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Abstract
We show that the value at the origin of phase space of the Wigner function
of entangled GHZ states, involving three modes of the electromagnetic field
either in the same cavity or in different ones, is a signature of the quantum
character of those states. This multimode Wigner function can be directly
measured by a simple extension of a method previously proposed by two of
the present authors. A single measurement on an atom which crosses the
three modes is enough to distinguish between quantum mechanics and local
hidden variable theories.
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1. Introduction

Phase-space representations of quantum states have been
important tools for exploring the connections between
quantum and classical physics. Even though it is not
possible to define true phase-space probability distributions
in quantum mechanics, quasi-probabilities allow one to write
down quantum averages of products of operators, written in
some previously specified ordering, as classical-like integrals
of the quasi-probability distributions multiplied by c-numbers
which replace the operators. Different distributions are
obtained depending on the ordering adopted for the operator
products. Among the several possible quantum phase-
space distributions, the Wigner function, originally proposed
by Wigner in 1932 [1], and corresponding to symmetric
ordering [2], has distinguished itself as a very useful tool for
the representation of quantum states, and for the discussion
of the classical limit of quantum mechanics. Indeed, the
Wigner function is the only distribution which leads to the
correct marginal distributions, for any direction of integration
in phase space [3], a property shared by any bona fide
classical probability distribution. In addition, it is a bounded
distribution. It is thus ideal for analysing the classical limit
of quantum mechanics; in particular, it has been successfully
applied to the discussion of the quantum–classical transition
for classically chaotic systems [4]. Furthermore, it has
been realized in recent years that the Wigner function of the
electromagnetic field can be actually measured, either through
tomographic methods [5,6], or through convolutions obtained

by photon counting [7], or even through direct measurements
in cavity QED [8]. The measurement of the Wigner functions
of trapped ions [9] and of atomic beams [10] has also been
experimentally demonstrated. In the former case, the Wigner
function of the vibrational Fock state with n = 1 was obtained,
and the negative values of this distribution around the origin
of phase space, which are a signature of the quantum nature of
this state, were clearly exhibited.

The Wigner function is also useful for studying another
intriguing quantum feature, namely entanglement. Banaszek
and Wódkiewicz [11] showed that we can build a Bell-
type inequality using four points of a Wigner distribution
corresponding to two modes of the electromagnetic field. This
result has been recently extended to the n-mode case [12]
using the inequalities proposed in [13]. More recently, Kim
and Lee have also related a test of quantum nonlocality
for cavity fields to the measurement of a two-mode Wigner
function [14]. Methods for measuring this distribution were
proposed in [14, 15].

Striking nonlocality tests can be obtained with the GHZ
states discovered by Greenberger, Horne and Zeilinger [16].
These three-qubit entangled states allow the distinction
between quantum mechanics and local realism with just a
single realization of a particular experiment. In this sense
it is a rare case in quantum mechanics where we do not need
to explore its probabilistic properties to test it (even though
in practice one would have to repeat the experiment in order
to build up statistics, due to experimental imperfections, such
as the inefficiency of detection). Experimental realizations
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Figure 1. Scheme for measuring a multimode Wigner function. The figure illustrates the two-cavity case.
(This figure is in colour only in the electronic version, see www.iop.org)

of these states have been made for spin- 1
2 particles [17],

photon polarization states [18] or even two-level atoms [19].
The entangled qubits may also be realized by modes of the
electromagnetic field in one or more cavities, which can be
in the vacuum or the one-photon state. Entangled states of
the electromagnetic field in two modes of a single cavity have
already been realized experimentally [20].

In this paper, we show that the value at the origin of phase
space of the Wigner function corresponding to an entangled
state of three modes of the electromagnetic field carries a
unique signature of the quantum character of the state. That
value is equal to the lower bound of the Wigner function
for a quantum state, while local realism would lead to a
value equal to the upper bound of the same function. The
relevance of this result is enhanced by the fact that this Wigner
function can be experimentally measured in a very simple
way. Furthermore, we show that it is possible to characterize
the quantum entanglement with a single realization. This
result extends therefore to three-particle entanglement the
ideas presented in [11, 14].

In section 2 we show how to extend the idea of direct
measurement of the Wigner function of one-mode cavity fields
presented in [8] to the case when N modes are involved either
in the same cavity or in different ones. In section 3 we show
how to build GHZ states of cavity modes in the same or in
different cavities, and relate the probing of these states with the
scheme discussed in the previous section. We show then that
a single value of the three-mode Wigner function, namely the
one at the origin of phase space, is enough to characterize the
quantum nature of the state. Our conclusions are summarized
in section 4.

2. Measuring a multimode Wigner function in cavity
QED

The Wigner function corresponding to one mode of the
electromagnetic field in a state described by the density
operator ρ̂ can be written as [21]

W(α, α∗) = 2 Tr[ρ̂D̂(α, α∗)eiπâ†âD̂−1(α, α∗)]. (1)

Here, â and â† are the field mode annihilation and creation
operators (which satisfy the commutation relation [a, a†] = 1),

α is a complex number and D̂(α, α∗) = exp(αa† − α∗a)

is the displacement operator: it represents the action of a
classical current on the electromagnetic field. When applied
to the vacuum, it yields a coherent state with amplitude α.
For microwave cavities, this operator describes the action of
a microwave generator. The operator exp(iπâ†â) is the parity
operator: note that exp(iπâ†â)|n〉 = (−1)n|n〉, where |n〉 is a
Fock state.

The Wigner function corresponding to N orthogonal
modes such that [âi , â

†
j ] = δij , is given by

W({αi, α
∗
i }) = 2N Tr

[
ρ̂

N∏
i=1

D̂i(αi, α
∗
i )e

iπâ
†
i âi D̂−1

i (αi, α
∗
i )

]
,

(2)
where D̂i(αi, α

∗
i ) = exp(αi â

†
i − α∗

i âi ). In both (1) and (2)
the normalization is chosen so that

∫ {d2αi/π}W(αi, α
∗
i ) =

1, where {d2αi/π} = ∏
i (d

2αi/π) and d2αi ≡
d(Re αi) d(Im αi).

Equations (1) and (2) show that the Wigner function at a
given point of the phase space is given by the quantum average
of the displaced parity of the quantum state. In other words, the
value of the Wigner function at any point α = {α1, α2, . . .} in
phase space can be measured by first displacing each mode i

with a complex amplitude αi , and then measuring the sum
of the parities for the several modes of the resulting field.
These modes may be in the same or in different cavities. As
shown below, the method once proposed in [8] can be easily
generalized to contemplate these situations.

We consider first the measurement of the Wigner function
of modes with the same frequency in different cavities. These
high-Q cavities (C1, C2, . . . in figure 1), containing the fields
to be measured, are connected to microwave generators and
placed between two low-Q cavities (R1 and R2 in figure 1),
which are fed by the same microwave generator (in recent
experiments, the two zones R1 and R2 correspond to two
low-Q modes of the same cavity, which contains the field to
be probed, see for instance [23]). A dephaser between this
generator and R2 allows one to change the relative phase η

between the fields in R1 and R2. The high-Q cavities are made
of superconducting mirrors facing each other. This system
is crossed by a velocity-selected atomic beam, such that an
atomic transition e ↔ g is resonant with the fields in R1 and
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R2. Even though the field in these two cavities is very weak
in typical experimental realizations (average photon number
equal to unity), it may nevertheless be treated as a classical
field, due to the large dissipation rate [22]. Under the action of
this field, the atom undergoes a π/2 rotation in the subspace
spanned by the states e and g: |e〉 → [|e〉 + eiη|g〉]/√2, and
|g〉 → [−e−iη|e〉 + |g〉]/√2, with η replaced by 0 in R1. On
the other hand, the atom interacts dispersively with the fields
in Ci , with a detuning δ, during a time tint (the detuning and
the interaction time are assumed here to be the same for all
cavities). Static electric fields applied across the mirrors of
these cavities control the atomic transition frequency through
the Stark effect, and allow one to change both δ and tint for
each cavity.

The dephasings corresponding to the states |e〉 and |g〉
are implemented respectively, in each cavity i, by the unitary
operators T̂ (i)

e (φ) = exp[iφ(âi
†
âi + 1)] and T̂ (i)

g (φ) =
exp(−iφâi

†
âi ), where φ = (�2/δ)tint is the one-photon

phase shift, and the Rabi frequency � measures the coupling
between the atom and the cavity modes (assumed to be
the same for all cavities). Before the atom crosses the
system, the fields in the cavities Ci are displaced by the
complex amplitudes αi , by turning on the corresponding
microwave generators for some specified time intervals. The
overall density operator is transformed then into ρ̂ ′ =
[
∏

i D̂i(αi, α
∗
i )]ρ̂[

∏
i D̂

−1
i (αi, α

∗
i )]. Finally the internal state

of the atom is detected by a field ionization device (the
‘counter’ in figure 1). This experiment is repeated many times,
starting each run with the same field in the several cavities, and
the probabilities Pe and Pg of detecting the probe atom in states
e or g are determined. It is easy to show, following the same
procedure as in [8], that

�P = Re

{
ei(η+Nφ)

× Tr

[
ρ̂

N∏
i=1

D̂i(αi, α
∗
i )e

2iφâ
†
i âi D̂−1

i (αi, α
∗
i )

]}
, (3)

where �P = Pg − Pe. This leads, with the choice φ = π/2
and η = −Nπ/2, to the desired multimode Wigner function:

�P = W({−αi, −α∗
i })/2N. (4)

A similar scheme can be applied to the measurement
of the Wigner function of modes with different frequencies,
in the same or in different cavities, by properly tuning the
atomic transition to the modes involved, through the Stark
shift induced by the static field applied to the mirrors. This
procedure, especially suited to quasi-degenerate modes, has
been adopted recently in order to build entangled states of two
modes in the same cavity [20]. In order to measure the Wigner
function, a single microwave generator connected to the cavity
would be sequentially tuned to the modes to be displaced,
before the probing atom crosses the cavity. Alternatively, for
a couple of quasi-degenerate modes and a third mode farther
away, one could use a three-level scheme, so that the transition
e ↔ i would be coupled dispersively with two of the modes
(by Stark shifting the transition frequency), while the transition
g ↔ i would be coupled with the other one. Again, when the
dispersive shifts of levels e and g become equal to π/2 per
photon, the measurement of the probabilities of finding the
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Figure 2. Level configuration for measuring the Wigner function in
the subspace {|0〉, |1〉}. The frequency values correspond to the
experiment described in [19].

atom in levels e and g leads to the Wigner function of the
probed modes.

For our purposes, another procedure can be adopted,
which is easier to implement experimentally, since we will
be interested in the measurement of the Wigner function at
the origin of phase space for states that contain either one
or zero photons. It is possible then to replace the dispersive
interaction by a 2π resonant one, as done in [23]. This is
advantageous because the π/2 phase shift per photon, needed
in the dispersive case, requires a relatively long interaction
time, as compared with the available cavity damping times.
The relevant atomic levels (e, g and i) are shown in figure 2.
The cavity field is resonant with the e ↔ g transition, while i
is a reference level (the g ↔ i transition is non-resonant with
the fields in the high-Q cavities). Stark shifting may put the
transition e ↔ g successively into resonance with the modes
involved. The atom is now prepared in a superposition state
(|g〉 + |i〉)/√2. If there is one photon in the mode, the state |g〉
undergoes a full 2π Rabi cycle, thus acquiring a π phase shift,
exactly as if the interaction were dispersive. The difference
from the previous approach is that here the π phase shift is
associated with just one of the atomic levels, while before it
was distributed between levels e and g (π/2 for each). It is
easy to show that (4) also applies here, with the choice η = 0,
and with �P now equal to Pg − Pi.

3. Three-mode Wigner function and GHZ states

We show now that the value of the Wigner function at the origin
of phase space distinguishes between quantum mechanics and
local hidden variable theories. We start by recalling the
argument given by David Mermin in [24], for spin- 1

2 particles.
Let |+z〉 and |−z〉 be the eigenstates of the Pauli operator

σ̂z, with eigenvalues +1 and −1 respectively, and consider the
GHZ state:

|GHZ〉 = |+z, +z, +z〉 − |−z, −z, −z〉√
2

, (5)

which implies that if we measure the three spins in the z

direction, we find them all either up or down. This state is an
eigenstate of the operators σ̂x1 σ̂y2 σ̂y3 , σ̂y1 σ̂x2 σ̂y3 and σ̂y1 σ̂y2 σ̂x3 ,
with eigenvalue +1. Therefore, if one measures the spins of
any two particles in the y direction, the spin of the third one
in the x direction must be well defined, and such that the
product of the results must yield +1. Also, if one measures
the spins of two of the particles in the x and y direction, the y
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component of the spin of the third one is well defined. Since
this determination of the x and y components of the spin of
the third particle is performed without any local interaction
with it (only the spin components of the other two particles are
measured), a local realistic theory would consider these two
spin components ‘elements of reality’, that is, it would assume
that the complete set of values my1 , mx1 , my2 , mx2 , my3 , mx3 is
well defined for the three particles. Since

(mx1my2my3) = 1,

(my1mx2my3) = 1,

(my1my2mx3) = 1,

one must have

(mx1my2my3)(my1mx2my3)(my1my2mx3) = 1.

The values my1 , my2 , my3 appear twice in the last product,
which means that, if a local hidden variable theory holds,
the equality mx1mx2mx3 = 1 must be true. However, the
state we are considering is also an eigenstate of the operator
σ̂x1 σ̂x2 σ̂x3 with eigenvalue −1. Therefore, in contradiction with
the hidden variable result, quantum mechanics predicts that for
this GHZ state the product of the measured values for the three
spins along the x direction should be equal to −1. This shows
that a single measurement should be enough to discard one of
the two theories, making the GHZ state a powerful tool to test
quantum nonlocality.

In order to apply these considerations to modes of the
field in one or more cavities, we remark first that the parity
of the corresponding states is defined in a two-dimensional
space (odd or even). Thus, it can be used to test quantum
features of GHZ-type states. It is interesting to notice that, as
shown in section 2, the mean parity of a multimode state is
exactly the quantity measured at the origin of phase space for
the associated Wigner function.

We define now, for the three-mode system, the
corresponding σ̂x operators in the basis of the field states |0i〉
and |1i〉:

σ̂xi
= |0i〉〈0i | − |1i〉〈1i |. (6)

The eigenvectors of the corresponding σ̂zi
operators will be

|+z〉 = (|0〉 + |1〉)/√2 and |−z〉 = (|0〉 − |1〉)/√2. The GHZ
state is given by

|GHZ〉 = (|+z, +z, +z〉 − |−z, −z, −z〉)/
√

2

= 1
2 (|−x, −x, −x〉 + |−x, +x, +x〉
+|+x, −x, +x〉 + |+x, +x, −x〉)

= 1
2 (|1, 1, 1〉 + |1, 0, 0〉 + |0, 1, 0〉 + |0, 0, 1〉). (7)

This symmetrical state is an eigenstate of the product of
operators σ̂x1 σ̂x2 σ̂x3 with eigenvalue −1. On the other hand, in
the subspace spanned by the states |0〉, |1〉, the parity operator
coincides exactly with σ̂xi

defined by (6). Therefore, the
Wigner function may be written in the following way, in the
subspace spanned by the states {|0i〉, |1i〉}:

W({αi = 0}) = 23 Tr{ρ̂ σ̂x1 σ̂x2 σ̂x3}. (8)

For the state (7), this yields −8, which is the minimum possible
value for the Wigner function. This result should be contrasted

with that predicted by a local hidden variable theory, which
would lead to the value +1 for the measurement of σ̂x1 σ̂x2 σ̂x3 ,
and therefore to the value +8 for W({αi = 0}).

In general, to obtain the value of the Wigner function at the
origin one needs to repeat the experiment many times. How-
ever, if the goal is just to distinguish between the two possible
extremes (±8) of the Wigner function, each one correspond-
ing to one of the possible eigenvalues of σ̂x1 σ̂x2 σ̂x3 (±1), then
only one realization is enough. Each single measurement will
have the same result, as these possibilities represent mutually
exclusive events. In other words, if the state is an odd (or
even) state, the mean value of the parity operator (the average
of σ̂x1 σ̂x2 σ̂x3 ) coincides with any single measurement of this
observable (since the state is an eigenvalue of the measured
operator). If W(0, 0, 0) is equal to +8 (−8), the atoms are
always measured in state |g〉 (|e〉). Therefore, quantum me-
chanics predicts that the final state of the probing atom in a
single realization is |e〉, while a local hidden variable theory
would predict that the atom should exit the system in state |g〉.

We conclude this section by presenting a possible way to
build the GHZ state discussed above. One starts with the three
modes in the vacuum state, and sends two atoms through the
cavities. The first atom is prepared in the state (|e〉 + |g〉)/√2.
One assumes that, if the atom is in the state |e〉, it undergoes
a π rotation, so that (|e〉 + |g〉)|0〉/√2 → (|1〉 + |0〉)|g〉/√2.
The atom thus transfers its coherence to the field in the first
mode. The atom is then reexcited to the state (|e〉 + |g〉)/√2
(π/2 pulse) and interacts in the same way with the second
mode, going through the third mode without interacting and
exiting the system in the state |g〉. The first two modes are thus
left in the state (|0〉 + |1〉)1(|0〉 + |1〉)2/2. The second atom is
also sent in the state (|e〉 + |g〉)/√2, and, as in the experiment
described at the end of the last section, undergoes a 2π rotation
if it is in state |e〉 and there is one photon in the mode, for
the first two modes. It is then subjected to a π/2 classical
pulse, with phase chosen so that now |g〉 → (|e〉 + |g〉)/√2,
|e〉 → (|e〉 − |g〉)/√2. The resulting entangled state is then
(|0〉1|0〉2 + |1〉1|1〉2)|e〉 + (|1〉1|0〉2 + |0〉1|1〉2)|g〉. Finally, the
atom leaves one photon in mode 3 if it is in state |e〉 (π rotation).
The second atom thus exits the system also in the state |g〉, and
leaves the three modes in the state (7).

4. Conclusion

It has been recently remarked by some authors that the Wigner
function can be used to characterize the entanglement of two
or more subsystems. We have shown here that the quantum
character of a GHZ state can be recognized in the Wigner
function corresponding to this state in a very simple way: it
suffices to check the value of this distribution at the origin of
phase space. Quantum mechanics and local hidden variable
theories predict opposite signs for this value.

It is interesting to observe that the proposed method for
measuring the multimode Wigner function does not change
the number of photons in the modes. It is therefore very
much related to a quantum non-demolition measurement of
the photon number [23, 25]. It is easy to show [8] that an
undetected atom does not change the trace on the right-hand
side of (3). This implies that the proposed scheme is quite
insensitive to the detection efficiency of the atomic counters
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(of the order of 40 ± 10% in recent experiments [19]), as long
as this efficiency is the same for both states. The measurement
accuracy does depend however on the detector’s selectivity,
that is, the ability to distinguish between the two atomic states.
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