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The nonconservation of entanglement, when two or more particles interact, sets it apart from other dynamical
quantities, like energy and momentum, and does not allow the interpretation of the subtle dynamics of
entanglement as a flow of this quantity between the constituents of the system. Nevertheless, we show that
when the interaction between a qubit and its environment is described by an amplitude-decay channel, the
conservation of the mean excitation number and the inclusion of a third party leads to an invariant expression
involving the bipartite entanglement between each of the parties and the other two. We provide an experimental
demonstration of this idea using entangled photons and generalize it to N -partite Greenberger-Horne-Zeilinger
states.
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I. INTRODUCTION

Proper understanding of the production, quantification, and
evolution of quantum entanglement has been a major challenge
of quantum physics, with direct implications on the relevance
of this resource for applications in quantum information. An
emblematic problem concerns the decay of initially entangled
states under the influence of independent reservoirs acting on
each part of the system. While each of these parts undergoes
a typical decoherence process, affecting the populations and
the coherences of the state, the dynamics of entanglement may
differ considerably from local dynamics [1–13].

Usually, entanglement is not a conserved quantity. For
instance, when an initially excited atom decays, releasing
a photon into a zero-temperature environment, the initial
and final states of the atom-environment system are not
entangled, but the atom does get entangled to the environment
at intermediate times. This process can be properly described
by studying a qubit under the action of an amplitude-decay
channel. We show, nevertheless, that, in this case, adding a
third party to this two-party system (qubit + environment)
leads to a dynamical invariance involving quantities that
measure the bipartite entanglement between each part of
the system and the other two parts. We show that this
invariant is related to conservation of the number of excitations
and to the Coffman-Kundu-Wootters (CKW) monogamy
relation [14]. Entanglement monogamy and complementarity
were studied experimentally in the quantum simulation of a
frustrated Heisenberg spin system, with four photons [15].
Entanglement monogamy leads to complementarity relations
between quantities related to parts of the system (like en-
ergy and visibility) and the amount of entanglement in the
state [16–20]. Here we show yet another consequence of
entanglement monogamy, an invariance relation valid for the
paradigmatic amplitude-decay channel, and generalizable to N
parties.

We demonstrate this entanglement invariance experimen-
tally using the polarization of twin photons to implement
the qubits and an optical interferometer to implement the

amplitude-decay channel for one of them. This experimental
configuration was used to demonstrate a dynamical law for
the entanglement of a two-qubit system [12]. However, in that
case the degrees of freedom of the environment were traced
out, and the invariance of entanglement was not an issue. In the
present case we perform measurements on the environment in
order to verify the invariance of the bipartite entanglement
between three parties: two qubits in the polarizations of
two photons, and one in the environment. We also point
out a generalization of this conservation law to N -partite
Greenberger-Horne-Zeilinger (GHZ) states.

In Sec. II, we derive a conservation relation for the
purity of each of the two subsystems, the system and the
reservoir. In Sec. III, we show that, by adding a third system,
the conservation of purity leads to a dynamical invariant
relating the bipartite entanglement between each part and the
other two. Section IV discusses the relation between these
results and the CKW expression. Experimental results are
exhibited in Sec. V, while our conclusions are summarized in
Sec. VI.

II. INVARIANT IN TWO-QUBIT DYNAMICS INDUCED
BY AN AMPLITUDE-DAMPING CHANNEL

Let S be a qubit and R the reservoir with which it interacts
after t = 0. The initial product state of the S-R system is
assumed to be ρSR(0) = ρS(0) ⊗ ρR(0), with

ρS(0) =
(

ρgg ρge

ρeg ρee

)
, ρR(0) = |φ0〉〈φ0|. (1)

The matrix ρS is written in the basis {|g〉,|e〉} of the ground
and excited states of S, and |φ0〉 stands for the ground state of
the reservoir R. At t = 0 both S and R start to interact in such
a way that the following transformation holds:

|g〉|φ0〉 → |g〉|φ0〉,
(2)

|e〉|φ0〉 →
√

1 − p|e〉|φ0〉 + √
p|g〉|φ1〉,
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where p = p(t) ∈ [0,1] is a time-dependent parameter, and
|φ1〉 denotes the first excited state (orthogonal to |φ0〉) of
R. The map (2) corresponds precisely to the amplitude-
damping channel. For different parametrizations p(t), the
transformation (2) represents several physical processes such
as the spontaneous emission of a photon by a two-level atom
in a zero-temperature electromagnetic environment [where
p(t = 0) = 0, p(t → ∞) = 1], or the interaction of a two-
level atom with a single mode of the electromagnetic field
inside a cavity. According to map (2), matrices (1) evolve into

ρS(p) =
(

1 − ρee(1 − p) ρge

√
1 − p

ρeg

√
1 − p ρee(1 − p)

)
,

(3)

ρR(p) =




1 − ρeep ρge

√
p · · ·

ρeg
√

p ρeep · · ·
· · · · · · · · ·



,

where “· · · ” in the expression for ρR(p) represents empty
rows and columns corresponding to the infinite remaining null
matrix elements. Inspection of the reduced density matrices (3)
shows that the information initially contained in the system S is
transferred during the evolution to the system R. The transfer
is complete at p = 1, when the states of S and R become
exchanged.

An important observation regarding the dynamics imposed
by transformation (2) is that the mean number 〈N̂〉 of total
excitations,

〈N̂〉 = 〈n̂S(p) + n̂R(p)〉, (4)

is conserved throughout the entire evolution, thus restricting
the way the populations (in the referred basis) are transferred.
Here n̂S and n̂R are the excitation-number operators of systems
S and R, respectively. For the specific case in which S
represents a two-level atom interacting with one mode of the
electromagnetic field in a cavity, these operators are given by
n̂S = 1

2 (I − σz) and n̂R = â†â.
Quite generally, the conservation of 〈N̂〉 follows immedi-

ately from the expressions for 〈n̂R(p)〉 and 〈n̂S(p)〉,

〈n̂S(p)〉 = Tr[ρS(p)n̂S] = ρee(1 − p),
(5)

〈n̂R(p)〉 = Tr[ρR(p)n̂R] = ρeep,

so that 〈N̂〉 = ρee.
In the following, we investigate how conservation (4)

manifests itself in the evolution of the purity πi ≡ Trρ2
i of

the subsystem i = S,R. With the aid of Eqs. (3) and (5) it is
straightforward to show that πi(p) can be written as

πi(p) = 2〈n̂i(p)〉2 − 2〈n̂i(p)〉% + 1, (6)

where % = 1 − |ρge|2/ρee. Inverting this expression, we
obtain

〈n̂i(p)〉 = %

2
± 1

2

√
%2 − 2[1 − πi(p)]. (7)

Hence, we can rewrite conservation equation (4) as

ρee = % ± WS(%,p) ± WR(%,p), (8)

where we have definedWi(%,p) = 1
2

√
%2 − 2[1 − πi(p)]. As

seen in Eq. (7), the appropriate choice of the sign in front of

Wi depends on whether 〈n̂i(p)〉 is greater or smaller than %/2.
If the initial value ρee is smaller than or equal to %/2, then
the restriction 〈n̂i(p)〉 ! ρee implies that 〈n̂i(p)〉 ! %/2, and
both minus signs should be taken in Eq. (8). On the other hand,
if ρee is larger than %/2, then the signs in Eq. (8) depend on
the value of p. From Eqs. (5) it follows that 〈n̂S(p)〉 ≷ %/2
whenever p ≶ 1 − %/2ρee, whereas 〈n̂R(p)〉 ≷ %/2 for every
p ≷ %/2ρee. In both cases the upper or lower inequality sign
determines the ± sign that should be used.

III. THE RELEVANT ROLE OF A THIRD PARTY:
ENTANGLEMENT INVARIANT

With the previous results we see that, as a consequence of
the conservation of 〈N̂〉, the purities πS(p) and πR(p) evolve
in such a way that the right-hand side of Eq. (8) remains
constant throughout the evolution. It is worth noticing that
the factor 2[1 − πi(p)], which naturally arises in Eq. (7), is
precisely the square of the concurrence whenever the system
i results from tracing a pure bipartite state [21]. In this case,
2(1 − πi) quantifies the bipartite entanglement between the
qubit i and the rest of the system. Therefore, it is convenient to
include a third qubit (M) in order to purify the global state. The
introduction of M then allows us to interpret the term 2(1 − πi)
as a measure of bipartite entanglement [alternatively, we may
use a measure based on the Schmidt weight Ki [22], which
is related to πi according to πi(p) = K−1

i (p)], and hence
to use Eq. (7) to throw some light on the global dynamical
properties of (bipartite) entanglement for systems undergoing
the interaction modeled by map (2). Let us then suppose that
ρS(0) results from partial tracing over the system M on the
pure general state

|ψ(0)〉=α|M1〉|e〉 + β|M0〉|g〉 + γ |M1〉|g〉 + δ|M0〉|e〉,
(9)

where |M0〉, |M1〉 are two orthogonal states of M . In this case
the elements of the initial density matrix ρS(0) are ρee = |α|2 +
|δ|2, ρge = βδ∗ + α∗γ , and ρgg = |β|2 + |γ |2. At t = 0 we
allow system S to interact with the environment, according to
transformation (2). Then, the initial tripartite state |+(0)〉 =
|ψ(0)〉|φ0〉 evolves to

|+(p)〉 = α |M1〉(
√

1 − p |e〉|φ0〉 +√
p |g〉|φ1〉)

+ δ |M0〉(
√

1 − p |e〉|φ0〉 +√
p |g〉|φ1〉)

+ (β |M0〉 + γ |M1〉) |g〉|φ0〉 . (10)

Using Eq. (10), the density matrix ρMSR(p) of the complete
system may be constructed, and the reduced density matrices
ρi(p) with i = M,R,S can be computed. Since M does not
interact at all, ρM is constant and given by

ρM =
(

|β|2 + |δ|2 βγ ∗ + α∗δ

αδ∗ + β∗γ |α|2 + |γ |2

)

. (11)

We return to Eq. (8) and observe that, given that it was
obtained from a property of the interaction between R and S
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only, it remains valid even when the system M is considered.
Moreover, as seen from Eq. (10), the coefficients (α and δ)
that determine ρee are precisely the coefficients responsible
for the entanglement between M and the rest of the system.
This is an important observation since it relates ρee directly to
such entanglement and hence allows us to relate ρee with the
(constant) purity of the system M as follows:

ρee = %

2
± 1

2

√
%2 − 2(1 − πM )

= %

2
± WM (%). (12)

Once more, the ± sign depends on whether ρee is larger (plus
sign) or smaller (minus sign) than %/2. Introducing this last
expression into Eq. (8) leads to

±WM (%) − %

2
= ±WS(%,p) ± WR(%,p). (13)

According to the discussion at the beginning of this section,
since the tripartite state |+(0)〉 is pure we can write 2[1 −
πi(p)] = C2

i(jk), where C2
i(jk), known as the tangle, stands

for the square of the concurrence Ci(jk), which measures
the bipartite entanglement between the system i and the
other two subsystems (jk) considered as a whole. Hence, Wi

becomesWi(%,p) = 1
2

√
%2 − C2

i(jk)(p) and Eq. (13) takes the
form

±
√

%2 − C2
M(SR) − %

= ±
√

%2 − C2
S(MR)(p) ±

√
%2 − C2

R(MS)(p). (14)

As stated above, the appropriate choice of signs for each Wi is
determined by the magnitude of ρee relative to %/2, as well as
by the value of p. An inspection of all the valid combinations
leads to the following cases (we omit the dependence on %):

%

2
+ WM = WS(p) + WR(p), p ∈ [0,1], (15)

whenever ρee ! %
2 , and

%

2
− WM =






WR(p) − WS(p), p < 1 − %
2ρee

,

WS(p) + WR(p), p ∈
[
1 − %

2ρee
, %

2ρee

]
,

WS(p) − WR(p), p > %
2ρee

,

(16)

whenever ρee > %
2 . Equations (15) and (16) stand as conser-

vation relations involving bipartite entanglement terms along
the evolution described by map (2). We see that, once the
original S-R system is enlarged to include system M needed
for purification, conservation (4) acquires a new significance
in terms of bipartite entanglement. Thus, while the initial
entanglement between S and M turns into entanglement
between M and R, the entanglement distributes in such a way
that the invariant relations (15) and (16) hold.

In the particular case in which the initial density matrix
ρS(0) is diagonal so that % = 1 [for example, if δ = γ = 0 in

Eq. (9)], then the invariant relations (15) and (16) involve the
quantities Wi(p) ≡ Wi(1,p), which are explicitly written as

WS(p) =
∣∣ρee(1 − p) − 1

2

∣∣,
WR(p) =

∣∣ρeep − 1
2

∣∣, (17)

WM =
∣∣ρee − 1

2

∣∣,

as follows from the definition of Wi and Eqs. (5) and (6).
The conservation relations (15) and (16) for % = 1 hold

even when we consider the system M to be in an initial state
entangled with N qubits Sj (j = 1,2, . . . ,N). This allows us
to find new global quantities that are conserved during the
evolution. For example, the expression equivalent to Eq. (15)
for the N + 1 GHZ-type state

|χN 〉 = α|M1〉-N
j |ej 〉 + β|M0〉-N

j |gj 〉 (18)

is

WM + 1
2

= 1
N

N∑

j=1

[
WSj

(pj ) + WRj
(pj )

]
. (19)

IV. ENTANGLEMENT INVARIANT AND THE CKW
RELATION

In the preceding sections we showed how the conservation
of 〈N̂〉 entails information regarding the dynamics of bipartite
entanglement. Such information is provided by Eq. (14),
which shows an invariant quantity that relates the bipartite
entanglement (measured by C2

i(jk)) of each of the qubits with
the remaining two. The fact that the different tangles C2

i(jk)
are not independent is well known and follows from a relation
derived by Coffman, Kundu, and Wooters [14]:

C2
i(jk) = C2

ij + C2
ik + τijk. (20)

Here τijk (or three-tangle) represents the genuine (multipartite)
entanglement shared by the three systems i, j , and k.
Equation (20) couples the tangles C2

M(SR), C2
S(RM), and C2

R(MS)
and therefore establishes a relation between them. Hence, a
question arises as to what extent Eqs. (20) and (14) are related.
It is clear from the previous section that the CKW relation is
not necessary for the invariant (14) to emerge [nowhere did
we resort to Eq. (20) to obtain Eq. (14)]. Thus, in what follows
we investigate the connection between Eqs. (20) and (14),
considering the transformation given by Eq. (2). This serves
not only to prove the consistency of our results, but also to point
out some important differences between both approaches.

We start by determining the value of τijk for the state |+(p)〉
obtained by applying transformation (2) to the initial state
|+(0)〉 = |ψ(0)〉|φ0〉. As shown in Ref. [14], if the three-qubit
system is the pure state |ϕ〉MSR =

∑
nlm anlm|nlm〉MSR (here

n,l,m = 0,1), then τijk is given by (a sum over repeated indices
is assumed)

τijk = 2|anlman′l′rasqm′as ′q ′r ′εnn′εll′εmm′εrr ′εss ′εqq ′ |. (21)

Direct substitution of the coefficients of Eq. (10) shows that
for the state |+(p)〉 the three-tangle vanishes, so the CKW
relation reduces to

C2
i(jk) = C2

ij + C2
ik, (22)
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which can be used to obtain

C2
M(SR) = C2

S(MR) + C2
R(MS) − 2C2

SR. (23)

The last term in this equation reveals that a relation involving
only the tangles C2

M(SR), C
2
S(RM), and C2

R(MS) will not be linear.
In the next step, we would like to rewrite C2

SR as a function of
C2

S(RM) and C2
R(MS). On the one hand, we notice that, with the

aid of Eq. (6), C2
S(RM) and C2

R(MS) can be expressed as (here
i = S,R)

C2
i(jk) = 2(1 − πi) = 4〈n̂i〉(% − 〈n̂i〉), (24)

so that
√

%2 − C2
S(MR) = |2〈n̂S〉 − %|,

(25)√
%2 − C2

R(MS) = |2〈n̂R〉 − %|.

On the other hand, a direct calculation of C2
SR—the entan-

glement between S and R created directly as a result of the
amplitude-damping channel—using Eqs. (5) leads to

C2
SR = 4〈n̂S〉〈n̂R〉. (26)

Equations (25) and (26) show that 〈n̂S〉 and 〈n̂R〉 are the
variables that naturally relate C2

SR with C2
S(RM) and C2

R(MS),
and hence they constitute the natural quantities to be used
to determine the final relation between C2

M(SR), C2
S(RM), and

C2
R(MS) (this result is expected from the previous section). From

Eqs. (25) we have that (recall that Wi = 1
2

√
%2 − C2

S(MR) )

〈n̂S〉 = ±WS + %

2
,

(27)
〈n̂R〉 = ±WR + %

2
,

where the ± signs before each Wi depends on whether 〈n̂i〉 ≷
%/2. Substitution of Eqs. (27) into Eq. (26) leads us to rewrite
Eq. (23) (rewritten in terms of W’s) in the form

W2
M = W2

S + W2
R

+ 2
[(

±WS + %

2

)(
±WR + %

2

)]
− %2

4
. (28)

Rearranging terms we arrive at

W2
M =

(
±WS ± WR + %

2

)2

(29)

or WM = |±WS ± WR + %
2 | and hence

±WM − %

2
= ±WS ± WR, (30)

which is precisely Eq. (13).
Since Eq. (30) is just an alternative way of expressing

Eq. (23)—which arises directly from Eq. (22)—we can
conclude that the CKW relation (applied to the present case)
indeed leads to the invariant (14). However, an important
distinction between this approach and the former derivation
of Eq. (13) must be pointed out. It refers to the fact that the
invariance in Eq. (30) is interpreted as due to the conservation
of WM through the evolution, while WS and WR evolve with
p [recall that ρM and, hence, C2

M(SR) remain constant during

the evolution, in contrast to C2
S(MR)(p) and C2

R(MS)(p)]. Thus,
if we make use of the CKW relation alone to derive Eq. (30),
the physical origin of the invariance remains hidden. However,
the derivation performed in the previous section shows, in a
very transparent way, that the invariance is a consequence of
the conservation of the mean number of total excitations, 〈N̂〉.
In fact, we can verify that a constant value of WM implies the
conservation of 〈N̂〉. To demonstrate that, it is enough to use
Eqs. (24) and (26) to rewrite Eq. (23) as

C2
M(SR) = 4〈n̂S〉(% − 〈n̂S〉)

+ 4〈n̂R〉(% − 〈n̂R〉) − 8〈n̂S〉〈n̂R〉
= −[2(〈n̂S〉 + 〈n̂R〉) − %]2 + %2, (31)

so that an equation analogous to Eq. (25) arises:

%2 −C2
M(SR) = 2WM = (2〈N̂〉 − %)2. (32)

This form makes it clear that the conservation of WM (or
equivalently of C2

M(SR)) has its physical root in the conservation
of 〈N̂〉. Moreover, with Eq. (32) at hand, we could resort to
Eq. (22) and claim that

C2
M(SR) = C2

MS(p) + C2
MR(p), (33)

which is an invariant quantity much simpler than Eq. (14).
However, we note that this invariant is expressed in terms of
qubit-qubit concurrences, which always involve system M .
It does not include the term C2

SR , which bears information
regarding the dynamics of the entanglement, that is locally
created as a result of transformation (2). In contrast, when
substituting C2

i(jk) = C2
ij + C2

ik in Eq. (14), it stands as an
invariant in which all the three contributions C2

MS , C2
MR , and

C2
SR intervene explicitly.

A further aspect that distinguishes these two approaches is
that the CKW result stems from the structure of the Hilbert
space for the three-qubit system, while our results appear as a
consequence of the conservation of the excitation number in a
dynamical evolution.

V. EXPERIMENTAL RESULTS

We verified the validity of Eqs. (15) and (16) experimen-
tally, using polarization-entangled photons generated from
spontaneous parametric down-conversion (SPDC). The po-
larization entanglement is prepared with a two-crystal source
[23]. The experimental setup is shown in Fig. 1. A 325-nm cw
He-Cd laser is used to pump two 1-mm-long type-I β-barium
borate (BBO) crystals. The down-converted photons are
spectrally filtered with 10-nm-bandwidth interference filters,
and spatially filtered through 2-mm detection apertures, before
detection with single-photon counting modules. Identifying
the polarization state of photon 2 as the system S and the
polarization state of photon 1 as the third party M , the source
is set up to produce the initial state

|1〉 = α|V 〉M |V 〉S + β|H 〉M |H 〉S.

Let us further identify the longitudinal spatial mode of photon
2 as the reservoir R, and call the initial spatial mode |0〉.
A displaced Sagnac interferometer with a nested wave plate
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FIG. 1. (Color online) Experimental setup. An entangled state is
prepared in the polarization of a photon pair. One of the photons is sent
through a Sagnac-like interferometer that implements an amplitude-
decay channel. Quantum-state tomography is used to reconstruct the
polarization state of the photon pair, detected in coincidence.

can be used to implement the following transformation on the
polarization and spatial mode of photon 1 [10,12]:

|H 〉|0〉 → |H 〉|0〉,
|V 〉|0〉 → cos θ |V 〉|0〉 + sin θ |H 〉|1〉,

(34)

where |0〉 and |1〉 refer to different spatial modes and θ is twice
the angle of the half-wave plate. It has been demonstrated
with quantum process tomography that this interferometer
implements the amplitude-damping channel with fidelities
as high as ∼0.95 [12]. Identifying the polarization states
{|H 〉,|V 〉} with the system states {|g〉,|e〉}, the spatial modes
{|0〉,|1〉} with the reservoir states {|φ0〉,|φ1〉}, and p = sin2 θ ,
transformation (34) becomes equivalent to transformation
(2), provided 0 ! θ ! π/2. The initial state |+〉SM |0〉R
evolves to

|1(θ )〉 = (β|H 〉M |H 〉S + α cos θ |V 〉M |V 〉S)|0〉R
+α sin θ |V 〉M |H 〉S |1〉R, (35)

after propagation through the interferometer. The final state is
equivalent to |+(p)〉 given in Eq. (10) with γ = δ = 0. It is
important to note that partially tracing over any two of the three
subsystems of state (35) leads to a diagonal reduced density
matrix. Then, the purities πj (or equivalently, the Schmidt
weights Kj ) and each Wj (j = S,M,R) term in Eq. (15) can
be determined by local population measurements, made with
the detectors 0 and 1 shown in Fig. 1.

By rotating the half-wave plate (HWP) in the pump beam,
we selected different values of α and β. For instance, we
selected |α|2 = ρee = 0.31, 0.5, and 0.73 with corresponding
purities 0.97, 0.94, and 0.96, so that the invariant relations
could be applied directly. These purities were calculated from
quantum-state tomography of the initial states (after passage

FIG. 2. (Color online) Experimental results for ρee = 0.73, % =
1. The lines correspond to the functions WR(p) − WS(p) (triangles),
WS(p) + WR(p) (circles), and WS(p) − WR(p) (squares). The con-
tinuous line represents the invariant ISR .

through the interferometer with θ = 0; see below). Imperfect
purity is probably due to spatial walkoff in the crystal and
imperfect alignment of the interferometer. These parameters
indicate that the experimental state is quite close the the ideal
initial pure state.

Projective measurements on S and M are performed
using wave plates and polarizing beam splitters to project
onto polarization states, while projection onto spatial modes
is performed by placing detectors in mode 0 or 1. We
performed measurements for several values of p = sin2 θ
(0 ! θ ! π/2) characterizing the amplitude-damping channel
in transformation (34).

Figure 2 shows the theoretical curves and the experimental
data of each of the three functions that define the invariant
ISR = %

2 − WM, according to Eq. (16) for the case ρee = 0.73
and % = 1. The triangles correspond to WR(p) − WS(p),
the circles to WS(p) + WR(p), and the squares to WS(p) −
WR(p). The invariant (piecewise) function ISR is here repre-
sented by the continuous line and corresponds, as follows from
Eq. (16) (with % = 1), to one of the above curves depending
on whether p is in the interval [0,1 − 1

2ρee
), [1 − 1

2ρee
, 1

2ρee
], or

( 1
2ρee

,1].
Figure 3 shows both the theoretical and the experimental

curves of the invariant quantity ISR for three different values of
ρee (in all cases % = 1). The top (red) and middle (blue) curves,
corresponding respectively to ρee = 0.31 and ρee = 0.5, repre-
sent the invariant sum ISR = 1

2 + WM = WS(p) + WR(p) [see
Eq. (15)], whereas the bottom (black) curve, corresponding
to ρee = 0.73, represents the invariant ISR = 1

2 − WM given
by expression (16). From Figs. 2 and 3 we see that the
experimental data fit the theoretical curves within the precision
of the measurements, thus demonstrating experimentally the
conservation relations (15) and (16).
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FIG. 3. (Color online) The invariant ISR is plotted for different
values of ρee.

VI. CONCLUSIONS

We considered a two-qubit system in which one of them
is subject to the action of an amplitude-damping channel,
and the other is a two-level reservoir. We showed that
the existence of a conserved quantity (characteristic of the
transformation), together with the inclusion of a third party,
leads to an invariant relation involving quantities that measure
the bipartite entanglement between each qubit and the rest of
the system. This relation was verified experimentally, using
an optical setup based on entangled photons, which has the

special advantage of allowing the precise monitoring of the
environment.

The invariants discussed in this paper include the envi-
ronment degrees of freedom, which are very hard to access
in the majority of the physical implementations of two-level
systems. Our setup, on the other hand, allows fine control and
monitoring of all qubits involved, including the environment.
Previous experiments realized with similar setups [10] have
ignored the environmental degrees of freedom, which were
traced out in order to obtain the reduced density matrix of the
decaying system. Here the environment itself is monitored,
leading to our entanglement invariance relation.

We generalized the invariant expression to N -partite GHZ
states and discussed the relation between our result and the
expression for the monogamy of entanglement derived by
Coffman, Kundu, and Wooters. Our work shows in fact that
the CKW relation leads to entanglement invariants when a
two-level system decays under the action of an environment.
This could be a first step in the search for more general
dynamical invariants that restrict the evolution and dynamics
of entanglement in multiparticle systems.
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