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Dark SU(2) states of the motion of a trapped ion
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The preparation of S(2) states as dark states of the motion of a trapped ion is considered. The difficulty in
preparing these states is shown to arise from the degeneracy of eigenvalues of the Hamiltonian. This degen-
eracy is removed by making use of the nonlinearities appearing in the dynamics of an ion that is not well
localized. The mechanism of approaching the dark state of interest is analyzed by using the quantum trajectory
method.
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[. INTRODUCTION tum operators. These operators are defined in terms of bilin-
ear combinations of the bosonic operators corresponding to
During the last few decades ion traps have become &he two directions, using the Schwinger representaftics).
prominently important tool for studying fundamental Some particular properties, including the generation and the
quantum-mechanical phenomena. In an ion trap the centegletection of pseudoangular momentum states of the motion
of-mass of a single ion experiences an approximate harmonief a trapped ion have been discussed in RE$]. We show
external potential1], hence the ion trap is a realization of that it is possible to engineer, with properly tuned laser
the harmonic-oscillator model in quantum mechanics. lorPeams, interaction Hamiltonians with zero-energy eigen-
trapping inspired the development of laser cooling tech-states that are very good approximations tqZWibrational
niques such as “Doppler” laser coolinf2—4], and laser states. We also show that, for each of these Hamiltonians, the
cooling in the resolved sideband linfi4], which allows one ~ zero-energy eigenvalue must be nondegenerate in order to
to prepare the ion in the vibrational ground stigie6]. Mak- have a stable dark state. This requires exploiting the nonlin-
ing use of the momentum exchange between atom and lighgarities of the laser-ion interaction.
one can manipulate the atomic center-of-mass motion. In this The paper is organized as follows: In Sec. Il the excitation
manner, experiments have been performed to generate mécheme is considered and the effective Hamiltonian is given.
tional number states, squeezed std@s and Schrdinger-  The properties of the eigensystem of the Hamiltonian are
catlike state$8]. studied in Sec. Ill, with particular emphasis on the effect of
Several nonclassical states are very sensitive to decoheiRe nonlinear character of the interaction on the degeneracy
ence effects that limit their lifetimes. It may be advantageou®f the eigenvalues. The dynamical evolution of the system is
to generate the target vibrational state in such a way thagonsidered in Sec. IV. Section V is devoted to analyze the
even in the presence of noise the disturbed system evolvégechanism of how the system approaches the motional dark
back to the target state. This will happen if this state is arstate. A summary and some conclusions are given in Sec. VI.
eigenstate of the interaction Hamiltonian with zero eigen-
value, which is not affected by dissipation. The latter re- II. THE HAMILTONIAN
quirement is achieved, in particular, when the atom is in the ) _ ) _
ground state, so that spontaneous decay is not allowed. Fluo- In this section we discuss the physical model of the ex-
rescence disappears, leading to a “dark” state. There havge_rlmentall seltup that regllzes the dynamics under consider-
been several theoretical proposals dealing with motional darRtion. An ion is trapped in a rf Paul trap where we concen-
states that realize this type of dynamics, including squeezeliate on the two-dimensional motion of the ifti7]. The ion
states[9], even and odd coherent sta{d®], nonlinear co- IS cons@ered as an gﬁect_lve electronic two-level system. The
herent statefL1], and squeezed cat stafd€]. Similarly, the electronic tra_nsmon is driven by_ three resonant laser fields;
generation of multimode entangled states as dark states coufie of them is tuned to the carrier frequency, the others are
also be of practical importance. In this spirit, the preparatiorfuned to vibrational sidebands, see Fig. 1. The Hamiltonian
of pair coherent statel3] and pair cat statekl4] has al- of the system in the electronic rotating wave approximation
ready been considered. reads
In this paper we show that it is possible to generate dark L
SU(2) states of the center-of-mass motion of a trapped ion. H=Ho+Hix(t), (1)
These are entangled states of the vibrations along two or-
thogonal trap directions, which can be characterized byvhere
guantum numbers corresponding to pseudoangular momen-
Ho=fwyhyotfiv,ata+hiv,b'd 2

*Permanent address: Research Institute for Solid Sate Physics adeéscribes the free motion of the internal and external degrees
Optics, P. O. Box 49, H-1525 Budapest, Hungary. of freedom of the ion, and
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where we require that the parameters of both laser fields
) N\——— tuned to vibrational sidebands satisfy the conditifh
2
= mxmye” 2 (i=1,2), and

b
Wl =Wa + Vp — Yy ¥ Wiy = Wot — Vg + 1y
7212 (1) ,,2
e B m— fi(n;p)=e" E ~1 bn () [n)Knl, (6)
2/
o — whereL (M(x) is thenth first-order associated Laguerre poly-

nomial.

FIG. 1. Excitation scheme of the trapped ion. Three laser fields In EQ. (5), the Lamb-Dicke approximation was adopted
are applied, one of them is at the carrier frequency of the electronifor the y direction, and also for the carrier field in the
transition, the other two are at vibrational sidebands. The wavydirection, sincer,, ,,#; y<1, and we also assume that the
arrow indicates the spontaneous emission. occupation numbers in theand they direction are such that
Nox,y VNx+1<1, noy yVNy+1<1, andy; yyn,+1<1. This

approximation implies that the dependence of the interaction

. 1 . . ) €
Hin(t) = E[ﬁﬂoe'(korwﬂt)+ﬁ919'(klr7“’“t) onn, is neglected. We keep however the dependenae,on
assummg thaty;,= n has a larger value.
+7Q,e (e e) A, +H.c. ) Given two independent sets of boson operat@sa'}

and{b,b™}, one may introduce operators satisfying the an-

is the interaction of the ion with the laser fields. The frequen—gular momentum algebra in the following ways]:

ciesv, andv, describe the center-of-mass motion of the ion

in the harmonic trapping potential in theandy directions, J;=(a'b+ab"/2, J,=(a’b—ab")2,
respectively. It is assumed that,<wv,. The vibrational . o o (7
mode operators associated with sthendy motions area and J;=(a'a—b'h)/2, 32=31+35+35.

b, respectively. The electronic flip operators are denoted b%or the trapped ion, the two-mode Fock state,n,) can be
’ - iy

Aij (1,1=12). ©; (i=0,1,2) describes the strength of the described as the pseudoangular momentum state that is a
ion-laser interaction, and the fields are characterized by the 0 eigenstate of the pseudoangular momentum opera-
wave vectorsk;(i=0,1,2) and frequencies,; and w;(i

—1,2). One of the lasers is tuned to the carrier frequengy ~ ©"S J? and J; associated with the eigenvalues, -n,)(ny

of the electronic transition. The frequenay ; is chosen in  +My+2)/4 and @, —n,)/2, respectively{16]. One should
such a way that the electronic transition is accompanied by Bote that the three operatalisare constructed with operators
creation of the vibrational quantum in themode and an corresponding to the quantized motion in the planey.
annihilation of the vibrational quantum in themode, i.e., Therefore they cannot be related to the orbital angular mo-

w 1= wyt vy—v,. Similarly, the frequency of the other mentum components; , i =x,y,z, of the trapped ion. Only
light field driving a sideband i) ;= wp1+ vy —vy. if v,= v, do we havel, proportional tol,, but even in this
The Lamb-Dicke parameters are defined by case the other components bfdo not have a similar inter-
pretation.
Miq=A0kyq, (4) Now we can insert the pseudoangular momentum opera-

tors (7) into Eq. (5) to obtain

WhereAq(qzx,y_) is the spread of the vibratio_nal ground— |:||: —ﬁﬁ[évib—g]Az1+H-C-- ®)
state wave function of the center-of-mass motion of the ion
in the trap, and;q is theqth component of the wave vector
of theith laser fleld We choose now the directions of propa- where&= /202 and
gation of the laser fields so that some of the Lamb-Dicke
parameters become small. For the field at the carrier fre- Byi,=
quency we setyo, y<1. For the other two fields we choose 2
7;,y<1 and definep=17; . L
The Hamiltonian(1) in the interaction picture with respect whereJ.. =J,*iJ,, and|J|=(n,+n,)/2. It is clearly seen
to H, [cf. Eq. (2)] and in the vibrational rotating wave ap- that B, is a Hermitian operator. Ifyn,+1<1 then one
proximation reads may perform the Lamb-Dicke approximation in tkenode
too and the operator associated with the center-of-mass mo-
tion of the ion simplifies to

[f1(|3|+33: I_+3: 6,13+ 9

U - A iy man A A
H=={Qo—Q[f.(n,;n)ab"™+a'bf(n,;7)]}A,+H.c., A
| 2{ o~ Q[ f1(nyg;7) 1N M 1A . lim By—J,. (10
5 n—0
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FIG. 2. The eigenvalue spectrum ét,ib for »<1 (j, um, are FIG. 3. The eigenvalue spectrum é(,ib for »=0.25. The de-
dimensionless The spectrum is highly degenerate. generacy is raised due to the nonlinearity.

For large» values the vibrational operator in E@) may be  Hamiltonian, with the ion in its ground electronic level. It is
considered as a nonlinear generalization of the pseudoangualear that, by adjusting the constafitin Eq. (8), we can

lar momentum operatat;. select the eigenspace that corresponds to the zero eigenvalue
of H, in Eq. (8). However, in order to select a single
Il. EIGENSTATES AND EIGENVALUES pseudoangular momentum eigenstate, this eigenspace must

be nondegenerate. This can be achieved by exploiting the

In this section we study the properties of the eigensystemonlinearities associated with the ion-laser interactiarge
of Byj,. It can be easily seen thBt,;, commutes with)? for ~ enough Lamb-Dicke paramejeMe will show in the next
any value ofy. Consequently, the operatatd andB,;, pos- ~ Section that it is then possible to get stable target dark states,
sess a common eigenstate system, which are very good approximations to the @) states

mentioned before.
For a nonvanishing Lamb-Dicke parameterthe eigen-
(11) system can be calculated numerically byAdiagonaIizing the
jZ|ij>:j(j + 1) pem)- operator (9). We call the eigenstates dB,;, nonlinear
pseudoangular momentum states. The degeneracy of the ei-

For every pseudoangular momentjrthere are, in gen- genvalue spectrum oB,;, is resolved, at least for nearby
eral, 2 + 1 different eigenvalueg(j) and the correspond- eigenvalues, as clearly shown in Fig. 3. Accidental degenera-
ing eigenstatef ). The indexmin wy, signifies thatinthe cies may still occur, but they will not affect our scheme
limit 7»—0 the eigenvalue igt,=m and the state$j um) substantially if the eigenvalues involved are very far away in
tend to the eigenstatégm) of the operators? andJ;. the diagram shown in Fig. 3.

Let us consider first the limip—0. Then, as seen before, ~ To get some insight on how the degeneracy in the eigen-
the operatorf%vib reduces taJ;. The eigenvalues o, are valug spectrum is raised, one may calculqte apprommately
displayed in Fig. 2. It is clearly seen that the eigenvaludhe difference between two eigenvalues for increasingor
spectrum is highly degenerate. The corresponding eiger?=0 We choose the eigenvalugs»(3/2) and wy(1/2).
states are entangled in the Fock basis associated witk theExpanding the operatdr; (n; ») in By, into a Taylor series
and y axes. For example, the state correspondingmp  up to second order im, one finds
=1/2,j=1/2 is

Buinlj m) = tm(i)|j m),

2

_ __T 4
j=1/2my=1/2)= (|10)+|01))/ V2, (12) pd312) =y H2)= = =+ O( 7). (14
while the state witfj =1, m; =0 may be written as Though in general the eigenvalues B, are different

from that of J; the corresponding eigenstates are still very
close to each other. In Table | we show the square of the

For more general types of these states see, for example R&verlap of the eigenstates 8f andB,;, for 7=0.25. It can
[16] Entang'ed states like these may p|ay an important ro|é)e seen that.even for this \{alue of the .La.mb'D|Cke parameter
in quantum information theory and in the study of quantumthe overlap is close to unity for the first few values of the
decoherence effects. Our aim is to obtain these entangld@tal pseudoangular momentymit follows that by generat-
states as dark states, thus protecting them from degradirigg the eigenstates dB,;, one gets states that are almost
caused by noise. We will show in the next section that darkperfect SU2) states. In the next section we discuss a dynam-
states should be zero-energy eigenvectors of the interactians that yields these states as stationary ones.

[i=1m=0)=(]20)—|02)/+2. (13
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TABLE I. The overlap between the eigenstatesigfand the in order that an eigenvector df;u,) be the steady-state

corresponding eigenstates Bf;, for 7=0.25. solution of Eq.(15), the Operatoévib must have a nondegen-
erate eigenvalue spectrum.
j [(imlj em)|? If the Lamb-Dicke parameten is sufficiently large, this

condition is fulfilled, except for the possible presence of ac-

0 1.0000 . ! . S .
05 1.0000 1.0000 cidental degeneracies, see the discussion in the previous sec-
1' 0 999‘9 0 999’7 0.9999 tion. These degeneracies in the eigenvalues of the operator
15 0.9992 0.9992 0.9992 0.9992 B,i, Will not change the results substantially, as long as the
2 0.9977 0.9973 0.9992 0.9973 0.9977 involved eigenvalues ofi? are well separated, and if the
25 0.9948 0.9928 0.9979 0.9979 0.9928 0.9948 initial state belongs to a subspace that is close to one of the
3 0.9903 0.9844 0.9933 0.9984 0.9933 0.9844 0.9903 ~ degenerate eigenstates and far away from the other. Then,
35 0.9837 0.9712 0.9834 0.9960 0.9960 0.9834 0.9712 0.9837.N€ Probability of populating the “undesired” state remains
very small.
Let's assume that the initial state of the system is a pure
state|#);,. This state can be expanded as a superposition of
IV. DYNAMICAL BEHAVIOR the eigenstates (ﬁvib
The time evolution of the system is characterized by the
Master equation |¢>in:|1>jz CijUMm)- (19
Hm
L R T U U Y I : ,
rTo %[HI 0]+ §(2A129A21— A0 —0A), The Hamiltonian evolution connects only states having the

(15) same pseudoangular momentum. Therefore for approaching
atarget statgl)|j’ i), the non-Hermitian part in the Master

whereH, is defined in Eq.(8) and the last term describes €duation(15) plays an important role. . .
spontaneous emission with energy relaxation Fatand We have performed quantum trajectory simulatighg—
20] to understand this evolution. The effective, non-

~ yn LAt L Bt Hermitian Hamiltonian governing the continuous dynamics
e=f dudv w(u,v)explin’(a+a’)u+iny’(b+bMvle  reads

i AL AN U—i 2D (BT . . Al
xexf —iny’(a+au—in,’'(b+bhv], (16) HeﬁzH,—i7A22, (19
accounts for changes of the vibrational energy due to spon-

taneous emissionv(u,v) is the angular distribution of spon- wherel, is defined in Eq(8) and the jump operators are

taneous emission and the vibronic density operator, re- given by

duced with respect to the vibrational motion in tlze

direction[17]. X Juo=VIW(U,0) A expliukyX(t) +ivk,y(1)]. (20)
The stationary solutio of Eq. (15) can be found by

settingdo/dt=0 on its left-hand side. If one sets the ampli- In the course of quantum trajectory simulations an initial

tude of the laser field such thét uy(j) in Eq.(8), thenthe  wave function is evolved with the Hamiltoniaf ¢, and

stationary solution is jumps at random times, interrupt this evolution. The times of
. the jumps are determined by the decay of the norm of the
0s=|)|j )i ml(1], (17)  time-evolved wave function.

where|1) is the electronic ground state afigk,) is a non- V. APPROACHING THE DARK STATE

degenerate eigenstate tib defined in Eq.(11). Note that ) _
the ion stops to interact with the laser fields when it reaches Let us consider the approach of the system to the required
the steady state and it remains in a “dark state.” In thetarget state by the use of the quantum trajectory method. The
following we analyze under which circumstances the dynameonditional wave function of the system is
ics governed by the Master equati@b) leads to a unique
solution of the equatiodo/dt=0. [0 =1D1¢0+12)[42), (21)

First we consider the Hamiltonian evolution. Let's assume

that there are several eigenstatgg ) which belong to the where.||> dgnotgs the electronic state ajd) is Fhe corre-
same eigenvalug,(j;) = um in Eq. (10). It is clear that in sponding vibrational statéy;) can be expanded into a series

this case the dynamics does not lead to a unique solution & the eigenstates .,

the equatior‘dé/dtzo, instead it results in an incoherent

superposition of the staté$)|j; ). The coefficients of the |¢1>:2 Cip|ism), |¢2>:2 di, limm. (22
superposition will depend on the initial state. Consequently, jum 0T g T
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The continuous time evolution of the coefficiemi@m and
dmm is determined by the equations

-Cj,um: - |ﬁ(:“~m_ /’er'l)dj/;mi

. B , r
dj/"m:_IQ*(Mm_Mn)Cjﬂm_Edj/’“m' (23)

2 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
T

where ), is the eigenvalue corresponding to the vibrational
part |j’u,) of the target state. lfu,# u,,, then in a long
timescale without jumps, the solution of E(R3) is Ciup
=d

FIG. 4. The variation of some populations determined from the
time evolved density operatoré(t). The target state is
[1)|1,u4(1)). Time is measured in I/ units, 7=Tt (dimension-
JMm:O' In the special casp=j’' andm=n one has les9. The curves are obtained by averaging 750 trajectories.

, ) In a real trap the Lamb-Dicke parameters associated with
Cj /,41:0, d; W= Edj e (24 the spontaneous emission are so large that one cannot replace

the exponential factor by 1 in the jump operata[§, Eq.
The probability amplitudec;,,» of the target state is con- (20). The role of the exponential part is to mix vibrational
served. This equation clearly shows that if in the initial :stateStates of different indices, i.e., the jumps are nonvertical. The

the weight of the target state is zero, then only the jumpdnatrix elements of the exponential termJp, are
may lead to the target stat@)|j’ u,). ) _ _ S _ P

Let's study the effect of the jTJmps. The initial state is Dj(;inz;k#n:(JMmWXP [ 7 (@+ahu+in(b+b"v]lkun),
assumed to béy(0))=|1)|#7). As a simplest model we 27)
ignore for the moment the motional kick effects and assume , . . . . . .

. ) .o which is in general a nondiagonal matrix. Consequently, in
that the jump operator(20) acts vertically, i.€.,Ju,  pjace of the vertical transitions given in E@5), the vibra-
=VI'w(u,v)A;,. This corresponds to a small Lamb-Dicke tional distribution transforms now as
parameter associated with the spontaneous emission. When a
jump occurs the following transformation is applied: CJ(,Z) -y D}Zﬂ?kﬁnd(k;z’ d,(;;:o (28)

c{,)=d{.) and df,)=0 (25)

for all allowed indices j,m), and the state vector should be

for all allowed indices [,m), and the state vector should be renormalized. These considerations show clearly that the
renormalized. The superscripts §/(+) indicate the coeffi- speed of approaching a required target state depends on the
cients just before or after a jump. The first jump occurs whemagnitude of the Lamb-Dicke parameteféfg, associated
the norm of the conditional wave functiq@1) gets smaller with the spontaneous emission. In the quantum trajectory
than a previously drawn random numtlerif the probability  simulation one trajectory is a sequence of free evolutions
amplitude of the target state dﬁr% in the initial state then described by Eq(23) and jumps according to ER8). After

the norm of the conditional wave function can never becomé jump the probability amplitude;. .- of the target state is
smaller thanpno=|c1%|2 since this quantity is conserved given by Eg.(28). If the next drawn random number is

according to Eq(24). Consequently it <p,, then in along Smaller than|cj%|2, then after some time the dynamical
timescale the state of the system will be the wanted targegvolution stops and the system remains in the target state
state since all the other coefficients vanish according to Eq.1)|j’«,). According to the discussion in the previous sec-
(23). Performing several runs one hag, probability that the  tion this state is a dark state since in this state the ion is
first drawn random number is smaller thap,. It follows  decoupled from the driving laser fields and it stops to radiate.
that in the long timescale the density operator associated In our first numerical example the eigenvalug(1) was
with the vibrational degree of freedom is chosen foi€ in the interaction Hamiltonian in E@8). There-

. A fore the target state ikl)|1,u4.(1)). The initial state was

Cuib(t) =Pnd ] o) il +(1=pro @’ (b, (26)  |4(0))=|1)|00). In order to study the time evolution of the

density operator, the variations of some populations are plot-

where ¢ (t),i, is a density operator that has no projectionted in Fig. 4. The actual values of the Lamb-Dicke param-
onto the statéj’ /). Consequently, in this case the dynam- eters were chosen in such a way that the time needed to reach
ics does not lead to the required target state but it results in e steady state is reasonably shart: 0.25, 7{”=0.6, and
mixed state in which the weight of the target state,is. 77§,”=0.2. The effective interaction strength was set(1o
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09 o ' ' ' ' ' - R Hamiltonian, while a third one sets an eigenvalue. It has
osp PO I been shown that, in the Lamb-Dicke regime, pure pseudoan-
07| . gular momentum states cannot be obtained as dark states due

to the degenerate eigenvalue spectrum of the pseudoangular
momentum operators. Instead, the degeneracy of the eigen-
value spectrum can be resolved by taking into account the
nonlinearities arising from the nonvanishing Lamb-Dicke pa-
rameter associated with the laser-ion interaction. Neverthe-
less, it has been shown that the corresponding eigenstates of
the vibrational part of the interaction Hamiltonian are very
close to perfect S(2) states for not too large values of the
total pseudoangular momentum of the states.

We have used the quantum jump method to discuss the

FIG. 5. Same as Fig. 4 but the target stat¢lig2,u(2)). dynamical evolution of the system to a unique steady state.

In such a state, the ion is decoupled from the driving laser
=2I". The continuous curve corresponds to the target statéields and stops to radiate, and hence these states are called
The two other curves are associated with states that hawgark states, which are eigenstates of the interaction Hamil-
eigenvalues that are very close to that of the target state. Thenian with zero eigenvalue. We have shown both analyti-
time evolution consists of two parts. In the beginning thecally and numerically that the magnitude of the Lamb-Dicke
population of the target state increases rapidly. After a cerparameters associated with the quantum jumps of the driven
tain time interval this quick growth is slowed down signifi- electron plays an important role in the approach of the sys-
cantly. Around the end of the rapid growth there are othetem to the target state.
nondesired states, which are also populated significantly. It Our method allows the preparation of G states from a
can be seen that a long time is needed to depopulate thegganifold of initial states in a rather stable manner and does
states and to get all the population in the target state. not require an initial cooling of the ion to the ground state.

In the second numerical simulatighwas set tqu,(2) in The prepared state is protected against degradation due to
Eq. (8). The Lamb-Dicke parameters were the same as in th@oise; the engineered Hamiltonian always pulls the state to-
previous example. In Fig. 5 the populations of the sameyards the target state. Of course, in order to use these en-
states are shown as in Fig. 4. The dynamics consists of tweangled states in possible experiments on quantum informa-
stages again. At the end of the first part the populations ofion processing or decoherence, one should switch off the
the chosen states are similar to those in the previous casgsers after preparing the state.

The statgl1,u4(1)) has the highest population. In the slow

06 _
05 i
0.4
03
02

01 .-

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
T
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