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Quantum sensing of open systems: Estimation of damping constants and temperature
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We determine quantum precision limits for estimation of damping constants and temperature of lossy bosonic
channels. A direct application would be the use of light for estimation of the absorption and the temperature of a
transparent slab. Analytic lower bounds are obtained for the uncertainty in the estimation, through a purification
procedure that replaces the master equation description by a unitary evolution involving the system and ad hoc
environments. For zero temperature, Fock states are shown to lead to the minimal uncertainty in the estimation
of damping, with boson-counting being the best measurement procedure. In both damping and temperature
estimates, sequential prethermalization measurements, through a stream of single bosons, may lead to huge gain
in precision.
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I. INTRODUCTION

The quest for better precision in the estimation of pa-
rameters is common to many areas of science, ranging
from probing weak electric and magnetic fields, temper-
ature, pressure, and small rotations and displacements, to
high-resolution spectroscopy and magnetic resonance, with
applications to atomic clocks, geophysics, medicine, and bi-
ology. Fundamental limits of precision have been established,
within the realm of classical physics, by Cramér, Rao, and
Fisher [1,2]. The usual procedure involves measuring a probe,
prepared in a convenient initial state, after it has interacted
with the system under investigation, and then obtaining from
the measurement results an estimation of the parameter of
interest, through some convenient estimator. Through a gen-
eralization of the classical framework to quantum mechanics
[3–6], it has been realized that quantum probes, prepared in
states with features like squeezing and entanglement, help to
increase the precision of the estimation, for the same amount
of resources (which could be the number of atoms or photons
used in the estimation). This has been relevant, for instance,
for extending the coverage of gravitational-wave interferome-
ters, with the use of squeezed light [5,7] or of entangled states
[8], for increasing the magnetic sensitivity with spin squeez-
ing [9], for optimal thermometry [10], for detecting weak
electric fields with superpositions of Rydberg states [11], for
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achieving quantum-enhanced contrast and resolution in bio-
logical microscopy [12,13], and for superresolution of spatial
separation and frequency [14]. Quantum sensing [15,16] in-
volves the exploration of subtle quantum effects to increase
the precision of parameter estimation. Quantum sensors have
become one of the most promising applications of quantum
technologies [17–19], involving single- or multiparameter es-
timation [20,21].

The unavoidable interaction between these systems and
their environments may reduce the advantage of using quan-
tum states, due to the fragility of these resources in the
presence of noisy processes, like damping and diffusion.
However, sometimes these processes may yield important
information on the system. The damping rate of a particle
moving in a medium may allow the estimation of the quantum
memory time and radiation properties [22]. Absorption spec-
troscopy has a wide range of applications, in remote sensing
[23], in chemistry and atomic physics [24], in astronomy [25],
and in the characterization of materials, not only at the macro-
scopic level but also for microscopic systems, like cells and
organelles [26]. Moreover, tasks like the precise estimation of
phases in an interferometer must necessarily include a precise
estimation of photon damping and phase diffusion.

Here we derive the uncertainties in the estimation of both
damping and temperature of a lossy bosonic channel, with
boson counting as the measurement procedure. This is of
great interest for several areas of science, the most prominent
example being the use of light to investigate absorption and
temperature of samples [27,28]. The precision in the estima-
tion is limited both by the uncertainty in the number of bosons
in the probe and by the noise introduced in the boson distri-
bution by the probed system. This suggests that one should
minimize the variance of the boson-number distribution of the
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probe, so incoming Fock states should render better results,
as opposed to what happens in noiseless phase estimation,
when the variance should be maximized, for a given amount
of resources (in this case, input photons).

We discuss the advantages of using single-boson states
and boson-counting measurements for damping and temper-
ature estimation and compare our results within literature
[29–31]. Sequential prethermalization measurements with
single-boson streams are shown to lead to a huge increase in
the precision. We also obtain analytic lower bounds for the
uncertainty in the estimation of both damping and tempera-
ture, through a purification procedure that replaces the master
equation description by a unitary evolution involving the sys-
tem and ad hoc environments. These bounds are shown to
be tight in two limiting cases, both involving boson-counting
measurements: zero temperature for damping estimation and
vacuum input for temperature estimation. For other situations,
and for the range of parameters here considered, they are very
close to the exact numerical solutions.

The usual procedure in parameter estimation consists in
obtaining the uncertainty in the parameter, for a given ini-
tial state, from the Fisher information [1,2]. For a complete
set of measurement results { j}, on a probe that carries in-
formation about the parameter X to be estimated, and for
unbiased estimators, so that 〈X 〉 equals the true value of
the parameter, the standard deviation in the estimation of X
is given by the Cramér-Rao expression δX � 1/

√
NF (〈X 〉),

where F (X ) is the Fisher information, given by F (X ) =∑
j[1/Pj (X )][dPj (X )/dX ]2, N is the number of repetitions

of the experiment, and Pj (X ) is the probability of getting
the experimental result j if the value of the parameter is
X . As shown by Fisher, the lower bound can be reached
asymptotically for N → ∞. The ultimate precision in the
estimation of a parameter, for a given initial state, is obtained
by maximizing F (X ) over all possible measurements: This
defines the quantum Fisher information (QFI) FQ(X ). In the
absence of noise, analytic expressions can be obtained for
the QFI [3,4]. For a parameter-dependent unitary evolution
U (X ) of the probe, FQ(X ) is equal to four times the variance
(�G)2, calculated in the initial state of the probe, with G ≡
i(dU †(X )/dX )U (X ) being the generator of U (X ). However,
this is not so for open systems, which require, in general, the
diagonalization of the parameter-dependent density matrix of
the probe, usually a cumbersome task for high-dimensional
systems.

A general method for obtaining an upper bound for the
quantum Fisher information of an open system was intro-
duced in Ref. [32]. It consists in purifying the open system
by considering the joint unitary evolution of system + envi-
ronment. There is an infinite number of purifications, which
must satisfy the criterion that the reduced description of the
system—obtained by tracing out the environment—should
coincide with the one given by the master equation. The
quantum Fisher information of the purified system should be
larger or at least equal to the QFI of the system, since allowing
measurements on system + environment yields no less infor-
mation on the parameter than measuring the system alone. If
the environment is chosen in such a way that measurements
on system + environment do not give more information than
measurements on the system, the corresponding upper bound

FIG. 1. Purification of the master equation for finite temperature
by introducing two environments b and c, initially in the vacuum
state. The outgoing operators are obtained by applying a two-mode
squeezing operation and a beam-splitter transformation to the in-
coming operators. Tracing out modes b and c recovers the master
equation (1).

is tight. In Ref. [32], it was shown that this can always be
accomplished. Finding the best purification could provide
therefore an alternative to the involved procedures that deal
directly with the open system. This method has led to exact
solutions for the estimation of forces acting on damped har-
monic oscillators [33] and very good approximations for the
estimation of transition frequencies in atomic spectroscopy
in the presence of dephasing, and phases in optical interfer-
ometers, subject to damping [32] and diffusion [34]. In the
following, this method is applied to the estimation of damping
and temperature with bosonic probes.

II. ESTIMATION OF DAMPING

Boson damping can be described by the master equation

dρ

dt
= γ (nT + 1)(2aρa† − a†aρ − ρa†a)

+ γ nT (2a†ρa − aa†ρ − ρaa†), (1)

where ρ is the density matrix of the bosonic probe, γ is the
damping constant, nT is the number of thermal bosons, and
a and a† are boson annihilation and creation operators, with
[a, a†] = 1. Note that Eq. (1) is written in the interaction
picture so that the term ωa†a drops out.

A possible purification of the corresponding evolution was
derived in Ref. [33]. This is done by adding two independent
environments, which can be represented by a beam splitter and
a two-mode squeezing operation, as shown in Fig. 1. We have
then, with B and S corresponding respectively to the beam-
splitter and squeezing transformations,

|�(T )〉 = SB|�0〉|0〉b|0〉c, (2)

where

B = exp[θ1(ab† − a†b)], S = exp[θ2(a†c† − ac)] (3)

and

θ1(t ) = arccos

[√
η

nT (1 − η) + 1

]
, (4)

θ2(t ) = arccosh[
√

nT (1 − η) + 1], η = e−2γ t . (5)
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The corresponding operators are transformed as Oout =
B†S†OinSB, as shown in Fig. 1. We have then [35]

aout = (ain cos θ1 − bin sin θ1) cosh θ2 + c†
in sinh θ2. (6)

Equation (2) leads to an upper bound to the QFI of the
system. One should note that other purifications are possi-
ble. Indeed, addition of further unitary operations, depending
only on the operators b and c, still leads to the same master
equation. Variational parameters in these additional unitary
transformations can be used to minimize the corresponding
upper bound, so that it gets closer to the QFI of the system
[32–34]. Here, however, we adopt the simpler procedure of
using the purification (2), comparing the corresponding bound
with the QFI of the open system.

For T = 0, θ2 = 0 and S = 1, so mode c gets decou-
pled from modes a and b, implying that the correspond-
ing master equation is purified with just a beam splitter
[29,31,35], with transmission coefficient η = exp(−2γ t ) and
B = exp [φ(a†b − ab†)], cos2 φ=η. From the corresponding
generator G(γ ) = i[dB†(γ )/dγ ]B(γ ), one gets

δγ /γ � δγmin/γ = (e2γ t − 1)1/2

2γ t N̄1/2
in

, (7)

where δγmin, obtained from G(γ ), is a lower bound for the
uncertainty in the estimation of γ , and t is the interaction time
between the bosonic probe and the sample.

A simple way to estimate the standard deviation �γ

is to use the error-propagation sensitivity expression �γ =
�Nout/|∂N̄out/∂γ |, where (�Nout )2 = 〈(a†

outaout )2〉 − N̄2
out is

the variance in the boson distribution after the damping, and
N̄ = 〈a†

outaout〉 is the average number of bosons at the output.
From (6), with θ2 = 0, one gets (the subscript S stands for
sensitivity):

�γS

γ
=

[
(�N )2

in + (e2γ t − 1)N̄in
]1/2

2γ t N̄in
−−−→
�N→0

δγmin/γ . (8)

This expression shows that the uncertainty in γ has two contri-
butions, the term (�N )2

in stemming from the initial variance in
the bosonic number of the incoming probe and the remaining
terms corresponding to the random transmission of the incom-
ing bosons. It is clear that, in order to minimize (8), one must
have (�N )2

in = 0, implying that the incoming bosons should
be in a Fock state. In this case, �γS/γ becomes identical
to the lower bound in (7). The presence of N̄1/2

in —where N̄in

is now just the number of bosons in the Fock state—in the
denominator of the right-hand side of (7) implies that the
same result would be obtained with a stream of N independent
single bosons. We note that δγ → ∞ when t → 0 or t → ∞,
corresponding respectively to no action of the damping and to
complete absorption, leading to no information on γ (quantum
Fisher information equal to zero). The minimum value of (7)
is obtained for

γ topt ≈ 0.8 ⇒ δγ
opt
min/γ = 1.24/

√
N̄in. (9)

This defines the optimal interaction time. Better precision can
be obtained, however, by adopting a “divide and conquer”
strategy. Instead of estimating the damping through a single
measurement for an interaction time t , one applies sequential
measurements, for instance, with a single-photon stream, such

that t is divided into N intervals of length τ , which could be
taken as the interaction time between each single photon and
the probed sample. We replace then, in the right-hand side of
(7), t by τ and N̄in by N = t/τ . The corresponding expression
is minimized for τ → 0. However, any other τ smaller than
t would lead to a result better than measuring just at time t .
For γ τ 
 1, δγ /γ ≈ 1/

√
2γ t , which is much smaller than

(9) if γ t � 1. We note that this strategy not only leads to
better precision, but could be mandatory for thin or fragile
samples, for which the interaction time with the probe should
necessarily be smaller than the thermalization time.

Confirmation of this result is obtained by explicitly cal-
culating the quantum Fisher information for incoming Fock
states. The general expression for the quantum Fisher in-
formation for estimation of a parameter X is expressed in
terms of the density operator of the probe as FQ(X ) =
Tr[ρ(X )L2(X )], where the symmetric logarithmic deriva-
tive is defined by the equation dρ(X )/dX = [ρ(X )L(X ) +
L(X )ρ(X )]/2. Finding L requires, in general, the diagonal-
ization of the density operator, for a given initial state [5,29].
However, for incoming Fock states the density matrix is
diagonal, and therefore the singular logarithmic derivative
is given by Lnn = (1/pn)(d pn/dX ), where pn ≡ ρnn is the
boson-number probability distribution. It follows then that

FQ(γ ) = Tr(ρL2) =
∑

n

(1/pn)(d pn/dγ )2, (10)

coinciding with the Fisher information associated to the mea-
surement of the bosonic population distribution, which is thus
shown to be the best measurement in this case. On the other
hand, the boson-number distribution for the outgoing bosons
is identical to the beam-splitter binomial distribution, pn(γ ) =(N

n

)
(1 − η)N−nηn. Replacing this expression in (10) leads pre-

cisely to (7). Furthermore, as N � 1 (which could apply to a
Fock state or a stream of single photons), the combinatorial
distribution goes to a Gaussian distribution, with width given
by the lower bound in (7), so this bound is actually saturated
by these states. This completes our demonstration that Fock
states lead to the minimal uncertainty in the estimation of γ .
More explicitly it can be seen from the results of Ref. [29] that
ratio δγ /δγmin is higher by 1√

1−η
for coherent state input and

by {1 + 2η(1−η)
2η2−2η+1 (1 + N̄in )}1/2

for squeezed vacuum.

For T �= 0, one gets a lower bound �γ G
min(T ) from the

unitary transformation in (2) (details in Appendix A):

δγ G
min(T )/δγmin

= nT (1 − η) + 1√
nT (1 + η2) + 1 + (nT /N̄in )η[nT (1 − η) + 1]

, (11)

where δγmin is defined in (7). Calculations also show that
(11), for any T , is lower than the bound calculated using error
propagation sensitivity [see Appendix B, Eqs. (B8) and (B9)].

The QFI of the system, for incoming Fock states, can be
calculated numerically, from the number probability distribu-
tion given in Refs. [36,37]—see Eq. (C1) in Appendix C. It
coincides with (11) when there is no input, i.e., N̄in = 0. In this
case, only thermal photons contribute to the estimation of γ

[Appendix C, Eqs. (C3) and (C4)]. Figure 2 shows the behav-
ior of δγ /γ for N̄in = 1 and two values of η = exp (−2γ t ),
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FIG. 2. δγ /γ as a function of the bath thermal photon number, for two different values of η ≡ exp(−2γ t ) = 0.9(a) and 0.7(b). The solid
and dotted curves correspond to single-photon and thermal state inputs, this last one with an average photon number equal to one. The dashed
curve corresponds to the bound (11), obtained from the purification procedure. For η = 0.9, and single-photon input, precision increases with
temperature, for the range here considered.

namely η = 0.9 and η = 0.7. As expected, say from (8), the
incoming thermal state is a poor choice for estimation of γ . In
the case of initial thermal state with N̄in = nT , there is no time
evolution of the incoming state, and hence the quantum Fisher
information vanishes, which leads to the divergent behavior of
the dotted curve in Fig. 2.

III. ESTIMATION OF TEMPERATURE

The simplest situation corresponds to no incoming pho-
tons. In this case, the beam splitter in (2) does not play a
role, and the purification is given by |�(t )〉 = S|0〉S|0〉R1 |0〉R2 .
From the generator G(nT ) = i[dS†(nT )/dnT ]S (nT ), one gets
then an upper bound for the quantum Fisher information, from
which it follows a lower bound for the uncertainty in the
estimation of nT :

δnT =
√

nT

(
nT + 1

1 − η

)
−−−→
t→∞

√
nT (nT + 1). (12)

For no incoming photon, the sensitivity expression and the
QFI yield for δnT the same result. Therefore, in this case
the lower bound for the uncertainty coincides with the exact
result. As the interaction time between probe and sample
increases, δnT is reduced, attaining the steady-state limit
(δnT )st = √

nT (nT + 1) when t → ∞, which coincides with
the quantum-mechanical uncertainty for a thermal field. The
numerical results from the solution of the master equation
for an incoming single-photon state are shown in Fig. 3. The
Fock state |1〉 leads to better precision for small times and low
temperatures, as compared the vacuum state |0〉.

As in the estimation of damping, an increase in preci-
sion can be obtained by applying sequential prethermalization
measurements, through a stream of single bosons [Fig. 4].
The measurement time t is divided into N intervals of
length τ , corresponding to the interaction between a sin-
gle boson and the probed system. The corresponding QFI
FQ(nT , τ ) can be obtained from (1) in the small-time limit
γ τ (nT + 1) 
 1, and the corresponding uncertainty is δnT =
1/

√
(t/τ )FQ(nT , τ ). It turns out that the best result is obtained

when τ → 0, but any other τ smaller than t would lead to a
better result then measuring at t . In the limit γ τ (nT + 1) 
 1,
we get [Appendix D, Eq. (D5)]

δnT →
√

nT (nT + 1)

(3nT + 2)2γ t
−−−→
nT 
1

√
nT /4γ t . (13)

When γ t � 1, this expression is much smaller than (δnT )st,
implying a huge gain in precision, as compared to measure-
ment at time t . The effect on the protocol by timing errors can
be easily accounted for, since the above expression depends
only on the total time t . For �t/t 
 1, then the extra uncer-
tainty in the temperature estimation, �(δnT ), will be much
smaller than δnT .

FIG. 3. Uncertainty δnT in the measurement of temperature, nor-
malized by the steady-state value (δnT )st , for different values of
η = exp(−2γ t ). Each curve is labeled by the photon number N in
the incoming Fock state of the probe. In the limit t → ∞, so that
η → 0, one has δηT /(δηT )st = 1. The graph suggests that the best
measurement occurs for large t (or small η). For η = 0.9 (γ t ≈ 0.1),
and for nT � 4.5, single-boson Fock state leads to better precision
than the vacuum state |0〉. Sequential measurements may lead, how-
ever, to much better precision, as shown in the text of the article.
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FIG. 4. A huge increase in the estimation precision can be ob-
tained with a stream of N single bosons, each one interacting with
the probed material for a time τ much smaller than the thermalization
time t .

IV. CONCLUSION

We have established the quantum precision limits for
the estimation of damping constants and temperature, when
bosons are used as probes. Bosonic probes occupy a promi-
nent place in science, especially in view of the large number
of processes involving light or microwave fields to obtain
information on absorption coefficients or the temperature
of transparent samples. Lower analytic bounds for the un-
certainty in the estimation of these parameters have been
obtained through a purification procedure that involves replac-
ing the master equation by a unitary transformation composed
by a beam splitter and a squeezing operator, acting on the
bosonic mode and two auxiliary environments. These bounds
were shown to be tight, for some specific conditions, and,
more generally, close to the numerical solutions. We have
shown that sequential prethermalization measurements with
single-photon streams can lead to huge gain in precision, both
for damping and temperature estimation. This result is espe-
cially relevant for measurements on thin or fragile samples.
We believe these findings should stimulate experimental work
on physical and biological systems.
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APPENDIX A: LOWER BOUNDS ON UNCERTAINTIES IN
THE ESTIMATION OF DAMPING AND TEMPERATURE

Here we provide the derivation of lower bounds on the
uncertainties in the estimation of damping and temperature
by using the purification procedure described in the text, cor-
responding to Fig. 1. If the probe is in the initial state |�0〉
and interacts with the probed system during a time t , then the
purified output state is

|�(t )〉 = SB|�0〉|0〉b|0〉c, (A1)

where the two environments b and c are assumed to be
initially in the vacuum state. The operators S and B are de-
fined by Eqs. (3)–(5) in the main text. The operator G(X ) ≡
i[dU †(X )/dX ]U (X ), for an arbitrary parameter X , where
U (X ) = S (X )B(X ), is given by

G(X ) = − i

{
(ab† − a†b)

dθ1

dX
+ [c†(a† cos θ1 − b† sin θ1)

− c(a cos θ1 − b sin θ1)]
dθ2

dX

}
, (A2)

where θ1 and θ2 are defined by Eqs. (4) and (5) in the main
text and a, b, and c are annihilation operators corresponding
respectively to the original bosonic mode and the additional
environments b and c. On applying this operator to the initial
state |�0〉|0〉b|0〉c, one gets

G|�0〉|0〉b|0〉c = − i

[
a|�0〉|1〉b|0〉c

dθ1

dX
+ (a†|�0〉|0〉b|1〉c

× cos θ1 − |�0〉|1〉b|1〉c sin θ1)
dθ2

dX

]
. (A3)

The expectation value of the operator G†G in the state
|�0〉|0〉b|0〉c is therefore

〈G†(X )G(X )〉 = N in

[(
dθ1

dX

)2

+cos2 θ1

(
dθ2

dX

)2]
+

(
dθ2

dX

)2

,

(A4)

where N in = 〈a†a〉 is the average number of photons in the
input state |�0〉. After simplification, we get the final ex-
pressions for X = γ and X = nT , where γ is the damping
coefficient and nT is the thermal photon number, as functions
of η, nT , and N in:

〈G†(γ )G(γ )〉 = (2tη)2

4

{
N in

1 + nT (1 + η2)

η(1 − η)[1 + nT (1 − η)]2

+ nT

(1 − η)[1 + nT (1 − η)]

}
; (A5)

〈G†(nT )G(nT )〉

= 1

4

{
(1 − η)

[1 + nT (1 − η)]nT

+ N in
η2(1 − η){nT (1 − η)[1 + nT ] + (1 + nT )}

[1 + nT (1 − η)]3(1 + nT )nT

}
.

(A6)

Since the quantum Fisher information FQ = 4(�G)2 =
〈G†(nT )G(nT )〉 − 〈G〉2, the lower bound for the uncertainty in
the estimation of damping and temperature can be calculated
from δX G

min = F −1/2
Q :

δγ G
min = 1 + nT (1 − η)

2tη
[η(1 − η)]1/2{N in[1 + nT (1 + η2)] + η[1 + nT (1 − η)]nT }−1/2; (A7)

δnT
G
min = {[1 + nT (1 − η)]3(1 + nT )nT }1/2{N inη

2[nT (1 − η)(2 + nT − ηnT )

+ (1 − η)] + [1 + nT (1 − η)]2(1 + nT )(1 − η)}−1/2. (A8)
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Comparing (A7) with the one at zero temperature, δγmin =√
1/η−1

2t
√

N in

, we get Eq. (11) in the main text,

δγ G
min

δγmin
= [1 + nT (1 − η)]{[1 + nT (1 + η2)]

+ η[1 + nT (1 − η)]nT /N in}−1/2. (A9)

For vacuum input, the expression for δnT
G
min becomes

Eq. (12) in the main text,

δnT =
√

nT [1 + nT (1 − η)]

1 − η
. (A10)

APPENDIX B: SENSITIVITY CALCULATIONS
USING THE MASTER EQUATION

The error-propagation expression for the uncertainty in the
estimation of a parameter X is given by �X = �Nout/

∂Nout
∂X ,

where (�Nout )2 = 〈(a†
outaout )2〉 − N

2
out. From Eq. (1) in the

main text, we can study the evolution of an operator A by
∂
∂t A = Tr[ ∂ρs

∂t A]. For any operator A,

∂

∂t
A = − γ (1 + nT )〈Aa†a − 2aAa† + a†aA〉

− γ nT 〈aa†A − 2a†Aa + Aaa†〉. (B1)

Since Tr[AB] = Tr[BA], we have

∂

∂t
A = − γ (1 + nT )〈[A, a†]a + a†[a, A]〉

− γ nT 〈[A, a]a† + a[a†, A]〉. (B2)

Taking A = (a†a)i, (i = 1, 2), one gets

∂

∂t
N = −2γ N + 2γ nT , (B3)

∂

∂t
N2 = −4γ N2 + 2γ (4nT + 1)N + 2γ nT . (B4)

Integrating these equations on both sides, one gets

N (t ) = e−2γ t [N (0) − nT ] + nT , (B5)

N2(t ) = e−4γ t N2(0) + e−2γ t (4nT + 1)(1 − e−2γ t )N (0)

+ 2n2
T (1 − e−2γ t )2 + nT (1 − e−2γ t ). (B6)

Note that Nout = N (t ) and N in = N (0). Using (B5) and
(B6), we find


γ = [η2(
N in )2 + η(2nT + 1)(1 − η)N in

+ (nT + 1 − ηnT )nT (1 − η)]1/2[2tη(N in − nT )]−1.

(B7)

For given N in, η, and nT , the minimal uncertainty 
γmin is
achieved for (
N in )2 = 0, indicating that Fock states lead to
the best estimation of γ .

We compare now (B7), for Fock states, so that N in = Nmin,
with the bound δγ G

min, obtained in Sec. I using purification.

The ratio of 
γmin and δγ G
min.


γmin

δγ G
min

= [nT (1 − η) + 1]
N in

N in − nT

×
√

Ninη(2nT + 1) + nT [nT (1 − η) + 1]

Ninη[nT (1 + η2) + 1] + ηnT [nT (1 − η) + 1]
.

(B8)

Since nT (1 − η) + 1 � 1, Ninη(2nT + 1) � Ninη[nT (1 +
η2) + 1], and nT [nT (1 − η) + 1] � ηnT [nT (1 − η) + 1], one
gets


γmin � δγ G
min. (B9)

The equality sign in (B9) holds only when nT = 0, which
coincides with the discussion after Eq. (8) in the main text:
At zero temperature, the error-propagation formula for the
estimation uncertainty coincides with the lower bound. It may
be noted that expressions like (B7) are not meaningful when
N in approaches nT . In this limit, the output photon number
becomes independent of the parameter γ , which we had set
out to determine. In such cases, postprocessing of signal is
needed. It may be added that the full master equation solution
for the input Fock state has no such divergence as the bound is
calculated using full photon number distribution. For thermal
input with input photon number equal to nT , master equation
solution gives divergence (Fig. 2) because as noted there the
Fisher information becomes zero and not meaningful as the
system does not evolve then.

APPENDIX C: MASTER EQUATION RESULT
FOR THE QFI WITH NO INCOMING PHOTONS

The solution of the master equation given by Eq. (1) was
studied numerically in the paper for both Fock states and
thermal states. However, it is possible to get the analytical
result for vacuum input. From Ref. [36], we get the probability
of seeing n photons at the output state with input Fock state
|m〉:

pn = (1 − e−2γ t )n+m(eβω − 1)emβω

(eβω − e−2γ t )n+m+1

× F

[
−n,−m, 1 :

eβω + e−βω − 2

e2γ t + e−2γ t − 2

]
, (C1)

where eβω = 1 + n−1
T and F is the hypergeometric func-

tion. For m = 0, F [−n, 0, 1 : z] = 1, and thus we have pn =
(1−η)nn−1

T

(1+n−1
T −η)n+1 . Let n(t ) = nT (1 − η); then pn can be written as

the Bose-Einstein distribution

pn = n(t )n

[1 + n(t )]n+1
. (C2)

From (C2), we obtain the quantum Fisher information

FQ = n2
T (2tη)2

n(t )[1 + n(t )]
. (C3)

033389-6



QUANTUM SENSING OF OPEN SYSTEMS: ESTIMATION … PHYSICAL REVIEW RESEARCH 2, 033389 (2020)

With δγ �
√
FQ

−1 , we get the lower bound for γ as

δγ G(T ) = 1

2tη

√
(1 − η)[1 + nT (1 − η)]

nT
. (C4)

This coincides with δγ G
min in (A7) with Nin = 0 obtained in

Sec. I with purification.

APPENDIX D: ESTIMATION OF BOUNDS FOR THE
UNCERTAINTY IN TEMPERATURE ESTIMATION

WITH A STREAM OF SINGLE PHOTONS

We consider now the bound for the uncertainty in δnT

with a stream of single photons, each one interacting with
the probed system during a time interval of τ , so that the
total interaction time is divided into ν intervals, with t = ντ .
From the master equation, we get the dynamics of pn, the
probability of detecting n bosons, after they have interacted
with the sample:

d pn

dt
= 2γ (nT + 1)[(n + 1)pn+1 − npn]

+ 2γ nT [npn−1 − (n + 1)pn]. (D1)

Here if we have a single-boson input at each time in-
terval τ , then pn(0) = δn,1. We integrate Eq. (C4) assuming
γ τ (nT + 1) 
 1, so that

pn(τ ) � δn,1 + 2γ τ (nT + 1)[(n + 1)pn+1 − npn]

+ 2γ τnT [npn−1 − (n + 1)pn], (D2)

where pn on the right side gives the distribution at τ = 0.
From (D2), we then obtain

p0(τ ) = 2γ τ (nT + 1),

p1(τ ) = 1 − 2γ τ (nT + 1) − 4γ τnT ,

p2(τ ) = 4γ τnT . (D3)

For a total interaction time t = ντ , corresponding to ν =
t/τ single-boson interactions, the quantum Fisher information
is then

FQ(t ) = νFQ(τ )=ν
∑

n

1

pn

(
d pn

dnT

)2

= t

τ

[
(2γ τ )2

2γ τ (nT + 1)
+ (6γ τ )2

1 − 2γ τ (nT + 1) − 4γ τnT

+ (4γ τ )2

4γ τnT

]
τ→0−→ 2γ t

3nT + 2

nT (nT + 1)
. (D4)

The corresponding lower bound for the uncertainty in the
estimation of the thermal photon number is obtained from

δnT = 1/

√
t
τ
FQ(τ ):

δnT
τ→0−→

√
nT (nT + 1)

(3nT + 2)2γ t
. (D5)

In the low-temperature limit nT 
 1, we have

δnT |nT 
1
τ→0−→

√
nT

4γ t
. (D6)

The limits (D5) and (D6) are discussed in the main text.
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