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Dark SU„2… states of the motion of a trapped ion
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The preparation of SU~2! states as dark states of the motion of a trapped ion is considered. The difficulty in
preparing these states is shown to arise from the degeneracy of eigenvalues of the Hamiltonian. This degen-
eracy is removed by making use of the nonlinearities appearing in the dynamics of an ion that is not well
localized. The mechanism of approaching the dark state of interest is analyzed by using the quantum trajectory
method.

DOI: 10.1103/PhysRevA.63.053410 PACS number~s!: 32.80.Pj, 42.50.Vk, 32.80.Qk, 42.50.Lc
e
al
te

on
f

Io
ch

ig
th
m

h
u

th
lv
a
n

re
th
lu
a
a
z

o
io

ar
on
o
b
e

ilin-
g to

the
tion

er
en-

, the
r to
lin-

ion
en.
are
of

racy
is

the
dark
. VI.

ex-
der-
n-

The
lds;
are
ian
ion

reess a
I. INTRODUCTION

During the last few decades ion traps have becom
prominently important tool for studying fundament
quantum-mechanical phenomena. In an ion trap the cen
of-mass of a single ion experiences an approximate harm
external potential@1#, hence the ion trap is a realization o
the harmonic-oscillator model in quantum mechanics.
trapping inspired the development of laser cooling te
niques such as ‘‘Doppler’’ laser cooling@2–4#, and laser
cooling in the resolved sideband limit@4#, which allows one
to prepare the ion in the vibrational ground state@5,6#. Mak-
ing use of the momentum exchange between atom and l
one can manipulate the atomic center-of-mass motion. In
manner, experiments have been performed to generate
tional number states, squeezed states@7#, and Schro¨dinger-
catlike states@8#.

Several nonclassical states are very sensitive to deco
ence effects that limit their lifetimes. It may be advantageo
to generate the target vibrational state in such a way
even in the presence of noise the disturbed system evo
back to the target state. This will happen if this state is
eigenstate of the interaction Hamiltonian with zero eige
value, which is not affected by dissipation. The latter
quirement is achieved, in particular, when the atom is in
ground state, so that spontaneous decay is not allowed. F
rescence disappears, leading to a ‘‘dark’’ state. There h
been several theoretical proposals dealing with motional d
states that realize this type of dynamics, including squee
states@9#, even and odd coherent states@10#, nonlinear co-
herent states@11#, and squeezed cat states@12#. Similarly, the
generation of multimode entangled states as dark states c
also be of practical importance. In this spirit, the preparat
of pair coherent states@13# and pair cat states@14# has al-
ready been considered.

In this paper we show that it is possible to generate d
SU~2! states of the center-of-mass motion of a trapped i
These are entangled states of the vibrations along two
thogonal trap directions, which can be characterized
quantum numbers corresponding to pseudoangular mom

*Permanent address: Research Institute for Solid Sate Physic
Optics, P. O. Box 49, H-1525 Budapest, Hungary.
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tum operators. These operators are defined in terms of b
ear combinations of the bosonic operators correspondin
the two directions, using the Schwinger representation@15#.
Some particular properties, including the generation and
detection of pseudoangular momentum states of the mo
of a trapped ion have been discussed in Ref.@16#. We show
that it is possible to engineer, with properly tuned las
beams, interaction Hamiltonians with zero-energy eig
states that are very good approximations to SU~2! vibrational
states. We also show that, for each of these Hamiltonians
zero-energy eigenvalue must be nondegenerate in orde
have a stable dark state. This requires exploiting the non
earities of the laser-ion interaction.

The paper is organized as follows: In Sec. II the excitat
scheme is considered and the effective Hamiltonian is giv
The properties of the eigensystem of the Hamiltonian
studied in Sec. III, with particular emphasis on the effect
the nonlinear character of the interaction on the degene
of the eigenvalues. The dynamical evolution of the system
considered in Sec. IV. Section V is devoted to analyze
mechanism of how the system approaches the motional
state. A summary and some conclusions are given in Sec

II. THE HAMILTONIAN

In this section we discuss the physical model of the
perimental setup that realizes the dynamics under consi
ation. An ion is trapped in a rf Paul trap where we conce
trate on the two-dimensional motion of the ion@17#. The ion
is considered as an effective electronic two-level system.
electronic transition is driven by three resonant laser fie
one of them is tuned to the carrier frequency, the others
tuned to vibrational sidebands, see Fig. 1. The Hamilton
of the system in the electronic rotating wave approximat
reads

Ĥ5Ĥ01Ĥ int~ t !, ~1!

where

Ĥ05\v21Â221\nxâ
†â1\nyb̂

†b̂ ~2!

describes the free motion of the internal and external deg
of freedom of the ion, and
nd
©2001 The American Physical Society10-1
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Ĥ int~ t !5
1

2
@\V0ei (k0r2v21t)1\V1ei (k1r2vL1t)

1\V2ei (k2r2vL2t)#Â211H.c. ~3!

is the interaction of the ion with the laser fields. The freque
ciesnx andny describe the center-of-mass motion of the i
in the harmonic trapping potential in thex andy directions,
respectively. It is assumed thatnx,ny . The vibrational
mode operators associated with thex andy motions areâ and
b̂, respectively. The electronic flip operators are denoted
Âi j ( i , j 51,2). V i ( i 50,1,2) describes the strength of th
ion-laser interaction, and the fields are characterized by
wave vectorski( i 50,1,2) and frequenciesv21 and vLi( i
51,2). One of the lasers is tuned to the carrier frequencyv21
of the electronic transition. The frequencyvL1 is chosen in
such a way that the electronic transition is accompanied b
creation of the vibrational quantum in thex mode and an
annihilation of the vibrational quantum in they mode, i.e.,
vL15v211nx2ny . Similarly, the frequency of the othe
light field driving a sideband isvL25v211ny2nx .

The Lamb-Dicke parameters are defined by

h iq5Dqkiq , ~4!

whereDq(q5x,y) is the spread of the vibrational ground
state wave function of the center-of-mass motion of the
in the trap, andkiq is theqth component of the wave vecto
of the i th laser field. We choose now the directions of prop
gation of the laser fields so that some of the Lamb-Dic
parameters become small. For the field at the carrier
quency we seth0x,y!1. For the other two fields we choos
h i ,y!1 and defineh5h i ,x .

The Hamiltonian~1! in the interaction picture with respec
to Ĥ0 @cf. Eq. ~2!# and in the vibrational rotating wave ap
proximation reads

ĤI5
\

2
$V02Ṽ@ f 1~ n̂x ;h!âb̂†1â†b̂ f 1~ n̂x ;h!#%Â211H.c.,

~5!

FIG. 1. Excitation scheme of the trapped ion. Three laser fie
are applied, one of them is at the carrier frequency of the electr
transition, the other two are at vibrational sidebands. The w
arrow indicates the spontaneous emission.
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where we require that the parameters of both laser fie
tuned to vibrational sidebands satisfy the conditionṼ

5h ixh iye2h iy
2 /2V i ( i 51,2), and

f 1~ n̂;h!5e2h2/2(
n50

`
1

n11
Ln

(1)~h2!un&^nu, ~6!

whereLn
(1)(x) is thenth first-order associated Laguerre pol

nomial.
In Eq. ~5!, the Lamb-Dicke approximation was adopte

for the y direction, and also for the carrier field in thex
direction, sinceh0x,y ,h i ,y!1, and we also assume that th
occupation numbers in thex and they direction are such tha
h0x,yAnx11!1, h0x,yAny11!1, andh i ,yAny11!1. This
approximation implies that the dependence of the interac
on n̂y is neglected. We keep however the dependence onn̂x ,
assuming thath ix5h has a larger value.

Given two independent sets of boson operators$â,â†%
and $b̂,b̂†%, one may introduce operators satisfying the a
gular momentum algebra in the following way@15#:

Ĵ15~ â†b̂1âb̂†!/2, Ĵ25~ â†b̂2âb̂†!/2i ,
~7!

Ĵ35~ â†â2b̂†b̂!/2, Ĵ25 Ĵ1
21 Ĵ2

21 Ĵ3
2 .

For the trapped ion, the two-mode Fock stateunx ,ny& can be
described as the pseudoangular momentum state that
common eigenstate of the pseudoangular momentum op
tors Ĵ2 and Ĵ3 associated with the eigenvalues (nx1ny)(nx
1ny12)/4 and (nx2ny)/2, respectively@16#. One should
note that the three operatorsĴi are constructed with operator
corresponding to the quantized motion in the planex2y.
Therefore they cannot be related to the orbital angular m
mentum componentsL̂ i , i 5x,y,z, of the trapped ion. Only
if nx5ny do we haveĴ2 proportional toL̂z , but even in this
case the other components ofĴ do not have a similar inter-
pretation.

Now we can insert the pseudoangular momentum op
tors ~7! into Eq. ~5! to obtain

ĤI52\Ṽ@B̂vib2E#Â211H.c., ~8!

whereE5V0/2Ṽ and

B̂vib5
1

2
@ f 1~ uĴu1 Ĵ3 ;h!Ĵ21 Ĵ1 f 1~ uĴu1 Ĵ3 ;h!#, ~9!

where Ĵ65 Ĵ16 i Ĵ2, and uĴu5(n̂x1n̂y)/2. It is clearly seen
that B̂vib is a Hermitian operator. IfhAnx11!1 then one
may perform the Lamb-Dicke approximation in thex mode
too and the operator associated with the center-of-mass
tion of the ion simplifies to

lim
h→0

B̂vib5 Ĵ1 . ~10!
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DARK SU~2! STATES OF THE MOTION OF A TRAPPED ION PHYSICAL REVIEW A63 053410
For largeh values the vibrational operator in Eq.~9! may be
considered as a nonlinear generalization of the pseudoa
lar momentum operatorĴ1.

III. EIGENSTATES AND EIGENVALUES

In this section we study the properties of the eigensys
of B̂vib . It can be easily seen thatB̂vib commutes withĴ2 for
any value ofh. Consequently, the operatorsĴ2 andB̂vib pos-
sess a common eigenstate system,

B̂vibu j mm&5mm~ j !u j mm&,
~11!

Ĵ2u j mm&5 j ~ j 11!u j mm&.

For every pseudoangular momentumj there are, in gen-
eral, 2j 11 different eigenvaluesmm( j ) and the correspond
ing eigenstatesu j mm&. The indexm in mm signifies that in the
limit h→0 the eigenvalue ismm5m and the statesu j mm&
tend to the eigenstatesu jm& of the operatorsĴ2 and Ĵ1.

Let us consider first the limith→0. Then, as seen before
the operatorB̂vib reduces toĴ1. The eigenvalues ofĴ1 are
displayed in Fig. 2. It is clearly seen that the eigenva
spectrum is highly degenerate. The corresponding eig
states are entangled in the Fock basis associated with tx
and y axes. For example, the state corresponding tom1
51/2, j 51/2 is

u j 51/2,m151/2&5~ u10&1u01&)/A2, ~12!

while the state withj 51, m150 may be written as

u j 51,m150&5~ u20&2u02&)/A2. ~13!

For more general types of these states see, for example
@16#. Entangled states like these may play an important r
in quantum information theory and in the study of quantu
decoherence effects. Our aim is to obtain these entan
states as dark states, thus protecting them from degra
caused by noise. We will show in the next section that d
states should be zero-energy eigenvectors of the interac

FIG. 2. The eigenvalue spectrum ofB̂vib for h!1 ( j , mm are
dimensionless!. The spectrum is highly degenerate.
05341
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Hamiltonian, with the ion in its ground electronic level. It
clear that, by adjusting the constantE in Eq. ~8!, we can
select the eigenspace that corresponds to the zero eigen
of ĤI in Eq. ~8!. However, in order to select a singl
pseudoangular momentum eigenstate, this eigenspace
be nondegenerate. This can be achieved by exploiting
nonlinearities associated with the ion-laser interaction~large
enough Lamb-Dicke parameter!. We will show in the next
section that it is then possible to get stable target dark sta
which are very good approximations to the SU~2! states
mentioned before.

For a nonvanishing Lamb-Dicke parameterh the eigen-
system can be calculated numerically by diagonalizing
operator ~9!. We call the eigenstates ofB̂vib nonlinear
pseudoangular momentum states. The degeneracy of th
genvalue spectrum ofB̂vib is resolved, at least for nearb
eigenvalues, as clearly shown in Fig. 3. Accidental degen
cies may still occur, but they will not affect our schem
substantially if the eigenvalues involved are very far away
the diagram shown in Fig. 3.

To get some insight on how the degeneracy in the eig
value spectrum is raised, one may calculate approxima
the difference between two eigenvalues for increasingh. For
h50 we choose the eigenvaluesm1/2(3/2) and m1/2(1/2).
Expanding the operatorf 1(n̂;h) in B̂vib into a Taylor series
up to second order inh, one finds

m1/2~3/2!2m1/2~1/2!52
h2

4
1O~h4!. ~14!

Though in general the eigenvalues ofB̂vib are different
from that of Ĵ1 the corresponding eigenstates are still ve
close to each other. In Table I we show the square of
overlap of the eigenstates ofĴ1 and B̂vib for h50.25. It can
be seen that even for this value of the Lamb-Dicke param
the overlap is close to unity for the first few values of t
total pseudoangular momentumj. It follows that by generat-
ing the eigenstates ofB̂vib one gets states that are almo
perfect SU~2! states. In the next section we discuss a dyna
ics that yields these states as stationary ones.

FIG. 3. The eigenvalue spectrum ofB̂vib for h50.25. The de-
generacy is raised due to the nonlinearity.
0-3
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IV. DYNAMICAL BEHAVIOR

The time evolution of the system is characterized by
Master equation

d%̂

dt
52

i

\
@ĤI ,%̂#1

G

2
~2Â12%̃̂Â212Â22%̂2%̂Â22!,

~15!

where ĤI is defined in Eq.~8! and the last term describe
spontaneous emission with energy relaxation rateG, and

%̃̂5E dudv w~u,v !exp@ ihx
(r )~ â1â†!u1 ihy

(r )~ b̂1b̂†!v#%̂

3exp@2 ihx
(r )~ â1â†!u2 ihy

(r )~ b̂1b̂†!v#, ~16!

accounts for changes of the vibrational energy due to sp
taneous emission.w(u,v) is the angular distribution of spon
taneous emission and%̂ the vibronic density operator, re
duced with respect to the vibrational motion in thez
direction @17#.

The stationary solution%̂s of Eq. ~15! can be found by
settingd%̂/dt50 on its left-hand side. If one sets the amp
tude of the laser field such thatE5mm( j ) in Eq. ~8!, then the
stationary solution is

%̂s5u1&u j mm&^ j mmu^1u, ~17!

whereu1& is the electronic ground state andu j mm& is a non-
degenerate eigenstate ofB̂vib defined in Eq.~11!. Note that
the ion stops to interact with the laser fields when it reac
the steady state and it remains in a ‘‘dark state.’’ In t
following we analyze under which circumstances the dyna
ics governed by the Master equation~15! leads to a unique
solution of the equationd%̂/dt50.

First we consider the Hamiltonian evolution. Let’s assu
that there are several eigenstatesu j imm& which belong to the
same eigenvaluemm( j i)[mm in Eq. ~11!. It is clear that in
this case the dynamics does not lead to a unique solutio
the equationd%̂/dt50, instead it results in an incohere
superposition of the statesu1&u j imm&. The coefficients of the
superposition will depend on the initial state. Consequen

TABLE I. The overlap between the eigenstates ofĴ1 and the

corresponding eigenstates ofB̂vib for h50.25.

j u^ jmu j mm&u2

0 1.0000
0.5 1.0000 1.0000
1 0.9999 0.9997 0.9999
1.5 0.9992 0.9992 0.9992 0.9992
2 0.9977 0.9973 0.9992 0.9973 0.9977
2.5 0.9948 0.9928 0.9979 0.9979 0.9928 0.9948
3 0.9903 0.9844 0.9933 0.9984 0.9933 0.9844 0.9903
3.5 0.9837 0.9712 0.9834 0.9960 0.9960 0.9834 0.9712 0.98
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in order that an eigenvector ofu j imm& be the steady-state
solution of Eq.~15!, the operatorB̂vib must have a nondegen
erate eigenvalue spectrum.

If the Lamb-Dicke parameterh is sufficiently large, this
condition is fulfilled, except for the possible presence of a
cidental degeneracies, see the discussion in the previous
tion. These degeneracies in the eigenvalues of the ope
B̂vib will not change the results substantially, as long as
involved eigenvalues ofĴ2 are well separated, and if th
initial state belongs to a subspace that is close to one of
degenerate eigenstates and far away from the other. T
the probability of populating the ‘‘undesired’’ state remai
very small.

Let’s assume that the initial state of the system is a p
stateuc& in . This state can be expanded as a superpositio
the eigenstates ofB̂vib

uc& in5u1&(
j mm

cj mm
u j mm&. ~18!

The Hamiltonian evolution connects only states having
same pseudoangular momentum. Therefore for approac
a target stateu1&u j 8mn8&, the non-Hermitian part in the Maste
equation~15! plays an important role.

We have performed quantum trajectory simulations@18–
20# to understand this evolution. The effective, no
Hermitian Hamiltonian governing the continuous dynam
reads

Ĥeff5ĤI2 i
\G

2
Â22, ~19!

where ĤI is defined in Eq.~8! and the jump operators ar
given by

Ĵuv5AGw~u,v !Â12exp@ iuk21x̂~ t !1 ivk21ŷ~ t !#. ~20!

In the course of quantum trajectory simulations an init
wave function is evolved with the HamiltonianĤeff , and
jumps at random times, interrupt this evolution. The times
the jumps are determined by the decay of the norm of
time-evolved wave function.

V. APPROACHING THE DARK STATE

Let us consider the approach of the system to the requ
target state by the use of the quantum trajectory method.
conditional wave function of the system is

uc&5u1&uc1&1u2&uc2&, ~21!

where u i & denotes the electronic state anduc i& is the corre-
sponding vibrational state.uc i& can be expanded into a serie
of the eigenstates ofB̂vib

uc1&5(
j mm

cj mm
u j mm&, uc2&5(

j mm

dj mm
u j mm&. ~22!

7
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DARK SU~2! STATES OF THE MOTION OF A TRAPPED ION PHYSICAL REVIEW A63 053410
The continuous time evolution of the coefficientscj mm
and

dj mm
is determined by the equations

ċ j mm
52 i Ṽ~mm2mn8!dj mm

,

ḋ j mm
52 i Ṽ* ~mm2mn8!cj mm

2
G

2
dj mm

, ~23!

j 50,
1

2
,1, . . . , 2 j <m<1 j ,

wheremn8 is the eigenvalue corresponding to the vibration
part u j 8mn8& of the target state. IfmmÞmn8 , then in a long
timescale without jumps, the solution of Eq.~23! is cj mm

5dj mm
50. In the special casej 5 j 8 andm5n one has

ċ j 8m
n8
50, ḋ j 8m

n8
52

G

2
dj 8m

n8
. ~24!

The probability amplitudecj 8m
n8

of the target state is con

served. This equation clearly shows that if in the initial st
the weight of the target state is zero, then only the jum
may lead to the target stateu1&u j 8mn8&.

Let’s study the effect of the jumps. The initial state
assumed to beuc(0)&5u1&uc1&. As a simplest model we
ignore for the moment the motional kick effects and assu
that the jump operator~20! acts vertically, i.e., Ĵuv

5AGw(u,v)Â12. This corresponds to a small Lamb-Dick
parameter associated with the spontaneous emission. Wh
jump occurs the following transformation is applied:

cj mm

(1) 5dj mm

(2) and dj mm

(1) 50 ~25!

for all allowed indices (j ,m), and the state vector should b
renormalized. The superscripts (2)/(1) indicate the coeffi-
cients just before or after a jump. The first jump occurs wh
the norm of the conditional wave function~21! gets smaller
than a previously drawn random number«. If the probability
amplitude of the target state iscj 8m

n8
in the initial state then

the norm of the conditional wave function can never beco
smaller thanpno5ucj 8m

n8
u2 since this quantity is conserve

according to Eq.~24!. Consequently if«,pno then in a long
timescale the state of the system will be the wanted ta
state since all the other coefficients vanish according to
~23!. Performing several runs one haspno probability that the
first drawn random number is smaller thanpno. It follows
that in the long timescale the density operator associa
with the vibrational degree of freedom is

%̂vib~ t !5pnou j 8mn8&^ j 8mn8u1~12pno!%̂8~ t !vib , ~26!

where %̂8(t)vib is a density operator that has no projecti
onto the stateu j 8mn8&. Consequently, in this case the dynam
ics does not lead to the required target state but it results
mixed state in which the weight of the target state ispno.
05341
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In a real trap the Lamb-Dicke parameters associated w
the spontaneous emission are so large that one cannot re
the exponential factor by 1 in the jump operatorsĴuv , Eq.
~20!. The role of the exponential part is to mix vibration
states of different indices, i.e., the jumps are nonvertical. T
matrix elements of the exponential term inĴuv are

D j mm ;kmn

(uv) 5^ j mmuexp [ihx
(r )~ â1â†!u1 ihy

(r )~ b̂1b̂†!v] ukmn&,

~27!

which is in general a nondiagonal matrix. Consequently,
place of the vertical transitions given in Eq.~25!, the vibra-
tional distribution transforms now as

cj mm

(1) 5(
kmn

D j mm ;kmn

(uv) dkmn

(2) , dj mm

(1) 50 ~28!

for all allowed indices (j ,m), and the state vector should b
renormalized. These considerations show clearly that t
speed of approaching a required target state depends o
magnitude of the Lamb-Dicke parametershx,y

(r ) associated
with the spontaneous emission. In the quantum traject
simulation one trajectory is a sequence of free evolutio
described by Eq.~23! and jumps according to Eq.~28!. After
a jump the probability amplitudecj 8m

n8
of the target state is

given by Eq. ~28!. If the next drawn random number i
smaller thanucj 8m

n8
u2, then after some time the dynamic

evolution stops and the system remains in the target s
u1&u j 8mn8&. According to the discussion in the previous se
tion this state is a dark state since in this state the ion
decoupled from the driving laser fields and it stops to radia

In our first numerical example the eigenvaluem1(1) was
chosen forE in the interaction Hamiltonian in Eq.~8!. There-
fore the target state isu1&u1,m1(1)&. The initial state was
uc(0)&5u1&u00&. In order to study the time evolution of th
density operator, the variations of some populations are p
ted in Fig. 4. The actual values of the Lamb-Dicke para
eters were chosen in such a way that the time needed to r
the steady state is reasonably short:h50.25, hx

(r )50.6, and

hy
(r )50.2. The effective interaction strength was set toṼ

FIG. 4. The variation of some populations determined from

time evolved density operator%̂(t). The target state is
u1&u1,m1(1)&. Time is measured in 1/G units, t5Gt ~dimension-
less!. The curves are obtained by averaging 750 trajectories.
0-5
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52G. The continuous curve corresponds to the target st
The two other curves are associated with states that h
eigenvalues that are very close to that of the target state.
time evolution consists of two parts. In the beginning t
population of the target state increases rapidly. After a c
tain time interval this quick growth is slowed down signi
cantly. Around the end of the rapid growth there are ot
nondesired states, which are also populated significantl
can be seen that a long time is needed to depopulate t
states and to get all the population in the target state.

In the second numerical simulationE was set tom1(2) in
Eq. ~8!. The Lamb-Dicke parameters were the same as in
previous example. In Fig. 5 the populations of the sa
states are shown as in Fig. 4. The dynamics consists of
stages again. At the end of the first part the populations
the chosen states are similar to those in the previous c
The stateu1,m1(1)& has the highest population. In the slo
period the population of this state together with the st
u3m1(3)& decreases while the population of the sta
u2m1(2)& approaches unity.

VI. SUMMARY AND CONCLUSION

We have worked out a scheme to prepare dark SU~2!
vibrational states of a trapped ion. In the scheme an e
tronic transition of an ion is driven by running wave las
fields. Two laser fields realize the pseudoangular momen

FIG. 5. Same as Fig. 4 but the target state isu1&u2,m1(2)&.
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Hamiltonian, while a third one sets an eigenvalue. It h
been shown that, in the Lamb-Dicke regime, pure pseudo
gular momentum states cannot be obtained as dark state
to the degenerate eigenvalue spectrum of the pseudoan
momentum operators. Instead, the degeneracy of the ei
value spectrum can be resolved by taking into account
nonlinearities arising from the nonvanishing Lamb-Dicke p
rameter associated with the laser-ion interaction. Never
less, it has been shown that the corresponding eigenstat
the vibrational part of the interaction Hamiltonian are ve
close to perfect SU~2! states for not too large values of th
total pseudoangular momentum of the states.

We have used the quantum jump method to discuss
dynamical evolution of the system to a unique steady st
In such a state, the ion is decoupled from the driving la
fields and stops to radiate, and hence these states are c
dark states, which are eigenstates of the interaction Ha
tonian with zero eigenvalue. We have shown both anal
cally and numerically that the magnitude of the Lamb-Dic
parameters associated with the quantum jumps of the dr
electron plays an important role in the approach of the s
tem to the target state.

Our method allows the preparation of SU~2! states from a
manifold of initial states in a rather stable manner and d
not require an initial cooling of the ion to the ground sta
The prepared state is protected against degradation du
noise; the engineered Hamiltonian always pulls the state
wards the target state. Of course, in order to use these
tangled states in possible experiments on quantum infor
tion processing or decoherence, one should switch off
lasers after preparing the state.
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