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The dynamics of the environment is usually experimentally inaccessible and hence ignored for open

systems. Here we overcome this limitation by using an interferometric setup that allows the implementa-

tion of several decoherence channels and full access to all environmental degrees of freedom. We show

that when a qubit from an entangled pair interacts with the environment, the initial bipartite entanglement

gets redistributed into bipartite and genuine multipartite entanglements involving the two qubits and the

environment. This is yet another trait of the subtle behavior of entangled open systems.
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The fragility of quantum coherence and entanglement
following interaction with the environment is one of the
main obstacles to the realization of quantum information
tasks such as quantum computation, quantum communica-
tion, and precision measurements. It also plays an impor-
tant role in the study of the classical limit of quantum
mechanics. Indeed, the emergence of the classical world
from the quantum substrate is intimately connected to the
interaction between quantum systems and their environ-
ments [1–3], which accounts for the irreversible informa-
tion flow out of an open system. The corresponding
dynamical description frequently ignores the evolution of
the environment itself, which is considered beyond any
realistic attempt of experimental analysis. Yet, the consid-
eration of this dynamics may help us to increase the robust-
ness of the quantum information processes and also clarify
the subtle characteristics of quantum-classical transition,
like the emergence of pointer states [2,3] and the eventual
disappearance of entanglement in open systems that still
exhibit coherence between their parts [4–8]. Pointer states
remain unchanged under interaction with the environment,
which, as shown in Refs. [9,10], stores multiple copies of
these states, so that a tiny fraction of the environment may
be sufficient to reveal the state of the system. This is an
essential trait of the classical world, which can thus be
uncovered by the detailed study of the dynamical structure
of the environment: in order to recognize a classical object,
one does not need to probe its whole surroundings. This
motivates some corresponding questions with regard to
entanglement. As it decays and eventually disappears,
what is its imprint on the environment? A theoretical
analysis of the redistribution of entanglement between a
system and its surroundings was initiated in Refs. [7,8].
However, the experimental observation of this phenome-
non is quite challenging, since the environment is usually
inaccessible to measurement.

We overcome this difficulty by means of an experimen-
tal setup that allows full access to the environmental de-
grees of freedom. We use this device to investigate the

dynamics of entanglement when one qubit of an entangled
pair interacts with an environment, and generalize the work
in Ref. [11], which demonstrated theoretically and experi-
mentally that for the amplitude decay (AD) channel, there
are bipartite entanglement invariants involving the two
qubits and the environment. We implement with our inter-
ferometric device two paradigmatic models of decoher-
ence, corresponding to AD and phase damping (PD). We
analyze the two-qubit system and its environment using the
complete quantum state tomography, including measure-
ment of the coherences of the environment. Therefore, we
were able to monitor the emergence and evolution of the
genuine multipartite entanglement between the system
qubits and the environment qubit. Two inequivalent fami-
lies of genuinely entangled states [12] may arise, depend-
ing on the decoherence mechanism and the initial state:
Greenberger-Horne-Zeilinger (GHZ) states [13] of the
form ðj000iþ j111iÞ=

ffiffiffi
2

p
, and W states [12], defined as

ðj100iþ j010iþ j001iÞ=
ffiffiffi
3

p
. We characterize the genuine

multipartite entanglement by using lower bounds (LBs)
and approximations for the entanglement measures, as
well as entanglement witnesses, which are quite useful
within the present framework.
We developed the experimental setup shown in Fig. 1,

which allows for the complete control and measurement of
the environment degrees of freedom in an all-optical setup.
Pairs of polarization-entangled photons are produced using
spontaneous parametric down-conversion [14]. Photon A
goes directly to polarization analysis, while the polariza-
tion of photon B is subject to an interaction with the
environment, E, encoded in two spatial modes. A complete
quantum state tomography is performed on the three sys-
tems (bipartite systemþ environment) using a combina-
tion of two highly stable nested interferometers.
The first block, shown in Fig. 1(b), is used to implement

the decoherence channels in similarity to what was done in
Refs. [15,16]. A qubit encoded in the polarization of a
single photon (system B) passes through a birefringent
calcite beam displacer (BD), which deviates the horizontal
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(H) component and transmits the vertical (V) one. At the
output of this BD, the H and V components are spatially
separated so that each one can be rotated independently
with the wave plates HWP(!c) and HWP(!p). The first
plate is fixed at !c ¼ 0 and ensures that the two optical
path lengths are identical, while the angle !p in the second
plate varies as 0 % !p % "=4. The second beam displacer
(BD2) deviates the V polarization and transmits the H
polarization [17]. If no rotation is induced in the V com-
ponent (!p ¼ 0), the modes H and V are coherently re-
combined completely in the spatial mode we call mode 0.
As !p varies, the spatial mode 1 populates according to

j0iBj0iE ! j0iBj0iE; (1a)

j1iBj0iE !
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& p

p
j1iBj0iE þ ffiffiffiffi

p
p j0iBj1iE; (1b)

where H (V) represents the 0 (1) state in the computational
basis and p ¼ sin2!p. This map corresponds to the AD
channel [18], where p ¼ pðtÞ is a time parametrization
(recovered here for different angles !p) such that pð0Þ ¼ 0,
pð1Þ ¼ 1.

However, if we rotate the polarization in the spatial
mode 1 using a HWP1 at "=4, the resulting channel can
be described by

j0iBj0iE ! j0iBj0iE; (2a)

j1iBj0iE !
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& p

p
j1iBj0iE þ ffiffiffiffi

p
p j1iBj1iE; (2b)

since HWP1 transforms the state j0iB (H polarization) into
the state j1iB (V polarization). HWP0 equates the optical
path lengths. This map represents the PD channel [18].
The second block shown in Fig. 1(c) has two purposes:

(i) to perform tomographic measurements on the polariza-
tion, and (ii) to coherently recombine modes 0 and 1.
Polarization analysis of system B is carried out using a
QWP, a HWP, and the third BD. For polarization tomog-
raphy, this BD plays the role of a polarizer. From the spatial
walk-off in the BD, an H-polarized mode at the output
corresponds to propagation mode 1 and a V-polarized
mode to propagation mode 0. Since this BD also allows
for coherent recombination of modes 0 and 1, the super-
positions of these modes are mapped into the superposi-
tions of H and V polarizations at the output of the BD.
Thus, information of the spatial modes before the BD is
mapped into the polarization modes, and is finally analyzed
in the spatial mode tomography block, shown in Fig. 1(d).
In this way, the projective measurements of each subsys-
tem correspond to the setting up of a QWP and HWP.
Therefore, the configuration of the three pairs of wave
plates (two for each subsystem) and the coincidence de-
tection in D1 and D2, also shown in Fig. 1, represent the
projective measurements of the global tripartite system. In
this case, 64 measurements were needed to perform the full
quantum state tomography. When compared to previous
studies [5,11,19], the configuration shown in Fig. 1 has the
advantage of allowing for the complete tomographic mea-
surement of the environment in a stable fashion.
With the three systems A, B, and E, we could explore the

dynamics of entanglement as a function of p for the PD and
AD channels. To illustrate the emergence of a multipartite
entanglement and motivate the discussion that follows, we
first consider the case of pure states. For the PD channel,
we consider the initial state, corresponding to p ¼ 0:

j’ð0ÞiABE ¼ 1ffiffiffi
2

p ½j11iAB þ j00i(ABj0iE: (3)

The PD interaction produces a tripartite state,

j’ðpÞiABE ¼ 1ffiffiffi
2

p ½j000iþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& p

p
j110iþ ffiffiffiffi

p
p j111i(; (4)

which for p ¼ 1 becomes a GHZ state.
For the AD channel Eq. (1), let us consider the initial

state

j#ð0ÞiABE ¼
2
4

ffiffiffi
1

3

s
j10iþ

ffiffiffi
2

3

s
j01i

3
5

AB

j0iE; (5)

which evolves to

FIG. 1 (color online). Experimental setup. Two polarization-
entangled photons ($ ¼ 650 nm) are produced by a two-crystal
spontaneous parametric down converter SPDC [14] pumped by a
cw He-Cd laser ($ ¼ 325 nm). One photon is sent straight to a
standard polarization analysis consisting of a quarter-wave plate
(QWP), a half-wave plate (HWP), a polarizing beam splitter
(PBS), and a single-photon detector equipped, with a 10 nm
FWHM interference filter. The other photon is sent through two
nested interferometers. The first one implements the decoher-
ence channels described by Eqs. (1) and (2), while the second
interferometer performs projections for the quantum state to-
mography on both systems B and E (see text).
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j#ðpÞiABE¼
ffiffiffi
1

3

s
j100iþ

ffiffiffi
2

3

s
½

ffiffiffiffiffiffiffiffiffiffiffiffi
1&p

p
j010iþ ffiffiffiffi

p
p j001i(: (6)

The states in Eqs. (4) and (6) can present (i) bipartite
entanglement between systems A and B, and between each
of them and the environment E, (ii) bipartite entanglement
between each system and the remaining two (taken as a
single system), and (iii) genuine tripartite entanglement, as
in the GHZ and W states mentioned above. The bipartite
entanglements can be quantified using the concurrence C
[20] or, equivalently, the tangle T ¼ C2. The entangle-
ment between the pairs of qubits i and j in states of the
form %ij ¼ Trkð%Þ can be calculated using the definition
Tij ¼ ½maxf0;!g(2, where !¼ ffiffiffiffiffiffi

$1

p & ffiffiffiffiffiffi
$2

p & ffiffiffiffiffiffi
$3

p & ffiffiffiffiffiffi
$4

p

and $m are the positive eigenvalues of the matrix
%ijð&y ) &yÞ%*

ijð&y ) &yÞ in decreasing order [20]. For

pure states, the bipartite entanglement between the sub-
system i and the remaining combined system (jk) can be
quantified by TiðjkÞ ¼ 2½1& Trð%2

i Þ(, where %i is the re-
duced density matrix obtained from partially tracing over
the systems j, k [21]. The different bipartite entanglements
are not independent quantities, but must satisfy the
Coffman-Kundu-Wootters (CKW) relation [22]

TiðjkÞðjc iÞ &Tijðjc iÞ &Tikðjc iÞ ¼ 'ijkðjc iÞ; (7)

where jc i is any three-qubit state and the three-tangle 'ijk
is the residual quantity that identifies tripartite entangle-
ment. That is, 'ijk ! 0 implies that the state cannot be
written as a product of two states for any possible biparti-
tion of the system. However, the converse is not true, that
is, 'ijk ¼ 0 does not imply that the state is biseparable.
This is easily seen by considering theW states, which have
null three-tangle even though they are not biseparable in
any bipartition. Thus, the three-tangle entanglement de-
fined in Eq. (6) represents only the GHZ-type genuine
entanglement [12]. Defined in this way, 'ijk is invariant
under permutations of the indices ijk for pure states.

Let us now turn to mixed states. In this case,
2½1& Trð%2

i Þ( is no longer the correct expression for
TiðjkÞ, but becomes only an upper bound for it [23]. To
determine this kind of bipartite entanglement for mixed
states, we need a convex roof optimization considering
all the pure-state decompositions of % ¼ P

ipij(iih(ij,
given by

TiðjkÞð%Þ ¼ inf
fpi;j(iig

X

i

piTiðjkÞðj(iiÞ; (8)

which is computationally expensive [24].
The residual multipartite entanglement for mixed states

could be defined in analogy with the CKW relation Eq. (7).
However, 'ijkð%Þ is no longer invariant under permutations.
Thus, for the case of mixed states, it is convenient to use
the average over all the permutations of the indices fijkg,

~' ABEð%Þ ¼
1

6

X

fijkg
'ijkð%Þ; (9)

as the measure of tripartite entanglement.
As we mentioned above, a convex roof optimization is

not a viable method for calculating TiðjkÞð%Þ, but fortu-
nately there are very good approximations for the case of
quasipure (qp) states and lower bounds (LB) that capture
the behavior of entanglement. Here we use the LB (see
Ref. [25]) T LB

iðjkÞ ¼ 2ðTr½%2( & Tr½%2
i (Þ, where Tr½%2( is

the purity of the total system. Substituting this LB into
Eq. (7) gives a LB for the three-tangle, 'LBiðjkÞ, where Tr½%2(
is the purity of the total system.
The fact that quasipure states %qp present a pre-

dominant eigenvalue in the spectral decomposition %qp ¼P
i)ij(iih(ij such that )1 + )i for i > 1, offers the

possibility to obtain a good approximation for the concur-
rence CiðjkÞ, as noted in Ref. [26]. This approximation is
given by Cqp

iðjkÞ ¼ maxð0; &1 &
P

i>1&iÞ, where the &i’s are

the positive eigenvalues of a matrix 'y' defined in terms of
the eigenvectors and eigenvalues of the matrix %qp, as
described in Ref. [26]. Defining T qp

iðjkÞ ¼ ½Cqp
iðjkÞ(2, and

substituting into Eq. (7) gives the three-tangle for the
quasipure state.
Gathering the above results leads us to the following

expressions for the LB and the quasipure approximation
for the three-tangle:

'LB=qpijk ð%Þ ¼ T LB=qp
iðjkÞ ð%Þ &Tijð%Þ &Tikð%Þ: (10)

These expressions are also not invariant under permuta-
tions, so the average in Eq. (9) must be taken in order to
define ~'LBABEð%Þ, ~'

qp
ABEð%Þ.

We now use these expressions to analyze our experi-
mental results. The overall purity of the initial (p ¼ 0)
target state (including systems A and B and the environ-
ment E), calculated from the reconstructed density matrix,
was 0:92, 0:01 for the PD channel and 0:89, 0:01 for
the AD channel. The lack of purity is due to technical
problems [27]. We calculated the largest eigenvalue ()1)
of all the density matrices for every values of p. All the
values were greater than 0.85, and the mean value ")1 ¼
0:9. This justifies the use of the quasipure approximation
for 'ABE. Figures 2(a) and 2(b) show the experimental
results for the PD channel. Figure 2(a) shows the different
tangles T ij obtained as a function of p. In all plots, the
error bars are obtained from Monte Carlo simulations,
assuming Poissonian photon counting statistics. The solid
lines are the fittings, showing that the initial bipartite
entanglement between the systems A and B disappears
linearly. No bipartite entanglement is produced between
any system and the environment during the evolution. In
Fig. 2(b) we show the LB (blue squares) and quasipure (red
circles) three-tangle entanglements as a function of p, as
defined in Eq. (10). As soon as the interaction with the
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environment is switched on, there is a nonzero LB to 'ABE,
witnessing the emergence of genuine multipartite entan-
glement. The increment in 'ABE compensates the loss of
bipartite entanglement. At p ¼ 1, the tripartite entangle-
ment 'ABE reaches its maximum value and all the qubit-
qubit entanglements vanish. At this point, the tripartite
system is in a GHZ state.

The experimental results for the AD channel are shown
in Figs. 2(c) and 2(d). The tangle between the different
pairs of qubits shown in Fig. 2(c) illustrates not only the
disappearance of the initial entanglement between the
qubits A and B but also the increasing entanglement in
A-E and B-E. The three bipartite tangles reach almost the
same value for p ¼ 0:5, where, from Eq. (6), the whole
system is in a W state. Figure 2(d) shows the three-tangle
LB (blue squares) and quasipure (red circles) approxima-
tions for this evolution. We observe non-negligible
amounts of three-tangle entanglement, with a maximum
near p ¼ 0:5, even though the three-tangle entanglement
for a pure W state should be exactly zero. This genuine
entanglement, as measured by 'ABE, is thus a consequence
of the impurity of the state. We can verify this by analyzing
the spectrum of the measured density matrix % for p ¼ 0:5.
The spectrum shows that the maximum eigenvalue )1 is

0.95, and the corresponding eigenvector j(1i has a fidelity
with respect to the W state of FWðj(1iÞ ¼ 0:98, 0:01.
The same j(1i presents 'ABE ¼ 0, which implies that the
contributions to the nonzero three-tangle entanglement
come from the other components of the state. It is interest-
ing to observe that even though the additional contributions
to the spectral decomposition of % are small, in view of the
high purity (¼ 0:90, 0:01) of % for p ¼ 0:5, their global
effect is considerable, resulting in a three-tangle entangle-
ment that is nearly one-third of the initial bipartite entan-
glement. This shows that 'ABE is very sensitive to the
mixedness of a state.
In order to better capture the emergence of genuine

tripartite entanglements, we calculate two alternative in-
dicators of genuine entanglements for all values of p: (i) a
recently derived criteria for genuine entanglement in the
form of inequalities [28], and (ii) the fidelities with respect
to GHZ and W states, which witness entanglements for
their respective classes. Genuine entanglements can be
confirmed for FGHZ - 1=2 or FW - 2=3 [29].
To detect genuine entanglements, one of the following

inequalities in terms of the matrix elements of the tripartite
state must be violated [28]:

KGHZ ¼ j%18j&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%22%77

p & ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%33%66

p & ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%44%55

p % 0;

(11)

KW ¼ j%23jþ j%25jþ j%35j&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%11%44

p & ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%11%66

p

& ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%11%77

p & 1=2ð%22 þ %33 þ %55Þ % 0: (12)

The entanglement that these criteria detect is not defined as
a residual quantity, as in Eq. (7). They detect the non-
biseparability of the state for any bipartition and capture
the genuine entanglement contained in theW states, which
is not taken into account by 'ABE.
Figure 3 shows the behavior of these quantities for the

two scenarios discussed above. For the PD evolution,
Fig. 3(a) shows that as p increases, the tripartite state
becomes very close to the GHZ state, with maximum
fidelity at the end of the evolution (p ¼ 1). FGHZ already
detects genuine entanglements from the third point on
(corresponding to p ¼ 0:19, 0:01), while the criterion
(11) shown in Fig. 3(b) detects genuine entanglements
for any value of p different from 0.
For the AD evolution, Fig. 3(c) displays the fidelity FW ,

which reaches its maximum value for p ¼ 0:5. The criteria
Eq. (12) reveals considerable experimental violations for
any value of p different from 1 or 0, serving as an excellent
indicator of nonbiseparability.
Our interferometric setup allows for the implementation

of quantum channels through the coupling of polarization
degrees (qubits) with spatial modes that act as environ-
ments. We show that for PD, the initial bipartite entangle-
ment gets completely transformed into a genuine GHZ-like
entanglement. The inclusion of the environment in our
investigation helps us understand the peculiar asymptotic

FIG. 2 (color online). Experimental results for the dynamics of
entanglement. In (a), the dynamics of qubit-qubit entanglement
for subsystems A-B (black circles), A-E (blue squares), and B-E
(red triangles) for the PD dynamics described by Eq. (4). In (b),
we show the mean lower bound (blue squares) and mean quasi-
pure approximation for the three-tangle entanglement (red
circles). A linearly increasing behavior of the three-tangle case
for both lower-bound (blue squares) and quasi-pure (red circles)
approximation is observed. In (c), the dynamics of qubit-qubit
entanglement, this time for AD interaction, for qubits A-B (black
circles), A-E (red triangles), and B-E (blue squares). A nonzero
lower-bound (blue squares) and quasi-pure (red circles) approxi-
mation for the three-tangle case are displayed in (d).
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situation, where the initial bipartite entanglement vanishes
for any two subsystems. For the amplitude damping
channel, the initial bipartite entanglement leads to a tran-
sient appearance of W-like states. This could be the first
step in a more thorough investigation of the imprint of
an initial multipartite entanglement onto more complex
environments.
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[11] O. Jiménez Farı́as, A. Valdés-Hernández, G. H. Aguilar,

P. H. Souto Ribeiro, S. P. Walborn, L. Davidovich,
X.-F. Qian, and J. H. Eberly, Phys. Rev. A 85, 012314
(2012).

[12] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314
(2000).

[13] D. Greenberger, M. Horne, and A. Zeilinger, Bell’s
Theorem, Quantum Theory and Conceptions of the
Universe (Kluwer, Dordrecht, 1989).

[14] P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and
P. H. Eberhard, Phys. Rev. A 60, R773 (1999).

[15] D. N. Biggerstaff, R. Kaltenbaek, D. R. Hamel, G. Weihs,
T. Rudolph, and K. J. Resch, Phys. Rev. Lett. 103, 240504
(2009).

[16] K. A.G. Fisher, R. Prevedel, R. Kaltenbaek, and K. J.
Resch, New J. Phys. 14, 033016 (2012).

[17] This is accomplished by positioning a BD between two
HWP’s at "

4 .
[18] M. Nielsen and I. Chuang, Quantum Computation and

Quantum Information (Cambridge University, Cambridge,
England, 2000).
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