequencyr the interval between space area, keeping the size of the cells constant, requires a
two consecutive kicks ané their amplitude. The kicking larger number of trajectories in order to get good statistics.

Il. CLASSICAL DYNAMICS: THE &-KICKED
HARMONIC OSCILLATOR

A. System without a reservoir

2 2,2 *
H=—+ +A cogkx) D St-n7), (1)
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FIG. 1. Stroboscopic plot fog=6 andK=2.0, showing some )
stable islands as well as the stochastic web that forms hexagone
symmetry in the unbounded phase space. ’

v
(©)

This imposes severe constraints on efficient numerical imple-

mentation. FIG. 2. (Color onling Classical probability distribution fog
Alternatively, we start with a uniformly distributed en- =6 andK=2.0 after zerqa), three(b), six (c) and nine(d) kicks.

semble of trajectories, each carrying its own weight relativel"e Same structure of the trajectory-based stroboscopic map as that

to the initial distribution. According to this, the probability at " (Fig- D is shown. After nine kicks only the central structure is

each point is obtained by requiring that visible. The whole web structure would be seen if there were a
larger number of kicks.
Pn(vnyun) = PO(UOIUO)l (7)
which means that the value of the initial probabili§, at X+1”x+I'%=0, (8)

every point(vg, Ug) in phase space is transported to the image . o ) )
(v Uy) Of this point under action of the map Eq8), aftern yvherel“.|s the dissipation rate. The dls_cr(_ate map obtained by
iterations. All the classical quantities calculated throughoutNtégration of Eq(8) and use of the shift in momentum, Eqg.
the paper are obtained by evaluating each individual trajec(3)v 1S

tory and then averaging them, taking into account their re- )

spective probabilities. It is important to mention that, al- xn+1=e‘“’2{cos@§xn+ S'”(a[anrAk sin(kxn)]},

though differences between trajectory-based and true density m Q

evolutions are expectef26,27, our simulations show no (9a)
difference between the two methods for sufficiently small

phase-space partitions. 2 o o )

Figure 2 displays the evolution of an initial Gaussian Pnr1=€" "{=mQ sin(a)x, + coda)[p, + Ak sin(kx,) ]},
probability distribution centered at the origin for the same (9b)
parameters of Fig. 1. The numerical procedure used to plot
the distributions is similar to the one described to calculatevhere
the averages but, in order not to have problems with disper-
sion of the trajectories from neighboring regions in phase Q=\V*-T%4,
space att=0, we do the calculation backwards in time,
choosing the grid at any instant of timteand evolving the

points using the inverse map to find the probability of the p/m=x+Tx2, (10)
inverse image of this point at=0.

From Fig. 2 one can identify the inner structure present in a=Qr.
Fig. 1. The whole web structure would be visible if there
were a larger number of kicks. We again perform a change to dimensionless variables

o andu’, so that now
B. Dissipative case

The dynamics of the kicked oscillator change if a dissipa- v' =kx,
tion mechanism is introduced. In our model this can be (12)
achieved by modifying the equation of motion between the u =kp/mQ,
kicks, Eq.(2), with the addition of a friction term propor-
tional to the velocity, and
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FIG. 3. Average Lyapunov exponet(solid line) and bifurca- FIG. 4. Strange attractor obtained from the map, Efj8), for

tion diagram(dots as a function of the dissipation paramefer2 ~ 4=6, K'=6.0 andI'z/2=0.36 corresponding to a Lyapunov expo-
for K'=6.0 andq=6. The horizontal line ati=0 was plotted as a hent of 0.697 in Fig. 3denoted by an arrow theye

reference for the Lyapunov exponent. For the bifurcation diagram,

the vertical axis corresponds to the lasf Iints ofu after 1¢ JP _ gP JP (a2p N 32p>

iterations of the map, Eq$12). We only show the region from -2 (13

vu .
2 2
to 2 for clarity. The arrow refers to the case plotted in Fig. 4. gt du Ju Jv® du

The first two terms describe the harmonic evolution while
v}y =€ coda)v) + sin@)[u, + K’ sin(v))]}, the third accounts for diffusion, in both andu, with diffu-
sion coefficientD. This diffusive term has two different ef-
(123 fects on the system’s dynamics. First, noise limits the devel-
opment of small-scale structures in phase space generated by
, _ . , , L, the nonlinear dynamics, thereby smoothing out the probabil-
Uy = €7 "4 sin(@)uf + coga)[uy + K’ sin(wp) 1}, ity distribution. While stretching of the distribution tends to
(12b generate thin structures in phase space, noise will tend to
counterbalance this effect, leading to a lower limit in the
whereK’ =AK/ mQ. width of such structures which will depend on both the non-

There are new scenarios that arise from the addition ofin€arity parameter and the strength of the ndisg|. The
dissipation depending on the values Kf and 'z, When second effect is a fgster spread of the sys_tem over phase
one of these parameters is changed, the system may cha ce. I_n fact, the d|ffu§|on produced by noise adds a new
from periodic to chaotic motion in a sequence of period-Me&chanism for connecting different parts of the web, thus
doubling bifurcationg28]. In Fig. 3 we show this sequence €nhancing the original chaotic diffusion.
and also the average Lyapunov exponent K6=6.0 and
I'7/2 varying from 0 to 1. For the bifurcation diagram we
iterated the map, Eq$12), for 10° steps and plotted the last
10° points that correspond to thevariable on the vertical
axis. The Lyapunov exponent is averaged ovet different A. System without a reservoir
initial conditions equally distributed around the origin, tak-
ing into account the same initial probability distribution as in
Fig. 2. For each trajectory the exponent is calculated usingy operators
the procedure described in R§R9] for 10° iterations. One '
can clearly identify the periodic regions corresponding to ~ P2 AR <
non-positive Lyapunov exponents and the chaotic ones H= om +7Kq cogk®) > st-n7),  (14)
where the system goes to strange attractors like the one n

shown in Fig. 4. where we have defineld,=A/%.
It was shown in Ref[20] that this model describes the
C. Diffusive case cent_er-of-mass_motion of an ion in a one-dim_ensional har-
monic trap subjected to a sequence of standing-wave laser
Another kind of external disturbance that can affect thepulses, off-resonant with respect to a transition between the
oscillator dynamics is diffusion generated by noise due, foground state and another electronic level. In this off-
example, to fluctuating forces that act on the system. Oneesonance condition the excited state is negligibly populated
possible mathematical description for the evolution of theand can be eliminated adiabatically. The result of this elimi-
probability distribution between two consecutive kicks is thenation is an equation that describes just the motional dynam-
Fokker—Planck equation, ics subject to recoil associated to incoming laser pulses.

IIl. QUANTUM DYNAMICS: QUANTUM  4-KICKED
HARMONIC OSCILLATOR

The quantum Hamiltonian for thé-kicked harmonic os-
cillator is given by replacing in Eq1) the variablesc andp
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In terms of the annihilation and creation operatarand dp i~ )
a' for the harmonic oscillator, P g[H,P] +Lp, (22
&= mul2h%+iN1/2hmup, (15) wherep is the reduced density operator of the system in the

interaction picture. The first term on the right-hand side of
Eq. (22) corresponds to the unitary dynamics while the sec-
- ond term represents the nonunitary effect of the environment
H=hva"a+#K, cogp(@a+ah]X st-n7), (16)  in Lindblad form,

n

Lp=2 (W2)(2epe -clep-pee). (23

the above Hamiltonian can be written as

©

where

n=k\fi/2my (17)  Operatorst; are related to the form of system-environment

is a scaling parameter related to the macroscopic limit, thé?O,Up“ng and constantg; measure the strength of the cou-

so-called Lamb—Dicke paramet@0]. This parameter can be P'N9-

expressed ag=2mAx/\, where Ax, is the width of the _ Equation(23) is frequently fou_nd in a description of dis-
ground state of the harmonic oscillator,ang 2/k is the ~ SiPative systems. It can be derived under very general as-

wavelength of the kicking force. This is the classicality pa-SUmMPtions, n?m.ely, “Mar:kOVi%iW” %n%complete positivity Orf]
rameter for the model under consideration. Its square is seéHe time evolution of the re uced density operator of the
to be the ratio betweeh and the action @w/k2 and it plays _system[31,33. This latter condition is defined in the foIIow_—
the role of dimensionless parametek mentioned in Sec. I. ing way. !_etA .be the system for whu;h the' reduced density
The limit 7— 0 can be achieved by letting— 0. This pa- operator is definedk , the corresponding Hilbert space, and

rameter can be easily changed in ion trap experiments bQA the time-evolution map for the reduced density operator

varying the direction of the kicking laser pulses with respect’: Consider amr/] possib[e extensit?mﬂik to_ltge tensor pr%d—
to the trap axis, sincke stands, in this case, for the projection UCt 7a® He, WhereTtg is any arbitrary Hilbert space; then

of the lasers wave vectors on the trap axis. Apis comple.tely positive off, if Aa@lg is positive for all
In terms of 5, we can write such extensions. Complete positivity corresponds to the

statement that, if syster evolves and systerB does not,
A1 o — any initial density matrix of the combined system evolves
@= Z(U +iu) = (U +iu), (18 into another density matrix.

In trapped ions one can use the technique of “reservoir
engineering[21-23 to build different kinds oft; operators

Kq= Lz (19)  for center-of-mass motion of the ion, and, in particular, the
27 dissipative and diffusive reservoirs discussed previously in
where Eqs(5), (15), and(17) were used. While the classi- the context of classical dynamics.
cality parametery appears naturally in the quantum model 1. Dissipative case

when it is expressed in terms of the annihilation and creation Dissivation b i in th K
operators, it may also be introduced classically by using the Issipation by a zero-temperature reservoir in the weal

new variables andu, which yield the following scaled map: goupling Iimi_t (I'<v) and in tr_'e rptating-wave apE)roxiAma-
tion is described by Eq22) using just one operatot; =3,

_ — — K R .
Upe1 = COS{a)vn+S|r‘(a){un+ZSIH(ZWUH)] (209 @:—I—[I:|’,f)]+E(ZéﬁéT—éTéf)—ﬁéTé), (24)
dt fi 2
whereH’ has the same form d$ given by Eq.(16), with v
replaced by the frequendy given by Eq.(10). We will see
(20b) that, with this choice, the oscillation frequencies of the quan-
tum and classical systems will coincide.
On the quantum level, the evolution dictated by ELf) From master equatiof24), one gets the equations of mo-
can be written as a map that connects the state of the systetion for the expectation values between kicks:
before each consecutive kick as

Uns1 = = sin(@)v, + coga) [Un + £sin(2nv_n)] :
27

A A . ~ F ~
|(/,> 1= 0h0k| ) =g wéTée—qu co{n(é+éT)]| ) (21) (@ =Tr(@p) = - i@ - E<a>’ (25
n n n»
where U,, and U, are, respectively, the evolution operators Which can be written in terms ofandp as
for the harmonic oscillator and for the kicks. P T

)= ™ E<f<>, (26)

B. Open system: Influence of environment

The influence of the environment on the system can be A\ 2/% _E a
described by the master equation, ()= =m0 2<p>. @
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One should note that, different from classical equations o& true probability distribution, as it is the only quantum dis-
motion, dissipation appears here in a symmetric way witHribution that yields the correct marginal distributions for any
respect to position and momentum. This is related to thglirection of integration in phase space, however it can ex-
rotating-wave approximation, adopted in deriving E24):  hibit negative values. For our purposes, this turns out to be
this approximation requires that the oscillator undergoegn advantage, because it highlights the differences between
many oscillations within the decay tingehat is, one should guantum and classical dynamics. As a matter of fact, it is
havel < v), which implies that effect of dissipation gets dis- Much easier to detect quantum signatures with the Wigner
tributed between the canonical coordinates. distribution than with the Husimi o® functions.

Taking the derivative of Eq26) and using Eq(27) one .Oscillation_s between_negative anq positive values in t_he
gets Wigner function are a sign of the existence of quantum in-

terference phenomena, which are absent in its classical coun-
" 2\ _ . terpart. The role played by decoherence in washing out in-
)+ (QZ+ Z)<X>+F<X>:0' (28)  terference patterns is also easily visualized in the Wigner

function [15]. More than a visualization tool, the Wigner
Using Eq.(10), we can see that this equation that describegunction can be useful to derive some analytical results con-
the quantum dynamics between kicks is identical to its clascerning the quantum-classical limit.

sical version, Eq(8), so the quantum and the classical sys- In what follows we make use of the Wigner function and
tems oscillate with the same frequency. of its Fourier transform, the characteristic function, to obtain

new results concerning time scales for the quantum-classical
transition. By combining the interaction with the environ-
ment and the possibility of varying the effective Planck con-

The purely diffusive reservoir master equation can be obstant, we are able to discuss not only the regions of param-
tained from Eq.(22) by choosing two operator§;=a and eters for the classical limit but also the behavior of breaking
62:51 with the same ratey;=v,=v, time in open systems.

2. Diffusive case

LY asal — 48 — 5aTA)+ (23754 — 285 — HaaT A. System without a reservoir
p= 2[( pa’ —alap -~ para)+ (2a’pa=aa’p - pad)]. In the absence of interaction with the environment, the
(29) classical limit is investige_lted by changing the scaling param-
eter . One should mention that, in terms of the variahles
This is a combination of cooling and heating reservoirsanduv, the initial distribution does not depend opn and is
and due to the fact that they have the same rates, all termiaken to be the same for the classical and quantum systems.
that lead to drifting are canceled out and only diffusion termsOf course, in terms of the original variablesndv, decreas-
survive. This becomes clear when one explicitly writes theing » leads to shrinkage in the width of the initial distribu-
corresponding Fokker—Planck equation for the Wigner function in both the classical and the quantum situations. In any
tion: case, changingy will affect both the classical and quantum
5 solutions, since the initial states are always taken to coincide,
ALl =y FW . (30) and a broader initial packet will explore, from the beginning,
at dada’ a larger region of phase space.
In Fig. 5 we show the Wigner function fop=0.5 (top)
and 0.1(bottom) after nine kicks, corresponding to, respec-
IW vy # P tively, the classical situation depicted in Fig(d2 and its
9t 4 ﬁ + ﬁ w (31) scaled versior{not shown. By decreasing the value of the
effective Planck constant one gets a quantum phase space
Equation (31) is equivalent to the third term of Eq13) that resembles more and more the overall classical structure
rewritten in terms of the rescaled variables if we get but still with the presence of interference patterns.
=D/ 7. After some time these differences between quantum and
A purely diffusive reservoir can be produced by randomclassical evolutions become important and estimates can be
electric fields[33,34 and it is known to model heating of the made using the characteristic functi@,\"), defined as
vibrational energy observed in recent experiments on ion dy- . At ava
CN ) =Tr[pehd ™ &, (32

namics[22].

Expanding the exponential of the cosine function in the
quantum map, Eqe21), in terms of Bessel functions, it is
possible to explicitly write the characteristic function after
The classical description of a chaotic dynamical systemthe nth kick in terms of its initial valueCy(\p,\,), as[18]

or, in terms ofv andu,

IV. RESULTS

either using single trajectories or a probability distribution, is w

based on the analysis of phase space and its structures. Thes (\ ) = I (z)Ie (2) ... ] Cahu N
definition of a single trajectory in the quantum case is pre- A mlmzmn:_m my (@, () - I (Z0) Colh o)
vented by the uncertainty principle so a suitable description (33)

of the system is based on quasiprobability distributions. The
Wigner function fulfills almost all the requirements for being where
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o0

c * K <
cCON) = S Jml(?&) ...Jmn<?§n)

ml‘. . ,‘mn:—oc
X Co(Ai\yy). (35)

Itis clear that the classical expression is obtained from the
guantum one whef¥,| <1, in which case

sin(&) = &. (36)

Since, according to Eq343a), & is proportional toz, this
approximation should hold for sufficiently sma#} in the
beginning of evolution of the system. However, as time
evolves, and\,| grows, it eventually ceases to be true. This
is precisely where the breakdown between classical and
quantum evolution occurs.

An expression for the breaking time can be obtained by
comparing the quantum and classical characteristic func-
tions. We define it as the time at which the approximation,
Eq. (36), fails, or, in other words, at whick,~ 1. Assuming
a strong chaos conditiofi>1), one is able to deriv§l8]

In(2K/7)
T —

— (37)

In(K)
whereK =K sin(«). This result displays scaling of the break-
ing time with the logarithmic of 147, which stands for the
h4i already mentioned in Sec. I. A numerical check of this
expression needs an operational definition for the breaking
time, which involves, also, the choice of an appropriate mea-
sure of the distance between quantum and classical systems.
Information measures that can be used to compare two dif-
ferent distributions are available in the literaty&5], and
have been applied in the context of quantum-classical tran-
sition for chaotic systemfl4]. Measures based on a com-
parison between whole distributions, although more com-
plete, would lead to a large increase in computational time
and experimental difficulties. Although the Wigner function
has already been measured in experiments with trapped ions
[36], it would be challenging to resolve details of the inter-

FIG. 5. (Color onling Wigner distribution after nine kicks for
7=0.5(a) and 0.1(b). In both cases the Wigner function presents
negative values but as the Lamb—Dicke parameter is decréaséd
gets closer to the classical limthere is better correspondence with
the overall classical structure shown in FigdR

M= Nig€ + imyery, (343 ference fringes seen, for example, in Figb)s The relative
< distance between the classi¢ahv)) and quantunt(Av?))
7= 2K sin(g) = ?sin(gk), (34p) ~ variances of the distributions, defined as
.- ‘ (Avg) - (AU -
r— —2 '
b=~ 200N, (349 (Avgy)

is a much simpler quantity that already shows the scaling
A=\ (340) properties of Eq(37). Figure 6 shows the classical and quan-
0 ' tum variancegleft panel§ and the relative distanad (right

J, are Bessel functions ang=vr, as in the classical case. panel3 as a function of the number of kicks for two different

It is interesting to compare E@33) with the correspond- Lamb-Dicke parameters. The separation time is defined as
ing one for the classical system, which can be obtained byhe time at which the relative distance crosses a given value
introducing the classical map Eq®0), into the appropriate € (€=0.1in Fig. 6. In Fig. 7 we plotr, obtained in this way
classical definition of the characteristic function. This defini-as a function of Il/%) and, although the absolute value of
tion follows from the quantum expression, E®2), upon the breaking time depends on the choiceeptests withe
replacing the trace by a double integral, the operators byanging from 5% to 30% show only slight modifications in
complex numbers and the density matrix by a classical probthe curves and confirm the scaling behavior, &Y), inde-
ability density. One gets then pendent of the particular definition of separation.
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o TABLE I. Breaking time for dissipative dynamics in four differ-
? ' ent regions of parametefsr/2, » andK’.
4 0.5
(2) dr . .
i ’ 0.3 Nonlinearity Deep quantum Weak quantum
. y :
‘1‘ W, \/V\ A/\M/\ strength regime regime
0.1 f
( $ 79 15 20 25 30 0 A/\l. v‘lou VHV 2Vo ! 35 30 I'7/12<In(7/2) I'r/2>1In(7/2)
N N
120 _ _ In(2K'/ )
100 0.7 In(K')>T'72 @ mp~=1kick ()m~———"—
il In(K") - T'7/2
80 2
(s2) / ”\ ﬂ\" i
40 [ K 08 /\ In(K)<rr2  (b) 7~1kick () 73—
20 £ W o1 N
Vv
o 5 10 15 20 25 30 0 5 10 1 20 235 30
N N

FIG. 6. Classical and quantum variandésft panel$ and the
relative distancal, (right panel$ as a function of the number of
kicks for »=0.5 (top) and 0.1 (bottom). The quantum variance
(solid line) remains close to the classiqalashed lingfor a longer

In analogy to what was done for the system without a
reservoir, one can obtain the breaking time by examining
when the quantum characteristic function can no longer be
described by its semiclassical approximation. This procedure
is fully described in Appendix A and the results are summa-

time when the Lamb-Dicke parameter is smaller. The breakingized in Table |. The first column in Table | represents a
time, indicated by arrows, corresponds to the instant at which theegion characterized by a deep quantum regime where a clas-

relative distance gets larger than a chosen vated).1 (horizontal
line in the right panels

B. Dissipative environment

The analytical solution for the quantum dissipative prob-

sical description of the system is already not valid right after
the first kick, for all finite values of the dissipation. It is
interesting to note that, in this region, quantum-classical cor-
respondence is lost even if dissipation is sufficient to bring
the classical system into a periodic regime.

In the second column in Table | we have the most inter-

lem in terms of the characteristic function is also given byesting range of parameters for the quantum-classical transi-

Eq. (33) and the only change affects the relation, E2da),
that must be replaced by

M= Neg€7€T72 +im, 7, (39)

tion (we call it the “weak quantum regimg"where two dif-
ferent regimes exist: one indicates an increase of the
breaking time with dissipation, and the other showing close
guantum-classical behavior for all timés, — ). This latter
case corresponds to a situation where dissipation is so strong

whereT was introduced in the classical case. Besides théhat classical chaos is suppressed and the system goes to a
usual rotation due to harmonic motion represented by théimple attractor. The breaking time for regi in Table I,

complex exponential in E¢39) there is also exponential

decay due to dissipative drift in the characteristic function

argument37].

12

101

Th

10
In(1/n)

FIG. 7. Breaking time as a function of (tt/ ) for K=2.0 and

—-1.0 0.0 3.0

In(2K'/ )

7_dis% - ’
In(K") =T'7/2

(40)

with K’=K’ sin(a), increases as dissipation coefficient
grows, but it keeps the same logarithmic-scale dependence
with respect to the effective Planck constant as in the case
without a reservoir.

Although 7 can be arbitrarily large, as pointed out by
lomin and Zaslavsky23] in recent derivation of an expres-
sion similar to Eq.(40), this is not the case if one wants to

preserve a strange attractor. The conditibn/2=In(K"),
which separates regioiis) and(d) in Table I, corresponds to
the situation where the origin of phase space changes from
an unstable point to a stable fixed point. However, instability
of the origin is not sufficient to ensure chaotic dynamics.
Indeed, Fig. 3 exhibits a large range of valuesl'ef2 for
which the system is attracted to some periodic trajectory,
even whenl'7/2<In(K).

g=6. Despite the oscillations there is clear linear behavior, thus The ratio between the breaking times with and without

confirming the scaling predicted by E@7).

dissipation is given by
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2.0
1.5 .
Tgis 1.0,,(7— ———— T T a
Th “‘A
0.5}
i . . L L L 10 15 20
0 0.1 0.2 0.3 0.4 0.5 N

I'7/2
/ FIG. 9. Classicaldashed ling and quantunisolid line) evolu-

FIG. 8. Ratio between the breaking time with and without dis-tion of (Av?) as a function of the number of kickéfor K’ =6.0 and
sipation as a function df r for the same parameters as in Fig. 3 andI'7/2=0.36. Classical and quantum variances show the same
7=0.5. The solid line shows the analytical prediction, E4l), asymptotic behavior despite the fact that they can differ in a tran-
while triangles show numerical simulations that compare quantunsient regime.
and classical systems. The differences between quantum and clas-
sical environments are responsible for the deviations observed for

larger values of"7. Smaller values of’~ were not considered due It is interesting to note the sudden growth in breaking
to numerical constraints. time for the region corresponding to the periodic window
aroundI’7/2=0.4 shown in Fig. 3. This should be expected,

Tgis W@) since quantum and classical systems should stay together for

= (41)  alonger time outside the chaotic region. On the other hand,

T In(K') -T2 asI'7 increases, inside the same region, one notices that the

This expression exhibits the increase of breaking time as Breaking time decreases. This is due to the fact that, for
function of I'~. In Fig. 8 this relation is plotted together with larger dissipation, the distribution shrinks at a faster rate,
numerical simulations foK’=6.0 with the horizontal axis implying that the two distributions approach at an earlier
ending at the valu€l'7/2),,,,=0.51 of the dissipation con- time the region around the origin, where the uncertainty prin-
stant, for which the Lyapunov exponent becomes negativeiple plays a dominant role.

(see Fig. 3. For this value of kicking strength the maximum  For smaller values of dissipation parameter, the system
increase in breaking time is around 1.5 and therefore it doesould spread over a large region of phase space and require a
not help considerably in achieving the classical limit. Thishuge amount of computational resources. This, together with
increase depends on the values of the chaoticity parametesliability problems for even smaller values bfr/2, im-

but even for very large valueK’~500) it is less than a posed the limitl'7/2=0.12 for the dissipation parameter in
factor of 4. our calculations.

Although expression(4l) is independent of scaling pa- It is important to understand the meaning of breaking time
rameters, some remarks about the role played by the macand its consequences for dynamics of the system at different
roscopic limit in the dissipative case are needed. It should b&mes. In particular, the stationary state produced by dissipa-
noted that the quantum description of a zero-temperature resion is of much interest and this issue of long time behavior
ervoir given by Eq(24) is not completely equivalent to the has been addressed before in the case of the standard map
classical description based on the map, E@8). In fact, a  [8]. The existence of finite;; means that quantum and clas-
classical distribution subjected to only dissipative dynamicssical dynamics cannot be equivalent for all times but does
would shrink to a point located at the origin, while a quan-not necessarily mean that they have to be different for all
tum distribution would end up in the ground state, which hag> 7;. In fact, numerical simulations for the evolution of
a finite width due to the uncertainty principle. This argumentvariance of the dissipative KHO show that, in some cases,
does not invalidate the results presented in Table I, but inquantum and classical calculations show the same final sta-
stead emphasizes that they are valid for the semiclassictibnary behavior but with different transient regimes as can
approximation that is not equivalent to the fully classicalbe seen in Fig. 9. One should note, however, that this is not
system based on the map, E¢E2). necessarily true for the whole phase space distributions,

This also provides an explanation for the deviations bewhich can be different, although they have the same second
tween numerical and analytical results shown in Fig. 8. Onlymoments. This can be illustrated through a comparison of the
in a small range of dissipation strengtt0.12<I'7/2  Wigner function depicted in Fig. 10 and the strange attractor
=0.22 were we able to see the expected growth in breakinghown in Fig. 4. The quantum distribution clearly does not
time, while for larger values of 7/2, the effects of the dif- exhibit all the structures presented in the classical case de-
ference between classical and quantum systems, discussgpite the fact that it lies in the region that contains the clas-
above, become dominant. sical attractor.

026211-9



CARVALHO, DE MATOS FILHO, AND DAVIDOVICH PHYSICAL REVIEW E 70, 026211(2004)

I0.03

—0.025

—0.02
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v

FIG. 10. (Color online Wigner function for the same param-
eters of the strange attractor in Fig. 4 and0.5. The quantum e
distribution, although lying in the region of the classical attractor, v v
does not show classical small-scale structures. (c) (d)

FIG. 11. (Color onling Classical(top panely and Wigner(bot-
tom panel$ distributions forK=2.0, D=0.010 47 andy=0.5 (left

Evolution of the system under the influence of the diffu- Panels or »=0.1(right panels. Diffusion leads to better quantum-
sive environment can be solved analytically in terms of thefassical correspondence compared to that in Fig. 57=@.1 this

characteristic function, described in Appendix B. The So|u_correspondence is quite impressive while 46r0.5 differences still
tion between consecu',[ive kicks can be written as remain. Diffusion also prevents the appearance of small-scale struc-
tures on classical dynamic¢®p).

C. Diffusive environment

COMN' ) = CVN, 0 7, (42) =1 (44)

77 *
&= ‘ 5(7\1 +X\y)

Using this solution together with E¢33), we can establish a
recurrence relation for the characteristic function after th
nth kick to be

This equation shows that quantum corrections are associated
Swith large values ok and we can define typical valugs for
which the corrections appear as

o) i 2

R . I\ =R =~ (49
CaAN) =€ ™7 3 30 (z)Coi(Mp Ny, (43) 7
= The effect of diffusion is to cut off contributions from large

values of\, due to Gaussian modulation in E@2). This

with all the variables defined the same as in B4). implies that the values ok that satisfy Eq.(45 may be

While in the dissipative case the drift effect adds an ex-attenuated by the Gaussian prefactor, which renders them
ponential factor to arguments of the Bessel functions, in thisnefficient in promoting quantum-classical separation.
case, a Gaussian multiplies the whole sum. This difference is This may become more intuitive if we go back from the
crucial to understanding the influence of this environment ircharacteristic to the Wigner function: because they are re-
restoring the quantum-classical correspondence. First, orlated by a Fourier transform, the larger values of the charac-
should note that the role played by the Lamb-Dicke paramteristic function correspond to the small-scale interference
eter in the above expressions is the same as in the case otfwctures in the Wigner function and thus to quantum cor-
system without a reservoir and, therefore, the macroscopigections. The disappearance of these small-scale structures,
approximation would lead to the same result as before. It iglue to Gaussian modulation of the characteristic function,
clear, however, that diffusion should have an important effechas been extensively discussed in the literafdre-13: it
on the behavior of the system. This can be seen through laads to better correspondence between quantum and classi-
more careful analysis of expressioft). cal distributions, and to emergence of the classical world

Assume that quantum and classical dynamics coincide g88]. Figure 11 shows, for two different Lamb-Dicke param-
kick n and forget, for the moment, diffusion. As discussedeters, classical and Wigner distributions in the presence of
before, the two dynamics will differ as long as the approxi-diffusion. These distributions are much more similar to each
mation sir{¢) = ¢ fails. This gives an estimate of the values other than the corresponding distributions for the system
of ¢; that lead to quantum corrections, without a reservoir displayed in Fig. 5. The importance of
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diffusive effects will depend, however, on the value of the 1.0 f
effective Planck constant, as can be seen by comparing the
impressive correspondence between quantum and classica 4|
distributions forz=0.1 (right panel$ and some evident dif-
ferences that persist faj=0.5 (left panels.

Although it is hard to precisely define the value of diffu-
sion needed to restore the classical limit, a rough estimate d;
can be obtained as follows: if the values\af given by Eq. —0.21
(45) lie outside the range defined by the width of the Gauss-
ian, then the corrections should remain small. Using Eq.
(45), this conditions reads

0.2t

—0.6 1

2 1 8 ~1.0] |
== 4 ‘ : ‘ " -
7 2\J‘JD 0 10 20 N 30 40 50

whereD = y7/2 plays the role of a dimensionless diffusion  FiG. 12. Relative difference between quantum and classical
coefficient for the renormalized coordinatés,v). This  variances as a function of the number of kicks #pr0.5 andD
simple argument shows that there is a critical diffusion forequal to O(solid line); 0.002 09(dashed ling and 0.0209(long-
which the classical and quantum dynamics remain close tdashed ling For large enougtD, the relative difference always
each other, and that it scales as remains smaller than the threshadepresented by the horizontal
lines.
D 7. (47)
cal simulations show that it remains practically identical to
the result obtained when no reservoir is present in this region
Dy = oI, (48) of parameters. S o _
The behavior of the breaking time in a diffusive environ-
This is the diffusion coefficient that corresponds to non-ment is shown in Fig. 13. Fdd=0.010 47(top), one can see
renormalized variables andu. This result is consistent with that the breaking time basically lies on the curve that corre-
those found, for example, in Refid1] and[14]. One should sponds to the system without a reservoir, and increases
expect, however, that the strength of the nonlinearity, repreabruptly at a given value of Lamb-Dicke parameter
sented byK in our case, should play an important role in =0.31, indicated by the arrow in Fig. 1,3vith some of the
such a scaling law. The argument leading to E) was oscillations, already present in tile=0 case, amplified. For
based on estimation of the values &f at which quantum  %<0.31, the breaking time experiences sudden growth; cor-
corrections become important, without taking into accountesponding points are not shownumerical tests were per-
the size of these corrections. We have not studied in detafbrmed for a maximum of 50 kicks up t@=0.2). For 7%
the actual separation between the two distributions as they0.5 (bottom), the increase in noise introduces very small
evolve in time. That is the reason why our simple argumenthanges in the breaking time, which grows quickly when
could not account for the influence of nonlinearity, which isD~0.014 66. Again the abrupt increase indicates that the
hidden in Eq.(47). A detailed investigation of the separation differences between quantum and classical variances remain
time for the diffusive case or estimation of the error intro- bounded below a given limi.
duced by the neglected contributions would certainly display One should note, however, that the small changes in the
this dependence. Scaling relations between effective Plandireaking time forD <D, do not imply that the environment
constants, environment and nonlinearity strengths in the corhas no effect at all in the dynamics. In fact, by observing Fig.
text of the quantum-classical transition have been obtained2 again we see that the maximum distance between the
by many author$7,10-13 and have motivated recent inter- variances decreases smoothly with an increase in noise
est[14] in finding the properties of such scaling. strength and may eventually be zero, indicating perfect
The above considerations suggest that the breaking timguantum-classical correspondence. It is interesting to note
should diverge when the diffusion coefficient exceeds a cerhow these two different quantities, breaking time and maxi-
tain critical valueD,. This may be easily understood from mum distance, give complementary information about the
Fig. 12, which displays the time evolution of the relative dynamics.
distance for quantum and classical variances for several val- From these results one could infer, naively, that diffusion
ues ofD. One should note that, 43 becomes larger than a is sufficient to restore the classical limit for a chaotic system
critical value, which depends on the threshelddopted for no matter what the value of the effective Planck constant is.
definition of the separation time, the relative distance always$ndeed, for a given Lamb-Dicke parameter, one can always
remains smaller than this threshold, implying an infinitefind a large enough diffusion coefficient to bring the quantum
separation time. On the other hand, for sufficiently smalland classical dynamics sufficiently close to each other. Nev-
diffusion coefficients, one should recover the logarithmicertheless, such a statement deserves some reservation. In
time scale. Although we were not able to derive an analyticafact, diffusion washes out not only the interference pattern in
expression for the breaking time whén<D,,, our numeri-  the Wigner function but also the structures in classical phase

In terms of the diffusion coefficient in E¢13), one has
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25 ' ' ' ' ' ' ' Finally, we should remark that we have not analyzed here
long-time behavior of the system. It is well known that dif-
20f N 1 fusion may affect quantum localization, which occurs at
times much longer than those considered h&rel (. In the
absence of a reservoir, the long-time dynamics of the model

157 E | analyzed in this paper may display either quantum diffusion
Th or ballistic behaviof16].

10¢
V. CONCLUSIONS

We have shown that it is possible to discuss separately, in
a physically relevant way, the roles of the macroscopic limit
and of different system—environment interactions in the
o 00 : o 20 3.0 guantum-classical transition of a chaotic system. We have

In(1/n) cpn_s,ldered the_ kicked _ham_]on!c oscnlator_ c0L_|pI_ed to two
distinct reservoirs that give rise in the classical limit to either
pure dissipation(zero-temperature reservpior pure diffu-
sion(random forcgin a situation that could be implemented
in state-of-the-art ion trap experiments.

In the chaotic regime, when interaction with a reservoir is
not taken into account, the classical and quantum dynamics
start diverging after a time that depends logarithmically on
the ratio between a typical action of the system and the
Th Ty 1 Planck constant. We have used an operational definition of

the breaking time in terms of measurable quantities, which
6 1 allows experimental testing of this logarithmic time scale.
In the dissipative case we established regions of param-

51 1 eters that correspond to different time scales. There is a re-
gion where quantum corrections appear right after the first
: : : : : : kick and quantum-classical correspondence is already lost at
0 0-004 D 0-008 0-012 the beginning of evolution. By decreasing the Lamb-Dicke
parameter, one reaches a region where quantum-classical
FIG. 13. Top: Breaking time as function of (V%) for D correspondence persists for a time that, like in the system
=0.010 47(triangles and D=0 (line). The two curves are essen- without a reservoir, grows onIy Iogarithmically with the clas-
tially the same untity=0.31(shown by the arrojwvhen there is no ~ sicality parameter. We have also shown that, for a fixed ef-
longer any separation. Some peaks ofiie0 curve are amplified, fective Planck constant, close agreement between quantum
due, probably, to the definition of breaking time adopted. Bottom:and classical predictions is only possible for dissipation
Breaking time as function oD for »=0.5. The separation time strengths large enough to bring the system into regular be-
remains basically the same, with a small increésd0% maxi-  havior.
mum), and suddenly increases fb,~0.13. In the diffusive case, we were able to establish that the
behavior of the quantum-classical separation should be
spacgsee Fig. 11, and one could claim, therefore, that when markedly different, depending on whether the diffusion co-
the critical diffusion coefficient is very large, the chaotic efficient is above or below a certain critical valig,. For
characteristic of the system is lost and the system followsD >D,, this separation should remain small, and infinite
basically, diffusive dynamics induced by the environment. Aseparation times may even be obtained, at valued diat
similar situation was described in the dissipative case wherdepend on the definition adopted for critical percentual sepa-
large enough dissipation was sufficient to suppress chaos amdtion. We have also presented numerical evidence that, for
bring the system to periodic behavior. There, however, waliffusion coefficients below this limit, the breaking time be-
could clearly distinguish between chaotic and periodic behaves like that in the case without a reservoir. Furthermore,
havior through calculation of the Lyapunov exponent, whilewe obtained an analytical estimate of the dependence of the
here, even though generalizations of Lyapunov exponents faritical diffusion coefficient on the effective Planck constant,
distributions exist39,4Q, there is no sharp distinction be- which shows that the farther away from the classical limit the
tween chaotic and regular behavior. Description of the syssystem is, the larger the effect of the environment must be to
tem can become even more complicated with the addition ofestore quantum-classical correspondence.
diffusion in view of the mixed phase-space structure of the Although coupling with the environment helps to restore
system. Difficulties in characterizing chaos lie not only in quantum-classical correspondence for a system that is close
smoothing the phase space structuiese Fig. 1a)], but  to the macroscopic regime, for systems in a deep quantum
also in the fact that the distribution can flow from regular toregion critical diffusion can be so large that it brings classi-
chaotic regions that were well separated when no reservoirslity at the expense of reducing, or even extinguishing, cha-
are taken into account. otic features of the system.

ot
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The behavior of the system under the influence of other *
kinds of environment could also be explored in this context. C,(\,\") = > Jml(Zqul) ...Jmn(Zqun)Co()\n,)\;),
Thermal and phase reservoirs are examples of different en- My, fMp==2
vironments, already produced in ion trap experiments, that (A4)
could be used for this, and could lead to interesting results N
for the quantum-classical transition scenario. with initial condition

CS'O\,)\*)ZJ Pl e o, (A5)
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semiclassical characteristic function shows exactly the same

nonlinear dynamics as the classical but with an intrinsic
APPENDIX A: BREAKING TIME quantum property due to the uncertainty principle. Of course,

this effect becomes smaller as quantum fluctuations become

It is not difficult to generalize the solutions, Eq83) and  negligible compared to the size of the system, which occurs
(34), which were obtained for the characteristic function cor-for small values of Lamb-Dicke parameter.
responding to a system without a reservoir, to the dissipative The replacement of Eq33) by Eq. (A4) is only valid if
regime. Between two consecutive kicks the harmonic evoluEq. (A3) holds for everyk. Taking into account that the
tion just rotates the system in phase space, and this effeBessel functions decrease exponentially|fm1>2Kq§k, we
appears only in the complex exponential in E848. Solu-  can truncate the sums in EGA1) by estimating the maxi-
tion of the dissipative master equation simply adds exponenmum values ofmy| in each sum. The relevant contributions
tial decaye™' 72 [37] and, therefore, solution of the full prob- are the ones in which the Bessel function index is of the

lem is still given by Eq{(33): order of its argument and, therefore,
. S . K' o o i
CiAN) = D Iy (2)Im(Z2) - - I (Z)Co(An Ny, Imy| = 2Ky &) = Ze P72\ +\"e7'|,
my,...My=-%
(A1) K’
where Imy| = 2K|&5| = Z]K)\eIZa + N gi2e) g2 T2
M= Mr€ e T2+ i2my g, (A23) - 2my 7y sin(a)e ',
. K’ . K’ L -
7= 2K sin(§) = ?Sm(fk): (A2b) Imy| = 2K,|&,| = 2—|()\e'”a + )\ g ina)g 72
n
7 -2myy sif(n—-1)aje 72—
b=~ EO\"JF Mo, (A2c) - 2m,_,7 sin(a)e 1,
NN (A2d) Considering now the strong chaos linii{’ > 1), we have
0= A. o o
The procedure to obtain the breaking time in the dissipa- Imy| = K’ el m|= K™ e 72,
tive case follows very closely the one used in R&8] for ! 27 sin(a) T " 27 sin(a)

the situation without a reservoir. First we should note that the
macroscopic limit, as discussed previously, is achieved b\// |
letting »— 0, which means that the sine functions in Eq. a
(A2b) can be approximated by their argument, i.e.,

From the above considerations we can study the regime of
idity of the approximation& /<1 for all k. The ratio be-
tween two consecutivé is given by

sin(&y) = &. (A3) 1&d ~K'eT™, (A6)

In this limit, we obtain the semiclassical characteristic func- [l
tion, while the first argument is
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ne_FT/Z (A7) APPENDIX B: DIFFUSIVE CASE
A7
2 The evolution of the symmetrically ordered characteristic

From Eq.(A7) we can get two different conditions on the function defined in Eq(32) is given by
first argument&,|. If T'7/2<In(%/2) then|&;|>1 and, right . N I
after the first kick, the classical approximation is not valid C\NT) = Tr{per ™ 2], (B1)
any longer, so quantum predictions should differ from clas- o L .
sical ones. This corresponds to the results shown in the firsthe diffusive dynamics is now introduced by the replace-
column of Table | which are represented ’f%'fxl kick. If, ment of p in the above equation by E@9), which gives
on the other handl’'7/2>In(%/2) and, therefore|&;| <1,
zg‘%r; we have two new possibilities depending on condltlonco\’ )= %/Tr[— a'ap BESN 23pal e\ A pala Qd-1a

By choosingFT/2>In(IZ), the ratio between two con- ant NATNAL oAt AMET-NA L astnaT-AA
secutive¢ is less than one and the sequencé, & decreases aélpe! +2apa pad'e 1
with an increase ok. Becauséé;|< 1, all the terms will be (B2)

smaller than one and quantum and classical evolutions - ) )
should stay close to each other at all tin(e%saoc). Nev- Rewriting the exponentials using the Baker—Hausdorff for-
mula and ordering properties,

|&| =

ertheless, if we hav€7/2<ln(IZ) the sequence of’s in-

creases and one should expect that theregjsfar which the gt n ataal — f(a At
condition|&] <1 is not fulfilled any longer and a breaking e @ a)e™ =f(a+pa), (B33)
time will exist. This will happen whefé|= 1, which can be A A
expressed as e®f(a,ahe P =1aa+p), (B3b)
K/ pe 72 we obtain
S (8)
2K’

: = Y oy 2eraT A A 1= Ty 2 *
Taking the logarithm and noting that the number of kicks, COuN) = 2Tr[ 2\ pl=-TINFCOLL.

corresponds to the time in units efwe arrive at an estimate

for the breaking time as (B4)

—~ This equation can be readily integrated, giving as a solution,
dis In(2K'/ )

o =nN=———. (A9) 2
In(K') -T2 C(\LN, D =C(\N, 00e N, (B5)
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