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The robustness of multipartite entanglement of systems undergoing decoherence is of central importance
to the area of quantum information. Its characterization depends, however, on the measure used to quantify
entanglement and on how one partitions the system. Here we show that the unambiguous assessment of the
robustness of multipartite entanglement is obtained by considering the loss of functionality in terms of two
communication tasks, namely the splitting of information between many parties and the teleportation of states.
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I. INTRODUCTION

The fast development of quantum information in the last
two decades has strengthened the notion that entanglement is
not only a fundamental concept in quantum mechanics, but
also a resource for processing and transmitting information.
For bipartite systems, the relationship between entanglement
measures and the use of entanglement for specific tasks like
teleportation [1] and quantum key distribution [2] is well
understood. However, the exact role of multipartite entangle-
ment in communication protocols and in quantum computation
is still an open question. In the multipartite context, many
different measures and kinds of entanglement are possible [3].
But it is still unclear what is the relevance of these measures
for quantifying the ability of performing different tasks, and
what is the role of each kind of entanglement in surpassing the
classical gain for a given protocol.

We show in this paper that these questions are particu-
larly relevant for open systems. Indeed, different kinds of
entanglement can behave quite differently under decoherence.
Once the resource for a given protocol is (non)robust against
perturbations, this implies that the protocol itself should also
be (non)robust. In fact, we show here that the comparison
between the effect of the environment on the many kinds of
entanglement for a multipartite system, used as a resource for a
given task, and the effect of decoherence on how well the task
is achieved indicates which type of entanglement is relevant
for accomplishing it.

The dynamics of entanglement, for a wide class of entan-
gled states, have been extensively analyzed [4–11] and ex-
perimentally demonstrated [12,13]. The nonunitary evolution
depends intrinsically on the system-environment dynamics
and the quantum entangled state under consideration. Besides
a more general treatment restricted to a two-qubit case
given in [11,12], all analyses have restricted themselves
to particular initial entangled states evolving under some
specific dynamics [4–10]. These studies have shown that the
dynamics of entanglement is quite distinct from the dynamics
of populations and coherences. In particular, entanglement
may vanish at a finite time, much before the asymptotic decay
of the coherences [4–7].

For multipartite systems the problem gets more involved
since there are inequivalent classes of entangled states [14],
that is, states that are not connected by local operations and
classical communication (LOCC’s). States that can be obtained
from each other through LOCC’s belong to the same class of

states, meaning that these states are equivalent resources for
a large class of tasks in quantum information, those that are
invariant under LOCC’s, like teleportation [1] and distillation
[15].

Many of the investigations on the open-system dynamics
of entanglement refer to GHZ states [5–9]

|GHZN 〉 = α|0〉⊗N + β|1〉⊗N, (1)

subject to the normalization condition |α|2 + |β|2 = 1.
Another class of entangled states, the W states

|WN 〉 = 1√
N

(|00 · · · 01〉 + |01 · · · 00〉 + · · · + |00 · · · 01〉),

(2)

were introduced in [14], where it was shown that they are
inequivalent to the GHZ states.

It is easy to see that the entanglement of W states is
more robust than that of GHZ states upon loss of a particle
[14]. Given this symptomatic entanglement robustness of W
states, it is natural to ask which class of states, GHZ or
W , is more robust in a more general situation where each
part of a multipartite state is undergoing decoherence. The
entanglement dynamics analysis of W and GHZ states is
relevant on its own since these states are resources for quantum
information protocols as quantum teleportation, dense coding,
and secure distribution of quantum keys [16,17], and have been
experimentally produced in many kinds of physical systems
including atoms in cavities, trapped ions, and entangled
photons [18,19].

The simple form of N -partite GHZ states has allowed
several analytical derivations of the associated entanglement
dynamics [5–7]. An interesting conclusion was drawn for
multipartite GHZ states subjected to local environments [7]:
The time at which bipartite (and multipartite) entanglement
becomes arbitrarily small can occur well before the dis-
entanglement time; this time difference strongly increases
with the number of particles. This implies that, for GHZ
states, the time for which entanglement becomes arbitrarily
small better characterizes the entanglement robustness than
the disentanglement time. On the other hand, the global
entanglement of W states was shown to be more robust:
The decay rate is size independent for dephasing and zero
temperature environments [8,9]. This previous work motivates
the question on how other types of entanglement, defined
between different kinds of partitions of the state, behave
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for W states under decoherence. The physical meaning of
these different types of entanglement and the corresponding
measures is also relevant, the important question being how
do they relate to possible applications in computation and
communication.

In this paper we analyze the original W state (2) and related
states, referred to as W -like states

|W̃N 〉 = a1|10 · · · 00〉 + a2|01 · · · 00〉 + · · · + aN |00 · · · 01〉,
(3)∣∣W 0

N

〉
= α|WN 〉 + β|0〉⊗N, (4)

∣∣W̃ 0
N

〉
= α|W̃N 〉 + β|0〉⊗N . (5)

We show that, when considering bipartite entanglement, these
states display the same kind of nonrobustness as the GHZ
states. For two kinds of decoherence, we derive an analytical
expression, valid for any entanglement measure, which can
be expressed as the entanglement of that of considerably
smaller subsystems, in the same spirit as in [10]. In the
dephasing case, the bipartite and global entanglements in W
states remain both very robust when the number of particles
increases, the disentanglement time being equivalent in this
case to the time at which entanglement becomes very small.
Under the amplitude damping channel, these two time scales
become quite distinct: The bipartite entanglement as quantified
by the negativity [20], for a sufficiently large N , decays
below an arbitrarily small value much before it vanishes,
in spite of the fact that the global entanglement is size
independent. This clearly shows how differently can distinct
kinds of entanglement behave under decoherence. Adopting
a more practical point of view and explicitly considering as
tasks the teleportation [1] and the splitting [21] of quantum
information, we show that the dynamics of fidelity for each of
these protocols, when using as a resource an entangled state
undergoing decoherence, can be identified with the decay of
a specific kind of entanglement measure, thus allowing the
identification of each of these measures with a well-defined
task.

Our paper is organized as follows. In Sec. II, we introduce
the decoherence maps to be considered in this article. In Sec.
III, we discuss the entanglement quantifiers that are used to
characterize the entanglement of multipartite states. In Sec.
IV, we introduce a method that allows for the calculation of
the entanglement corresponding to a given bipartition of a
W or W -like multipartite state through the calculation of the
entanglement of a two-qubit system, which greatly simplifies
the analysis of the dynamics of entanglement for this kind of
state. This technique is used in Sec. V to compare the dynamics
of global and bipartite quantifiers of entanglement, which have
been proposed in the literature. The quite different features
under decoherence of these quantifiers is shown in Sec. VI to
have a direct relation to the robustness of inequivalent com-
munication tasks. In Sec. VII we summarize our conclusions.
Detailed calculations are given in the Appendix.

II. DECOHERENCE MODELS

The dynamics of a system interacting with an environment
can be described in the Kraus form [22] so that the density
operator of the evolved system is given by ρ =

∑
j Ejρ0E

†
j ,

where Ej are positive-operator-valued measures (POVM’s)
satisfying

∑
j E

†
jEj = 1, and ρ0 is the initial state of the

system. We analyze here the entanglement dynamics of the
states (2), (3), (4), and (5), evolving under the action of
two paradigmatic noisy channels: dephasing and amplitude
damping. The states are described in the computational basis
{|0〉,|1〉}. We assume that the qubits have identical interactions
with their own individual environments, and neglect the
mutual interaction between qubits. The dynamics of the ith
qubit 1 ! i ! N is then described by a completely positive
trace-preserving map (or channel) Ei , so that ρ = Eiρ0, while
the evolution of the N -qubit system is given by the composition
of all N individual maps: ρ ≡ E1E2 · · · ENρ0. The assumption
of mutually independent and identical environments is well
justified whenever the separation between the particles is much
larger than a typical length associated with the environment
(like a resonant wavelength of an electromagnetic environ-
ment), so that collective effects do not need to be taken into
account.

The phase damping (or dephasing) channel (D) represents
the situation in which there is loss of coherence with
probability p, but without any energy exchange. It is defined
as

εD
i ρi = (1 − p)ρi + p(|0〉〈0|ρi |0〉〈0| + |1〉〈1|ρi |1〉〈1|).

(6)

The application of this map in the computational basis {|0〉,|1〉}
clearly does not affect the populations, but all the original
coherences |i〉〈j | get reduced by a decay factor (1 − p).

The amplitude-damping channel (AD) is given, in the Born-
Markov approximation, via its Kraus representation, as

EAD
i ρi = E0ρiE

†
0 + E1ρiE

†
1, (7)

with E0 ≡ |0〉〈0| +
√

1 − p|1〉〈1| and E1 ≡ √
p|0〉〈1|. Here

|1〉 stands for the excited state and |0〉 for the ground state of
a two-level system. In this case, the population of the excited
state is reduced by a factor (1 − p), while the population of
the ground state is equal to the initial population plus the
contribution coming from the upper state, which is equal
to p multiplied by the initial population of that state. The
coherences, on the other hand, are reduced by the factor√

1 − p.
The parameter p in channels (6) and (7) is a convenient

parametrization of time: p = 0 refers to the initial time t =
0 and p = 1 refers to the asymptotic t → ∞ limit. In the
Markovian approximation, and for the amplitude channel, one
has p = 1 − exp(−γ t), where γ is the decay rate of the excited
state. This corresponds to the well-known Weisskopf-Wigner
approximation. It should be remarked that these two maps,
when acting on GHZ state (1) and W -like states (2), (3), (4),
and (5), do not create new coherences, but for the amplitude-
damping channel new diagonal terms (populations) may be
created.

III. ENTANGLEMENT MEASURES

To investigate the entanglement features of the states here
considered and the relation of these features with different
communication tasks, we compare different quantifiers of
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entanglement. In particular, we evaluate explicitly the dynam-
ics of the negativity [20] and concurrence [23], measures of
bipartite entanglement in a given bipartition of a multipartite
state, and of the Meyer-Wallach measure of global entangle-
ment (MW) [24]. We also compare the negativity, concurrence
and the MW measure with the generalized concurrence [25],
a measure of genuine multipartite entanglement that had its
dynamics in the W state (2) numerically calculated in [8].

The negativity, given a bipartition {A} : {B} of a multipar-
tite state, is defined as the absolute value of the sum of the
negative eigenvalues of the partially transposed (PT) density
matrix ρTA

AB [26], which can be defined in terms of the trace
norm ‖ρTA

AB‖, the sum of moduli of the eigenvalues of ρTA

AB ,
as [20]

N (ρ) =
∥∥ρTA

AB

∥∥ − 1
2

. (8)

In general, the negativity fails to quantify entanglement of
some entangled states (those with positive partial transposi-
tion) in dimensions higher than six [26]. However, for the
states considered here, under the influence of the two maps
considered in the previous section, dephasing and amplitude
damping, the negativity vanishes only when the state is a
separable one. So, in these cases, the negativity brings all
the relevant information about the separability in bipartitions
of the states (i.e., null negativity means separability in the
corresponding partition). In particular, as we show in the
following section, the bipartite entanglement problem for
W -like states (2), (3), (4), and (5) can always be reduced to
two qubits, a situation where the negativity is an unambiguous
entanglement quantifier.

The concurrence [23] for a given bipartition {A} : {B} of a
multipartite pure state |ψ〉 is

C(|ψ〉) =
√

2
(
1 − trρ2

A

)
, (9)

being ρA = trB(ρAB). This measure can be extended over the
mixed states ρ =

∑
i pi |'i〉〈'i | by virtue of a convex roof

construction [27]

C(ρ) = inf
{pi ,|'i 〉}

∑

i

piC(|'i〉), (10)

an optimization that can be analytically evaluated for two-qubit
states, the minimum in this case is obtained by

C(ρ) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (11)

with λi the eigenvalues, λ1 denoting the largest among them,
of the matrix ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), where the conjugation
is taken with respect to the computational basis {|0〉,|1〉}.

For a pure state |ψ〉 of N qubits and a partition A|B, the
corresponding nonlocal information SA|B between A and B is
distributed among different kinds of contributions [28]

SA|B =
N∑

k=2

Ii1i2...ik , (12)

where the sum is taken over all possible combinations of
indices such that i1,i2, . . . ,ik are not in the same setA orB, and
Ii1i2...ik is some appropriate measure of nonlocal information

shared among all the k qubits. The quantity SA|B can be
taken [28] as the mutual information

SA|B = SA + SB − SAB, (13)

with SY = (1 − trρ2
Y ) being the linear entropy. Since |ψ〉 is

pure, SAB = 0, the entropies of the two parts A and B are
identical, and therefore SA|B = 2(1 − trρ2

A). For example, for
two-qubit pure states I12 = τ12, where τ12 is the square of the
concurrence [23] and is called the 2-tangle. For three-qubit
pure states, the corresponding nonlocal information between
1 and 23 can be written as S1|23 = I12 + I13 + I123 with I12 =
τ12, I13 = τ13, and I123 = τ123, where the 3-tangle τ123 has been
shown to be a well-defined measure of genuine three-qubit
entanglement [29].

The MW measure for entanglement [24] for a pure state
|ψ〉 of N qubits can be expressed as [30]

EMW(|ψ〉) = 1
N

N∑

i=1

2
(
1 − trρ2

i

)
, (14)

an average over the entanglement (square of the concurrence)
of each qubit with the rest of the system. From Eqs. (12)
and (13) we can see that the MW measure can be distributed
among different kinds of nonlocal information

EMW(|ψ〉) = 1
N



2
∑

i1<i2

Ii1i2 + · · · + N
∑

i1<i2···<iN

Ii1i2...iN



 .

(15)

From this last equation it is clear that the MW measure depends
on the different forms of quantum correlations present in the
entangled state and, in fact, it was originally described [24] as
a global entanglement measure. However, the MW measure
precludes a detailed knowledge of the different quantum
correlations Ii1i2...ik in the system. For example, it cannot
distinguish fully entangled states from states that, in spite of
being entangled, are separable in some of their subsystems
[31].

The generalized concurrence [25] is a natural extension of
the concurrence (9) for multipartite N -qubit states and can be
expressed as [8]

CN = 21−(N/2)

√
(2N − 2) −

∑

α

trρ2
α, (16)

where α labels all possible reduced density matrices. Note
that the expression inside the square-root is nothing more
than the sum of the concurrences in all possible bipartitions.
The generalized concurrence can detect real multipartite
correlations and it allows one to compare the degree of
entanglement of multipartite systems with different numbers
of constituents, as opposed to the MW measure.

In the following section, we show that, for the
states (2), (3), (4), and (5), any convex (bipartite or multipartite)
entanglement quantifier that does not increase under LOCC’s,
in any given partition, can be expressed in terms of that of a
considerably smaller subsystem consisting only of those qubits
lying on the boundary of the partition. No optimization on the
full system’s parameter space is required throughout.
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IV. ENTANGLEMENT DYNAMICS OF W STATES

Following the same line of thought as in [10], we decom-
pose the W state as a set of two-qubit unitary transformations
acting on a separable state; the unitary transformations that act
inside the parts are local unitary operations with respect to the
partition and therefore do not change its entanglement.

To generate the states |WN 〉 and |W 0
N 〉 using two-qubit

operations and starting with a separable state, we need to apply
a series of operations of the type

U
µ,ν
i,j =





1 0 0 0

0 −
√

µ−ν
µ

√
ν
µ

0

0
√

ν
µ

√
µ−ν
µ

0

0 0 0 1




, (17)

where i,j are the qubits affected by the transformation, while
µ and ν are parameters defining the transformation. States (2)
and (4) can be written as [see Fig. 1(a)]

|WN 〉 = U |10 · · · 00〉,
(18)∣∣W 0

N

〉
= U (α|10 · · · 00〉 + β|00 · · · 00〉),

with U =
∏N−2

i=0 Ui+2,i+1
N−1−i,N−i . Different orderings of the oper-

ators U
µ,ν
i,j are possible depending on the kind of partition we

are interested in. This is explicitly shown in Eq. (22). Also
the |W̃ 0

N 〉 state can be decomposed in this form, but now the
two-qubit transformations explicitly depend on the parameters
ai that define the states (3) and (5). This decomposition of the
states is now used to calculate their entanglement dynamics.

A. Amplitude damping

The action of individual channels of this type on the
states (2) yields

ρAD
W = p|0N 〉〈0N | + (1 − p)|WN 〉〈WN |, (19)

with |0N 〉 = |0〉⊗N . This state can be written in terms of the
unitary transformations (17) as

ρAD
W = U [(p|00〉〈00| + (1 − p)|10〉〈10|)

⊗ |0N−2〉〈0N−2|]U †. (20)

The states |WN 〉 and |W 0
N 〉 are invariant by permutations,

so which qubits are in each part is irrelevant. For the least
balanced bipartition {1} : {N − 1}, only the unitary U12 acting
on the boundary of this bipartition affects the entanglement
since the unitary transformations acting inside the parts
are local transformations with respect to this partition [see
Fig. 1(b)]. So the entanglement in this case can be seen to be

E
(
ρAD

W

)
= E[p|02〉〈02| + (1 − p)|W2(1)〉〈W2(1)|], (21)

with |W2(k)〉 = UN,N−k
1,2 |10〉 =

√
N−k
N

|01〉+
√

k
N

|10〉. The passage
from (20) to (21) follows from the fact that the local addition
of ancillas does not change the entanglement. This is similar
to the strategy adopted in [10], where it was shown that the
entanglement dynamics in a given partition of a graph state
is the same as the one of the particles in the boundary of

FIG. 1. (Color online) (a) Starting from a separable state the W

state is constructed by applying a series of unitary transformations
given by (17). (b) The entanglement corresponding to a given partition
of the W state is equivalent to the entanglement of a subsystem
consisting of only the qubits connected by the unitary transformations
that cross the boundaries of the partition.

the partition. For a bipartition {k} : {N − k} we can order the
unitary transformations so that the W state is expressed as

|WN 〉 =
2∏

j=k

N−2∏

i=k

(
U

j,j−1
j,j−1 UN−i,N−i−1

i+1,i+2

)

×UN,N−k
k,k+1 |01, . . . ,1k, . . . ,0N 〉. (22)

Following the same reasoning, the entanglement in this
bipartition {k} : {N − k} can be seen to be

E
(
ρAD

W

)
= E(p|02〉〈02| + (1 − p)|W2(k)〉〈W2(k)|). (23)

The same is valid for higher-order partitions. Depending
on the way the entangled state is partitioned, the order of the
operators U

µ,ν
i,j must be properly chosen so as to factor out the

unitary transformations that are irrelevant for the entanglement
in the partition under consideration. For instance, suppose
we want to calculate the entanglement in a tripartition {1} :
{2} : {3,4} of a four-qubit W state. If one write this state
as U12U23U34 applied to a separable state, then every single
unitary transformation must be taken into account, as opposed
to the alternative description U ′

34U
′
12U

′
23 applied to another

separable state, where the last unitary transformation U ′
34 can

be neglected since it is local with respect to the part {3,4}.
This formalism is valid for any convex and monotonic

entanglement measure. Similar expressions can be found
to (3), (4), and (5) evolving under the AD channel.

B. Dephasing

The action of individual channels of this type on the state (2)
leaves the diagonal elements untouched, while the coherences
gain a factor (1 − p)2. The evolved state |WN 〉 can be written
as

ρD
W = (1 − p′)

N∑

k=1

|kN 〉〈kN | + p′|WN 〉〈WN |, (24)
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with p′ = (1 − p)2 and |kN 〉 = (1/
√

N )|0, . . . ,1k, . . . ,0〉.
Following the same recipe as for the AD channel, the
entanglement in a bipartition {k} : {N − k} of the dephased
|WN 〉 is given by

E
(
ρD

W

)
= E

(

(1 − p′)
N∑

k=1

|kN 〉〈kN | + p′|W2(k)〉〈W2(k)|

⊗|0N−2〉〈0N−2|
)

. (25)

We apply to the last N − 2 qubits in the state (25) a
separable POVM [32] with two elements given by A1 =∑N−2

k=1 |kN−2〉〈kN−2| with A
†
1A1 =

∑N−2
k=1 |kN−2〉〈kN−2| <

IN−2 and A2 = IN−2 −
∑N−2

k=1 |kN−2〉〈kN−2| with A
†
2A2 = A2.

The completeness relation A
†
1A1 + A

†
2A2 = IN−2 is satisfied.

The post measurement state associated with A1 is

A1ρD
WA

†
1

tr
(
A1ρD

WA†
1

) =
N∑

k=1

|kN 〉〈kN |, (26)

and the state associated with A2 is

A2ρD
WA

†
2

tr
(
A2ρD

WA†
2

) = |W2(k)〉〈W2(k)| ⊗ |0N−2〉〈0N−2|. (27)

The POVM is separable and cannot raise the entanglement,
which leads to a lower bound for the entanglement

E
(
ρD

W

)
" p′E(|W2(k)〉〈W2(k)|).

The convexity of entanglement, directly applied to (24),
yields an upper bound for the entanglement

E
(
ρD

W

)
! p′E(|W2(k)〉〈W2(k)|). (28)

The lower and upper bounds coincide and therefore give an
exact quantification of the entanglement. Similar expressions
can be found for the states (3), (4), and (5) undergoing a
dephasing process.

V. BIPARTITE VERSUS GLOBAL ENTANGLEMENT
DYNAMICS

Using as a measure of nonlocal information the n-tangle
[33], we show in the Appendix that W -like states (2), (3), (4),
and (5) are completely characterized by 2-tangles

EMW
(∣∣W̃ 0

N

〉)
= 2

N

∑

i1<i2

τ
(∣∣W̃ 0

N

〉)
i1i2,

, (29)

all the other genuine multipartite entanglement tangles being
null. Since the decoherence acting on the states is local, which
cannot increase the entanglement, the global entanglement
dynamics is completely specified by the 2-tangle dynamics.
This is a fortunate circumstance since the 2-tangle can be
analytically evaluated even for mixed states, being directly
related to the concurrence, while higher-order tangles require,
in general, involved optimizations.

For the two-qubit state ρij obtained after tracing over N − 2
qubits, the 2-tangle for the AD channel is given by τ AD

ij =
|α|4|ai |2|aj |2(1 − p)2, while for the dephasing channel we get

τD
ij = |α|4|ai |2|aj |2(1 − p)4. The MW measure, in this case

the sum over all 2-tangles, is therefore given, respectively, by

EMW(ρAD) = 2
N

(1 − p)2
N∑

i<j

|α|4|ai |2|aj |2

= (1 − p)2EMW
(∣∣W̃ 0

N

〉)
, (30)

and

EMW(ρPD) = (1 − p)4EMW
(∣∣W̃ 0

N

〉)
. (31)

In both cases, the MW entanglement decay is size independent.
This is a generalization of the result obtained in [9], restricted
to the state (2).

One should note that our method, as proposed in Sec. IV,
allows a considerable simplification in the evaluation of the
entanglement corresponding to a given bipartition. Indeed,
in the usual approach, the negativity associated to some
bipartition is calculated by partially transposing the density
matrix. Given the symmetry of the states (2) and (4) under
permutation of the qubits, we can restrict these partial trans-
positions to the N/2 first qubits (N/2 + 1 for N odd). Under
the partial transposition on the bipartition {k} : {N − k} of
the evolved density matrix, 2k(N − k) coherences, originally
in the subspace of one excitation, go to the subspace of two
excitations. With this remark we could, in principle, calculate
analytically the eigenvalues of the partially transposed density
matrix as functions of p, N , and k, which would involve,
in general, finding the roots of a N2th order polynomial.
However, as we have shown in the last section, the bipartite
entanglement can be calculated through a much simpler way,
using a two-qubit density matrix.

Using the concurrence as the quantifier of bipartite entan-
glement we see even more clearly the power of our method. For
multipartite mixed states, the calculation of the concurrence
would be attempted by a brute-force optimization approach
given by Eq. (11), but since, in this particular case we treat
here, the boundary qubits are just two, the use of our method
allows us to perform the calculation with no optimization at all,
for an explicit formula for the concurrence exists for arbitrary
two-qubit systems.

For the state (2) undergoing dephasing and amplitude
damping, the negativities in a bipartition {k} : {N − k} can
be shown to be given, respectively, by

ND(p,N,k) = (1 − p)2

N

√
k(N − k), (32)

NAD(p,N,k) = −p

2
+ 1

2N

√
N2p2 + 4k(N − k)(1 − p)2.

(33)

The concurrences for bipartitions {k} : {N − k} of the
state (2) undergoing dephasing and amplitude damping are
given, respectively, by

CD(p,N,k) = 2
(1 − p)2

N

√
k(N − k), (34)

CAD(p,N,k) = 2
(1 − p)

N

√
k(N − k), (35)
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FIG. 2. (Color online) The negativity corresponding to the least
balanced bipartition as a function of p and N = 2, 20, 50, and
500, for the W state undergoing individual dephasing. The initial
entanglement decreases as the number of qubits increases, but the
decay factor is independent of N and given by (1 − p)2.

Setting p = 0 we can analyze the bipartite entanglement
of the initial W state. For k = N/2 the entanglement is
independent of N and maximal; in fact, the balanced bipar-
tition can always be written in terms of effective qubits as a
maximally entangled two-qubit state |'+〉 = 1√

2
(|01〉 + |10〉).

For other k’s the initial bipartite entanglement of the W
state depends on N ; for a given value of k the W state
behaves like an effective two-qubit entangled state of the
form |'̃+〉 = (

√
N−k
N

|01〉 +
√

k
N

|10〉), for which the initial
entanglement has an intrinsic dependence on N . For a fixed
k, the larger N is the more this bipartition approximates a
separable one. This can be viewed in Fig. 2, where we plot the
negativity of the least balanced bipartition as a function of time
in the state (2) undergoing dephasing. The initial entanglement
decreases with the number of qubits.

From Eqs. (32), (33), (34), and (35) we can see that the W
state does not undergo finite-time disentanglement. However,
if we are interested not in the disappearance of the initial
entanglement, but in the survival of a significant fraction of
it, either to be directly used or to be distilled without an
excessively large overhead in resources, we need to look at
its decay [7], that is, the behavior of the ratios N (p,N,k)

N (0,N,K) = ε

and C(p,N,k)
C(0,N,K) = δ as a function of p.

Under dephasing the decay of negativity and concurrence
of any bipartition is expressed by the factor

εD = δD = (1 − p)2. (36)

For the amplitude damping the concurrence decay for any
bipartition is size independent and given by

δAD = (1 − p). (37)

while the negativity decay is given by

εAD(p,N,k) = −Np +
√

N2p2 + 4k(N − k)(1 − p)2

2
√

k(N − k)
,

(38)

pp

FIG. 3. (Color online) The decay of the negativity corresponding
to the least balanced bipartition as a function of p for N = 2,
20, 50, and 500, for the W state undergoing individual amplitude
damping. Even though the global entanglement decay in the state is
size independent, the entanglement decay in this bipartition, for a
fixed value of p, scales as 1/

√
N , for N sufficiently large.

which is independent of N for k = N/2. However, the more
unbalanced is the bipartition, the faster is its decay. The idea
is clearly illustrated in Fig. 3 for the least balanced bipartition.
For k = 1 and any p -= 0, it is easy to see that

εAD(p,N,1) ∝ 1√
N

when N /
{

1,
(1 − p)2

p2

}
, (39)

which contrasts with the behavior of the GHZ states under
the same channel, where for a fixed value of p the negativity
decays exponentially with N [7].

The size independence for the decay factor for the concur-
rence in any bipartition of a W state (2) is also reflected in a size
independence for the decay of the generalized concurrence.
This can be easily seen through Eq. (16), since the decay
factors, expressed in Eqs. (36) and (37), are independent of the
bipartition. This is the analytical proof of the result obtained
by numerical methods in [8].

Under dephasing the bipartite entanglement decay is in-
dependent of N and k, the same being true for the global
entanglement [8,9]. The W state is extremely robust under
the dephasing channel. Under the action of the amplitude
damping channel, the bipartite entanglement of W states is
much more robust than that of GHZ states, although it can
still depend intrinsically on the number of particles N . This
is an interesting and unexpected behavior since the global
entanglement decay, as quantified by the MW measure and
the generalized concurrence, is independent of N . The same
conclusions are valid for the states (3), (4), and (5): Under
dephasing and amplitude damping the global entanglement
decay is size independent while the negativity decay can
depend on N for the AD channel.

The different behavior of the global and bipartite quantifiers
is now shown to have direct implications on the robustness of
two distinct communication tasks.
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VI. TELEPORTING AND SPLITTING
QUANTUM INFORMATION

Entangled states are resources for important protocols for
quantum communication. Let us consider now the effect of
decoherence on two related tasks, which we show to be
associated with different kinds of entanglement.

We consider first the teleportation [1] of an unknown
quantum state |ψ〉 =

∑d
i ai |i〉 of dimension d. To perfectly

realize the teleportation, Alice and Bob need to share a maxi-
mally entangled bipartite state |.+〉AB = (1/

√
d)

∑d
i |i〉A|i〉B .

If they share a nonmaximally entangled state they will be
able to realize an imperfect teleportation. The quality of
the teleportation is quantified by the fidelity, defined as
f = 〈ψ |ρ|ψ〉, where ρ is the state obtained after teleportation.
The maximum achievable fidelity fmax for a given bipartition
of the state used as a channel is bounded by the negativity N
associated to this bipartition [1,20]

fmax ! 2 + 2N
d + 1

. (40)

The splitting of quantum information [21] is a generaliza-
tion of the teleportation protocol. Alice has an unknown qubit
|'0〉 = cos(θ/2)|0〉 + eiφ sin(θ/2) |1〉 she would like to send
to N other parts, a many-Bobs system, in such a way that the
N Bobs must cooperate in order that just one of them extracts
the quantum information. This is the best one can have, in
view of the no-cloning theorem [34], which implies that only
one copy of |'0〉 can be received. Alice and the other N parts
share an entangled state and proceed in a very similar way as
in the usual quantum teleportation [1]. First, Alice teleports
the qubit to the N Bobs, a usual teleportation related to the
negativity in the bipartition. We show now that the second
part of the protocol, when the N parts cooperate to extract the
information, is related to the global entanglement of the shared
state.

We consider, under decoherence, two distinct protocols to
split quantum information, which use GHZ and a W -like state
as resources. Note from (40) that to teleport a qubit we need
to use a channel that has at least N = 1/2. This is true for
any bipartition of a GHZ state [7], but as we have shown
this is no longer true for any bipartion of a W state (2). The
only bipartition of a W state with N = 1/2 is the balanced
bipartition. To use a W state as the channel for the splitting of
information between the N Bobs, we need to use the balanced
partition in a W state with 2N qubits. The more unbalanced
is the bipartition the worse is the initial teleportation fidelity
and the faster will be the fidelity decay under decoherence.
Another possible choice for a perfect teleportation, the one we
consider here, is to use an asymmetric WA state with N + 1
qubits of the form

∣∣WN+1
A

〉
= 1√

2
[|0〉|WN 〉 + |1〉|0〉⊗N ], (41)

which has the required N = 1/2 in the bipartition {1} : {N}.
In both the GHZ and WA protocols, Alice measures the two

qubits in her possession in a Bell basis, communicating the
classical outcomes to the Bobs (Fig. 4). In the GHZ protocol,

(  ) (  ) (  )

FIG. 4. (Color online) Scheme for the teletransport and the
splitting of quantum information involving N + 1 parts. The edges
represent the entanglement between the qubits, which is created or
consumed along the protocol. (a) Alice measure her qubit and the
qubit |ψ〉 she wants to teletransport (split) in a Bell basis. (b) The
teletransported state is encoded in a N -qubit state. (c) The N parties
must cooperate so that only one of them has at the end the teleported
state |ψ〉.

after the Bell measurement performed by Alice, the N Bobs
state will be given by one of the four states

|.̃+,−〉 = α|0〉⊗N ± β|1〉⊗N,
(42)

|'̃+,−〉 = α|1〉⊗N ± β|0〉⊗N .

After they decide who among them will be the receiver of
the state |'0〉, the nonreceivers measure their qubits in the
basis of eigenvectors of X, where X is the σx Pauli matrix,
and communicate their outcomes to the receiver. In possession
of all the classical measurement outcomes, the receiver can
recover the teleported state since the state in his possession is

ZMXa2Za1 |'0〉, (43)

M being the number of Bobs measurements that returned |−〉,
and the indices a1 and a2 are related to the measurement made
by Alice, so that {|.+〉,|'+〉} ⇒ a1 = 0, {|.−〉,|'−〉} ⇒
a1 = 1, {|.+〉,|.−〉} ⇒ a2 = 0, and {|'+〉,|'−〉} ⇒ a2 = 1.

Using the WA state as the resource, after Alice’s measure-
ment the four possible N -qubit state outcomes are

|.̃+,−〉 = α|0〉⊗N ± β|WN 〉,
(44)

|'̃+,−〉 = α|WN 〉 ± β|0〉⊗N .

Note this is nothing more than the usual teleportation, with
the information encoded in effective qubits. Note also that the
shared state is in the form (4). In the decodification part, all
the N Bobs need to meet and then apply a global operation on
their qubits so that

|WN 〉 → |1 · · · 00〉, |0 · · · 00〉 → |0 · · · 00〉, (45)

in such a way the information is now only contained in one
of the qubits [21]. The above transformation is realized by the
inverse of the unitary transformation displayed in Eq. (18).

Under amplitude damping of each qubit in the resource
states GHZ and WA, the respective fidelities in the teleportation
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pp

FIG. 5. (Color online) Teleportation fidelities for protocols that
use as resources GHZ and WA states under the AD channel. The WA

protocol is the best possible under AD and throughout its evolution
always leads to fidelities above the classical threshold, while the GHZ
protocol leads to fidelities below the classical threshold.

part of the protocol, averaged over all the possible input states
|'0〉, can be shown to be

f T
GHZ = 1

6 [2 + (1 − p)N−1(2 − p)

+ 2(1 − p)N/2 + pN−1(1 + p)] (46)

f T
WA

= 1
3 (3 − 2p + p2). (47)

Considering the complete splitting protocol, the teleporta-
tion followed by the decodification, the fidelities are

f
D

GHZ = 1
3

[2 − p(1 − p) + (1 − p)N/2]
(48)

f D
WA

= 1 − p

3
.

For the asymptotic separable state (p = 1) we see that the
average classical fidelity 2/3 is recovered in all the previous
expressions. In the WA state, the entanglement corresponding
to the partition between Alice and the N Bobs decays as given
in Eq. (38) with k = N/2. The negativity in the bipartition used
for the teleportation in the state (41) under AD is such that fmax,
as given by Eq. (40), is equal to f T

WA
. This implies that not

only is the protocol robust, but also it is the best possible. The
same is not true for the GHZ protocol under decoherence since
f T

GHZ decays exponentially with N and along the evolution
this fidelity can be under the classical limit, in spite of the fact
that the negativity is null only in the asymptotic limit p = 1.
The teleportation fidelities are plotted in Fig. 5.

The resource state used for the decodification is given
by (44), which is a W -like state (4), which has a global
entanglement decay independent of N , while its bipartite
entanglement, quantified by the negativity, depends on N .
The fact that the fidelity of the whole protocol is size
independent is a clear indication that the decodification part of
the protocol depends on the global entanglement, which should
be expected since this decodification depends on all parts in
a symmetric way. Therefore, the comparison of the decays of
the entanglement and of the fidelity indicates on which kind

of entanglement the task relies. In the decoherent scenario,
similar but nonidentical protocols can rely on different types
of entanglement, which can imply distinct robustness of these
distinct tasks. For the teleportation and splitting of quantum
information, protocols based on W -like states are clearly much
more robust than GHZ-based protocols.

VII. CONCLUSION

The characterization of entanglement for multipartite sys-
tems is a complex endeavor in view of the many possible
partitionings of the state and the possibility of having, for
a given partition, many possible quantifiers. Even for two
qubits, two widely used quantifiers, the concurrence and the
negativity, do not lead to consistent results when comparing
the entanglement of two states. This motivates the search for
criteria that would associate each quantifier with a different
physical task.

This problem becomes even more pressing when consid-
ering the effects of the environment. Different quantifiers
may display quite distinct behaviors under decoherence. This
motivates a natural question: Can these different dynamics be
associated to the robustness of inequivalent communication
tasks?

In this paper we have shown that two of those quantifiers,
proposed for estimating global and bipartite entanglements,
respectively, do behave quite distinctively under decoherence,
and that this divergent behavior is directly related to the
robustness of two inequivalent communication tasks.

We have made a detailed comparison between the use of
GHZ or W states as resources for quantum communication in
a noisy environment, by applying a new technique that allows
a reduction of the W -state entanglement dynamics to that of
a two-qubit system. This technique could be possibly applied
to other classes of entangled states under different kinds of
environment.

Our approach suggests that the eventual ambiguities in the
definition of entanglement quantifiers should be resolved by
associating each quantifiers with a definite physical task.
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APPENDIX: W STATES HAVE ONLY 2-TANGLE

To show that (29) is valid for the W -like states |W̃ 0
N 〉, we

employ the MW measure in the form proposed in [24]

EMW(|ψ〉) = 4
N

N∑

i=1

D(li(0)|ψ〉,li(1)|ψ〉). (A1)

Here li(b) is a (C2)⊗N → (C2)⊗N−1 map

li(b)|k1, . . . ,kN 〉 = δbki
|k1, . . . ,̂ki , . . . ,kN 〉, (A2)
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where k̂i means the absence of the term ki and |k1, . . . ,kN 〉
is the computational basis with ki = {0,1}. So when li(b) acts
on an N -dimensional vector state |ψ〉, it generates an (N −
1)-dimensional vector state |ψi,b〉 =

∑2N−1

k=1 ui,b
k |k〉, being k =

(k1, . . . ,kN−1). The quantity D(li(0)|ψ〉,li(1)|ψ〉) is a distance
defined by

D(li(0)|ψ〉,li(1)|ψ〉) =
∑

x<y

∣∣ui,0
x ui,1

y − ui,0
y ui,1

x

∣∣2
. (A3)

The application of the operator li to the |W̃ 0
N 〉 gives

li(0)
∣∣W̃ 0

N

〉
=

2N−1∑

k=1

ui,0
k |k〉 = β|0〉 +

N∑

j -=i

αaj |j 〉,

(A4)

li(1)
∣∣W̃ 0

N

〉
=

2N−1∑

k=1

ui,1
k |k〉 = αai |0〉.

Therefore

D
(
li(0)

∣∣W̃ 0
N

〉
,li(1)

∣∣W̃ 0
N

〉)
=

∑

x<y

∣∣ui,0
x ui,1

y − ui,0
y ui,1

x

∣∣2

=
N∑

j -=i

∣∣ui,0
j ui,1

0

∣∣2 =
N∑

j -=i

|α|4|ajai |2, (A5)

and the MW entanglement measure for |W̃ 0
N 〉 is thus

EMW
(∣∣W̃ 0

N

〉)
= 4

N

N∑

i=1

N∑

j -=i

|α|4|ajai |2

= 8|α|4

N

N∑

i<j

|ajai |2. (A6)

Tracing out, in the state |W̃ 0
N 〉, every qubit but qubits i and j ,

the two-qubit density matrix ρij becomes





|β|2 + |α|2(1 − |ai |2 − |aj |2) αβ∗a∗
i αβ∗a∗

j 0

α∗βai |α|2|ai |2 |α|2a∗
i aj 0

α∗βaj |α|2aia
∗
j |α|2|aj |2 0

0 0 0 0




.

(A7)

The concurrence of this state is given by Cij = 2|α|2|aiaj | and
so the 2-tangle is τij = C2

ij = 4|α|4|aiaj |2. From this result
and from (A6) it can be easily seen that

EMW
(∣∣W̃ 0

N

〉)
= 2

N

N∑

i<j

τij . (A8)

Therefore the global entanglement of state |W̃ 0
N 〉 is completely

characterized by its 2-tangles.

[1] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and
W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993); M. Horodecki,
P. Horodecki, and R. Horodecki, Phys. Rev. A 60, 1888 (1999).

[2] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991); A. Acı́n,
L. Masanes, and N. Gisin, ibid. 91, 167901 (2003).

[3] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).
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