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Flow of quantum correlations from a two-qubit system to its environment
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The open-system dynamics of entanglement plays an important role in the assessment of the robustness of
quantum information processes and also in the investigation of the classical limit of quantum mechanics. Here
we show that, subjacent to this dynamics, there is a subtle flow of quantum correlations. We use a recently
proposed optical setup, which allows joint tomography of system and environment, to show that the decay of
an initial bipartite entangled state leads to the buildup of multipartite entanglement and quantum discord, the
latter exhibiting a nonanalytic behavior that signals the emergence of maximal genuine quantum entanglement.
The origin of this analyticity is shown to be distinct from similar behavior previously found in bipartite systems.
Monogamy relations within the context of open-system dynamics explain this phenomenon.
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I. INTRODUCTION

The existence of quantum correlations is a fundamental
difference between quantum and classical physics. Entan-
glement is one kind of quantum correlation that is stronger
than all existing classical correlations. Its understanding has
led to the development of communication protocols like
quantum teleportation [1] and quantum cryptography [2],
and enables measurements with a precision that exceeds the
standard quantum limit [3]. For quantum information science,
entanglement is a valuable resource [4]. However, it has been
demonstrated that not all the quantum correlations are captured
by entanglement [5,6]. A different class of correlations called
“quantum discord” (QD) has also been considered as a
resource for nonclassical computation, namely in the DQC1
model [7,8]. An experimental implementation of this model
was performed in an optical setup [9] and also in the context
of nuclear magnetic resonance [10]. Moreover, it was recently
demonstrated that the fidelity for remote preparation of states,
a variation of the teleportation protocol, is related to a measure
of QD [11]. However, the scope and computational power of
quantum discord is still a matter of debate.

In general, physical systems containing quantum correla-
tions cannot be completely isolated from the environment. In
fact, these systems always interact with their surroundings,
leading to noise and decoherence [12,13]. The investigation of
this interaction between system and environment has led to the
observation of interesting phenomena, like the sudden death
of entanglement [14–16], and sudden changes of quantum
discord [17,18]. It has also been useful in the development
of strategies to protect the quantum correlations against
environmental interactions, and to investigate fundamental
problems like the border between the quantum and the classical
world [12,13,19–21].

Since the degrees of freedom of the environment are unac-
cessible, they are usually ignored. However, if one considers
the complete system including the environment, additional
useful information can be obtained about the dynamics of en-
tanglement [16,22] in the overall system, which may be useful
to the investigation of the quantum-classical transition [20,22].

In this paper, we use an all-optical experimental setup
that was recently presented in [22] and allows the complete

tomography of a two-qubit system and its environment. Fig-
ure 1 illustrates the relevant evolutions. Systems A and B are
qubits initially entangled, whereas E, the local environment of
B, is in its ground state. While [22] concentrated on the exper-
imental observation of the emergence of multipartite entangle-
ment between system and environment, here we demonstrate
subtle aspects of this process, which are analyzed theoretically
and experimentally. In particular, we (i) derive a simple
expression that quantifies the emergence of a Greenberger-
Horne-Zeilinger (GHZ) type of entanglement, given by a
product of the initial tangle and a function that depends solely
on the Kraus operators describing the nonunitary dynamics,
(ii) demonstrate that the genuine multipartite quantum discord
signals the development of genuine multipartite entanglement,
(iii) unveil and explain a nonanalytical behavior of the genuine
multipartite discord, which is shown to signal the appearance
of maximal W -type entanglement, (iv) introduce a method
to analyze experimental results concerning quasipure states,
which allows one to compare data obtained from weakly noisy
systems with the theoretical results conceived for pure states,
and (v) observe and explain the appearance of genuine GHZ
entanglement due to experimental noise.

This article is organized as follows. In Sec. II, we develop a
theoretical framework for describing the open-system dynam-
ics of entanglement. A detailed explanation of the experimental
setup is introduced in Sec. III. Here we propose a way of
treating the experimental data in order to analyze quasipure
states. In Sec. IV, the experimental results concerning the
flow of entanglement are discussed in terms of the quantum
discord for the explanation of nonanalytical behavior of the
quantum correlations. The conclusions and perspectives are
summarized in Sec. V.

II. THEORY

We assume that the initial state of the complete (ABE)
system is given by

|ϕ(0)⟩ = [α |11⟩ + β |10⟩ + γ |01⟩ + δ |00⟩]AB |0⟩E , (1)

where |α|2 + |β|2 + |γ |2 + |δ|2 = 1. At time t = 0, system B
begins to interact with its environment E according to a unitary
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FIG. 1. (Color online) Evolution of entanglement. In (a) sys-
tem B is submitted to an AD channel. The initial entanglement is
redistributed in all bipartitions, so that only bipartite or W -type of
tripartite entanglement is generated. In (b) system B is submitted to
a PD channel. In this case tripartite entanglement is generated.

transformation UBE(t) including both systems. Since the initial
state of E is |0⟩, and only two states of the environment are
involved in the dynamics, only two Kraus operators are needed
to describe the evolution, namely K̂0 = ⟨0|E UBE |0⟩E and
K̂1 = ⟨1|E UBE |0⟩E [16]. Thus the unitary evolution of the
system BE can be represented by the map

|0⟩B |0⟩E → K̂0(t) |0⟩B |0⟩E + K̂1(t) |0⟩B |1⟩E ,
(2)

|1⟩B |0⟩E → K̂0(t) |1⟩B |0⟩E + K̂1(t) |1⟩B |1⟩E ,

where each K̂i acts only on the vectors of system B. Writing
K̂0 and K̂1 as (we omit the time dependence of the matrix
elements)

K̂0 =
(

m00 m01
m10 m11

)
, K̂1 =

(
n00 n01
n10 n11

)
, (3)

it follows that the coefficients anlm(t) of the evolved state

|ϕ(t)⟩ =
∑

n,l,m=0,1

anlm(t) |nlm⟩ABE (4)

depend on the matrix elements mij (t) and nij (t), as well as on
the four constants α, β, γ , and δ of the initial state (1).

From the evolved state it is possible to study how the
entanglement is distributed between A, B, and E. First, we
analyze the amount of entanglement between the different
pairs of subsystems during the evolution. The entanglement
between pairs of qubits can be evaluated through the concur-
rence Cij [23], where

Cij = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (5)

and the λi’s are the eigenvalues (in decreasing order) of the
matrix ρij (σy ⊗ σy)ρ∗

ij (σy ⊗ σy), with ρij = Trk(ρijk). Sec-
ond, we analyze the possible emergence of genuine tripartite

entanglement, meaning that the system is not separable in any
bipartition. We show that some of the initial entanglement
can be converted into genuine tripartite entanglement. A
possible measure of tripartite entanglement is the three-tangle
τijk , defined through the Coffman-Kundu-Wootters (CKW)
relation [24] as

τijk(t) = C2
i(jk)(t) − C2

ij (t) − C2
ik(t), (6)

where the tangle C2
i(jk) = 2(1 − Trρ2

i ) gives the amount of
bipartite entanglement between i and jk. This is an example
of a monogamy relation between tripartite and bipartite entan-
glement. We note that monogamy relations of this sort have
been investigated in Ref. [25]. The three-tangle τijk is invariant
under permutation of its indices, and if it takes a value different
from 0, then Ci(jk) is also different from zero for all i, so that
the system is not separable in any bipartition, or equivalently,
the state has genuine tripartite entanglement. Thus τijk ̸= 0
is a sufficient condition for identification of genuine tripartite
entanglement, though it is not necessary. Indeed, we can see
from Eq. (6) that, for τijk = 0, genuine tripartite entanglement
(i.e., nonbiseparability) will be present whenever at least two
qubit-qubit tangles C2

ij (t) are nonzero [26]. Therefore, the
nonbiseparable three-qubit pure states are divided into two
classes: those for which τijk ̸= 0, and those for which τijk = 0
and Cij ̸= 0 for two arbitrary pairs ij. These classes coincide
with the two families of genuinely entangled states discussed
in [26], namely the GHZ (τijk ̸= 0) and the W (τijk = 0) states.
Since the three-tangle is nonzero for the GHZ-type family,
τijk can be considered as a quantitative measure of genuine
(GHZ-type) entanglement, while for the W family there is no
consensual measure of genuine (W -type) entanglement.

For states of the form (4), τijk may be expressed in terms
of the coefficients anlm [24], which are written in terms of the
matrix elements of K̂0 and K̂1:

τABE(t) = E2
0 |f (K̂0(t),K̂1(t))|, (7)

where f is the function

f (K̂0(t),K̂1(t)) = (m10n01 − m00n11)2 + (m11n00 − m01n10)2

+ 2 (m11n01 − m01n11) (m00n10 − m10n00)

− 2 det K0 det K1, (8)

and E2
0 stands for the initial entanglement between A and B:

E2
0 = C2

AB(0) = 4 |αδ − γβ|2.
The factorization of Eq. (7) shows that the three-tangle τABE

is completely determined by the specific map and the initial
bipartite entanglement, and emerges as a redistribution—
induced by the local interaction of the system B with its
environment—of the initial bipartite entanglement E0 between
A and B. Moreover, as a result of the BE interaction,
the bipartite entanglement E0 is not only transformed into
three-tangle, but can also be distributed exclusively as bipartite
entanglement between couples of qubits, evolving to W -family
states, characterized by τABE = 0. Let us now consider two
concrete examples.
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A. Phase damping channel

The phase damping (PD) channel can be represented by the
quantum map

|0⟩B |0⟩E → |0⟩B |0⟩E , (9a)

|1⟩B |0⟩E →
√

1 − p |1⟩B |0⟩E + √
p |1⟩B |1⟩E . (9b)

Here p is a parameter characterizing the evolution, such that
p varies from 0 to 1. To see the emergence of multipartite
entanglement, consider the initial state:

|ϕ(0)⟩ABE = [α |11⟩ + δ |00⟩]AB |0⟩E , (10)

where |α|2 + |δ|2 = 1. According to Eq. (9), the tripartite
system evolves to

|ϕ(p)⟩ABE = α
√

1 − p |110⟩ + α
√

p |111⟩ + δ |000⟩ . (11)

We can see from Eq. (11) that the system always evolves
to a state belonging to the family of GHZ states [27]. For
this family of states, the three-tangle τABE of Eq. (7) is a
useful indicator of GHZ-type genuine tripartite entanglement.
From Eqs. (7) and (8), with m01 = m10 = n00 = n01 = n10 =
0, m00 = 1, m11 =

√
1 − p, and n11 = √

p, one finds that the
three-tangle is given by

τABE = E2
0 p. (12)

The maximally entangled GHZ state has also a particular
property: tracing out one of the subsystems destroys any
entanglement present. Therefore, for the state ρij = Trkρijk ,
we have Cij (ρij ) = 0. This is the case for the final state
|ϕ(p = 1)⟩ABE , as one can see from the expressions for the
bipartite tangles as a function of p:

C2
AB(p) = E2

0 (1 − p),

C2
BE(p) = 0, (13)

C2
AE(p) = 0,

where Cij was defined in Eq. (5).

B. Amplitude damping channel

Consider now the amplitude damping (AD) channel [4],
described by the quantum map

|0⟩B |0⟩E → |0⟩B |0⟩E , (14a)

|1⟩B |0⟩E →
√

1 − p |1⟩B |0⟩E + √
p |0⟩B |1⟩E . (14b)

When map (14) is applied to the initial state

|η(0)⟩ABE = [β |10⟩ + γ |01⟩]AB |0⟩E , (15)

it evolves to

|η(p)⟩ABE = γ
√

1 − p |010⟩ + γ
√

p |001⟩ + β |100⟩ . (16)

State (16) belongs to the W family of states [27]. As
mentioned before, the W family is characterized by null
three-tangle τABE and nonzero tangles C2

ij . Tracing out
one of the subsystems leaves the other two entangled. The
tangles for the pure state (16) as a function of p are

given by

C2
AB(p) = E2

0 (1 − p),

C2
BE(p) = 4|γ |4p(1 − p), (17)

C2
AE(p) = E2

0 p.

Thus every C2
ij is different from zero in the interval (0,1) ,

and it follows that genuine W -type entanglement should be
present.

III. EXPERIMENT

In this section, we experimentally investigate the entangle-
ment redistribution discussed in the last section. A number of
experiments have used photonic degrees of freedom to investi-
gate the dynamics of open quantum systems [15,16,18,22,28–
32]. Usually, the polarization degree of freedom represents the
qubit system and the spatial or spectral degrees of freedom play
the role of the environment. In this way, birefringent material or
interferometers can be used to implement system-environment
interactions.

A. Experimental setup

In our experiment, we produce a pair of photons entangled
in polarization and implement quantum channels for one of
the photons using an interferometer. The environment in this
case may be considered as a two-level system, its degrees
of freedom being the two different propagation modes of the
interferometer. We are able to measure both populations and
coherences of the environment using a second interferometer.
In this way, we have access to the tripartite system ABE,
and complete three-qubit quantum state tomography can be
performed.

The experimental setup is shown in Fig. 2. A λp = 325 nm
wavelength He-Cd (helium-cadmium) laser pumps two non-
linear crystals producing polarization-entangled photon pairs,
both with central wavelengths at 650 nm [33]. The polarization
state of the pair can be written as

|ψ⟩AB = α1 |HH ⟩AB + α2 |V V ⟩AB , (18)

FIG. 2. (Color online) Experimental setup.
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where H and V stand for horizontal and vertical polarization
directions. The coefficients αi (i = 1,2) can be controlled
through the polarization of the pump laser (see Fig. 2), because
each polarization component (H or V ) pumps one of the crys-
tals. In the following, we let H (V ) represent the 0 (1) state in
the computational basis. Photon A goes directly to polarization
analysis, which is performed using a QWP (quarter waveplate),
a HWP (half waveplate), a PBS (polarizing beam splitter), and
a single-photon counting module (SPCM). Photon B is sent
through two nested interferometers. The first one, shown in
Fig. 2(b), is responsible for the implementation of the quantum
maps given by Eq. (2). This is done by coupling the spatial
modes of the interferometer with the polarization components
of the photons. The output modes of the interferometer are
labeled 0 and 1. Similar coupling between spatial modes and
polarization was obtained in previous experiments, using a
Sagnac-like interferometer [15,16,31].

Let us discuss the first interferometer, shown in Fig. 2(b), in
more detail. The incoming beam passes through a birefringent
calcite beam displacer (BD). The input beam is split so
that the H polarized component is refracted and the V
polarized component is transmitted. After the BD, the H and
V components are displaced from one another and propagate
in parallel directions, each one through a half waveplate. The
H component passes through HWP(θc) and the V component
through HWP(θp). In this way, the polarization components
can be rotated independently. In order to implement the
quantum channels, it is necessary to set θc = 0 and θp varying
within the interval 0 ! θp ! π/4. HWP(θc) only compensates
the path difference due to the presence of HWP(θp) in the other
path.

The beams are recombined in the BDM (see Fig. 2),
which transmits the H polarized photons and deflects the V
polarized photons. The BDM is realized by placing a BD
between two HWP’s (not shown), which convert H into V
and vice versa, before and after the BD. This is necessary for
the recombination in the BDM; otherwise, the beams would
split instead of recombining. When θp = 0, the polarization
components split in the first BD, are coherently recombined in
the BDM, and the input polarization state is recovered at the
output of BDM. When θp ̸= 0, one polarization component
can be increased while the other is decreased, according to the
setting of θp.

This transformation is described by the quantum map given
by the AD channel (14), where the states |0⟩E and |1⟩E
correspond to the spatial modes 0 and 1 in Fig. 2(b), and
p = sin2(2θp) is a parameter related to the evolution of the
interaction between subsystems B and E. The correspondence
between this parameter and the time in a time-dependent
interaction is given by p(t = 0) = 0 and p(t = ∞) = 1.

If one wants to implement the phase damping (PD) channel
shown in Eqs. (9), one should set HWP1 to π/4, so that the
polarization component H propagating along mode 1 at the
output of the first interferometer is completely converted into
V . The role of HWP0, which is fixed at 00, is to balance the
optical paths inside the second interferometer. At this point,
one can see clearly the difference in the implementation of the
AD and PD channels. In both cases, part of the V component of
the input state is changed into H inside the first interferometer
and sent to another spatial mode. If one detects modes 0 and

1 without distinguishing one from the other (tracing out the
spatial modes), then the AD channel is implemented. However,
if we use HWP1 to turn the polarization of mode 1 back to
V and detect tracing out the spatial modes, the PD channel is
implemented.

The second interferometer and the spatial mode tomog-
raphy (SMT) shown in Figs. 2(c) and 2(d) are used to
analyze the polarization and spatial qubits simultaneously.
The polarization analysis is made using the QWP, the HWP,
and the third BD in Fig. 2(c), which acts as a polarizer
(only the lower output is used). At the same time, we can
see that the lower output of the third BD is a combination of
two modes: the H -polarized component coming from spatial
mode 1 of subsystem E, and the V -polarized component
coming from spatial mode 0 of subsystem E. In this way we
can measure the populations and coherence between modes 0
and 1 of subsystem E, because this information is swapped
to the polarization degree of freedom. Therefore, for each
setting of the QWPs and HWPs in Figs. 2(c) and 2(d), a
given measurement on the spatial modes of subsystem E
and polarization modes of subsystem B is made, and full
tomography can be performed.

After the interferometers and the SMT, the photons are
detected with a single-photon counting module (SPCM), and
coincidence counts are registered. The dynamics of the entan-
glement is investigated for both channels. The evolution of the
interaction is controlled through the waveplate HWP(θp), and
reconstruction of the complete tripartite states is performed.
This requires 64 different settings of the three sets of (QWP,
HWP) waveplates. This configuration represents an advance
in comparison with that of Refs. [15,16,31], as it is more stable
and allows full tomographic access to polarization and spatial
modes.

IV. EXPERIMENTAL RESULTS

We first implemented the PD channel, starting from an
initial state close to that of Eq. (10). We vary the control
parameter p and for each setting we perform full quantum
state tomography, including systems A, B, and E. The real
part of the experimentally reconstructed density matrices can
be seen in Fig. 3. The imaginary parts are close to zero and are
not shown. The initial state is prepared so that |α|2 ≃ |δ|2 ≃
1/2, using the wave plates in the pump beam (see Fig. 2).
Qualitatively, we observe that as p increases, the populations
|111⟩⟨111| and coherences |111⟩⟨000|, |000⟩⟨111| increase,
while other contributions (|110⟩⟨110| and |110⟩⟨000|) de-
crease. This leads to a GHZ state when p approaches 1.
From the reconstructed density matrices we calculate the
concurrence and tangle for all bipartitions. The concurrence
Cij (p) between qubits i and j is calculated using the definition
of Eq. (5).

We also calculate the three-tangle from the CKW relation in
Eq. (6). To do so, it was necessary to calculate the concurrence
Ci(jk)(p), taking advantage of the fact that the measured
states can be considered quasipure, with average fidelities
around 0.90 with respect to the pure states of Eq. (11). The
concurrence for quasipure states of any dimension that present
a predominant eigenvalue in the spectral decomposition can
be approximated by Ci(jk) ≈ max(0,ς1 −

∑
i>1 ςi), where the
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FIG. 3. (Color online) Real part of the density matrices recon-
structed by quantum state tomography for different values of p. B

and E evolve according to the phase damping channel.

ςi’s are the positive eigenvalues of a positive Hermitian matrix
that is defined in terms of the eigenvectors and eigenvalues
of the density matrix, as described in detail in Ref. [34].
Substituting this expression into Eq. (6) gives the three-tangle
for the quasipure state.

In Fig. 4 we plot the tangles obtained from the reconstructed
states (points) and the theoretical prediction (curves) as
explained above. The bipartite entanglement of system AB
(black circles) is in good agreement with theory given by
Eq. (13) (black line). Good agreement between theory and
experiment is also obtained for the predicted null tangles C2

BE

(magenta squares) and C2
AE (green diamonds). However, the

tripartite entanglement τABE (red stars) presents significant
deviation from the theory (red line), even though they qualita-
tively show the same tendency. This discrepancy is most likely

FIG. 4. (Color online) Evolution of the tangles as a function of p,
for the phase damping channel. While C2

AB (p) (black circles) decays
linearly, the three-tangle τ (p) (red stars) grows with p. The bipartite
entanglement between qubits A and B and the environment E,
given by C2

AE(p) (green diamonds) and C2
BE(p) (magenta squares),

respectively, is zero along the whole evolution.

FIG. 5. (Color online) Real part of the density matrices obtained
from tomographic reconstruction for different values of p, when B is
under the action of an amplitude damping channel.

due to the fact that the theory is valid for pure states and the
calculation of τABE is made with the CKW relation [24] given
by Eq. (6) under the assumption that the states are quasipure.
We conclude that the three-tangle is very sensitive to noise,
assuming that the quasipure approximation is appropriate in
this case. The error bars in all figures were produced from
Monte-Carlo simulations of experimental results obeying the
same count statistics. In Fig. 4 we see from the error bars that
the signal-to-noise ratio decreases when p increases. We also
observe that points around p = 0.5 tend to have lower values
of τABE . This is probably due to the fact that when p = 0.5,
the photonic modes of subsystems B and E are distributed
equally between the different paths of the interferometer, and
are thus more sensitive to phase fluctuations and imperfect
mode matching.

We also investigate experimentally the distribution of en-
tanglement for the case of the AD channel. The real part of the
measured density matrices for this quantum channel is shown
in Fig. 5. The imaginary parts are close to zero in all cases,
and are not shown. In this case we can see that the populations
|001⟩⟨001|, as well as the coherences |001⟩⟨100|, increase with
p, while |010⟩⟨010| and |010⟩⟨100| decrease. When p = 0.5
the state is approximately a maximally entangled W state.
Moreover, we see that the evolution results in an entanglement
swapping between subsystems AB and BE. At p = 0, all
the entanglement is between systems A and B, and at p = 1
all the entanglement is transferred to subsystem A and the
environment E.

From the density matrices we calculate the tangles for the
case of the AD channel, which we show in Fig. 6. The solid
lines correspond to the theoretical predictions of Eq. (17)
for each case. We notice that the experimental points are in
good agreement with theory for the bipartite entanglement.
We observe a nonzero and non-negligible three-tangle along
the evolution, even though it should be zero if the initial state
were perfectly pure. This unexpected appearance of a non-null
three-tangle is a manifestation of the high sensitivity of τ to
the impurities of the states. This conclusion comes from the
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FIG. 6. (Color online) Bipartite tangles for the amplitude damp-
ing channel. C2

AB (p) (black squares) and C2
AE(p) (red circles).

C2
AB (p) decays and C2

AE(p) grows linearly with p. The entanglement
between B and E, C2

BE(p) (blue diamonds), evolves quadratically.
The three-tangle (green stars) is nonzero, contrary to what is expected
for a pure state.

observation that τ is null for the family of states in Eq. (16),
and even though the measured states have fidelities as high
as 0.9 with respect to those states, τ is significantly different
from zero for them.

In this case it is especially interesting that noise, or the
impurity of the states, can induce the appearance of τ ̸= 0. This
means that the uncontrolled noise along the evolution couples
states of the W class to the GHZ class. According to Ref. [26],
this cannot be done by stochastic local operations and classical
communication (SLOCC). Therefore, we are led to conclude
that some operation that is not independent for each degree of
freedom of the same photon is affecting our system. For in-
stance, mode mismatching and phase fluctuations in the nested
interferometers may affect simultaneously polarization B and
spatial E qubits. We believe this is the most probable reason
for the appearance of correlations coming from the noise.

A. Decomposition in pure states

To observe the theoretical predictions presented in Sec. II,
we would ideally like to prepare initial pure states of the
form given by Eq. (1), apply the PD and the AD channels
to a subsystem, and measure the evolved state including
the environment. In practice, we observe that the overall
purity of the measured states is not unity, though always
higher than 0.8. The undesired mixture is due to technical
problems like misalignment of the interferometers, small
intensity fluctuations of the pump laser, and other issues.

The density matrices shown in Figs. 3 and 5 show quali-
tatively that multipartite GHZ-type and W -type entanglement
results from the decoherence process. However, Figs. 4 and 6
show that there is some deviation from theory, presumably due
to the mixedness of the experimental quantum states.

To further investigate the role of mixedness, we first
diagonalize the experimentally obtained density matrices.
Fig. 7(a) shows the spectral decomposition,

ρ =
∑

µi |φi⟩ ⟨φi | , (19)

FIG. 7. (Color online) Eigenvalues of the measured density ma-
trices for the two channels implemented. In all states measured there
is always one eigenvalue higher than 0.85, so that we can consider
that the states are quasipure.

of the measured states when the AD channel is implemented.
We notice that for all values of p there is a dominant eigenvalue
which is always greater than 0.92. Figure 7(b) shows the
spectral decomposition of the measured states when the PD
channel is implemented. We also notice that for all values
of p there is a dominant eigenvalue which is always greater
than 0.85. Therefore, we conclude that the unpredicted effects
coming from the impurity are due to a small contribution of
nondominant eigenvectors. However, as Figs. 4 and 6 show,
some of these effects are significant.

The nonpurity of the states affects the tripartite much more
than the bipartite entanglement. In the case of the PD channel,
the values of the three-tangle tend to be smaller for p ! 0.3,
where the contribution of other spectral components is larger,
as we can see in Fig. 7(b). For the AD channel, the relative
contribution of other spectral components is roughly constant
when p is varied, as can be seen from Fig. 7(a). However,
as we saw in Fig. 6, the three-tangle (which is zero for pure
states) is greater in the region around p = 0.5. Even though
the reason why the impurity induces GHZ-type entanglement
is unclear, it is rather intuitive that the region around p = 0.5
is more critical due to the near equiprobable distribution of
photon B in the two spatial modes of the environment E.

The existence of a predominant eigenvalue for all the
states justifies the quasipure approximation used in [22].
To determine whether the impurity of the states is indeed
responsible for the deviation of the experimental points from
the theory for pure states, in what follows we will analyze the
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FIG. 8. (Color online) Bipartite and multipartite entanglement as
a function of p for the PD channel, considering only the dominant
eigenvalue. The three-tangle τABE (red stars) increases linearly
as the bipartite entanglement C2

AB decreases (black circles). The
entanglement in bipartition BE, C2

BE (green diamonds) and AE,
C2

AE (magenta squares) is nearly zero during the entire evolution. The
solid lines are the theoretical predictions given by Eq. (13). The blue
down triangles show the experimental values of the invariant given by
Eq. (21), and the blue solid line gives the corresponding theoretical
values.

data by considering only the pure state corresponding to the
dominant eigenvector.

B. Entanglement dynamics for pure states

From now on, we analyze the entanglement dynamics for
the largest component of the spectral decomposition, that
is, the eigenstate |φm⟩ associated to the eigenvalue µm =
max[µi]. We begin analyzing the data corresponding to the PD
channel. Figure 8 shows the dynamics of entanglement for this
channel. The experimental results for the tangles as a function
of p are shown: C2

AB (black circles), C2
BE (green diamonds),

and C2
AE (magenta squares). The solid lines are theoretical

predictions given by Eq. (13). The three-tangle τABE is also
shown. The theoretical value given by Eq. (12) corresponds to
the red solid line, and the experimental points (red stars) are
obtained from the expression

τABE = 4 det ρA − C2
AB(ρAB) − C2

AE(ρAE). (20)

This result is obtained from Eq. (6), when one considers that for
pure states C2

A(BE) can be rewritten as 2(1 − Trρ2
A) = 4 det ρA.

While the data points are clearly closer to the theoretical
prediction, we still notice a discrepancy for τABE . The reason
for this is related to the fact that the experimental points
come from the most significant eigenstate in the spectral
decomposition of each reconstructed density matrix. The more
the reconstructed state is mixed, the more the approximate
pure state deviates from the theoretical prediction. As seen
in Fig. 7(b), the states with lower eigenvalues near p ≃ 0.5
(approximately 0.85) correspond exactly to those points in
Fig. 8 having more significant discrepancy from the theoretical
prediction. As mentioned above, when p = 0.5, the photon is
equally spread between the two arms of the interferometer,

rendering phase fluctuations and mode-matching errors more
significant. As we can see, the GHZ type of entanglement,
measured by τABE, emerges as soon as the interaction between
system B and its environment is switched on. It increases
linearly with p until a GHZ state is reached. Moreover,
in this analysis, it is evident that the increase of tripartite
entanglement occurs at the expense of the initial bipartite
entanglement between systems A and B. This follows from
the expression

E2
0 = C2

AB(p)+ τABE(p), (21)

obtained from Eq. (12) and the first line of Eq. (13).
This shows that C2

AB(p)+ τABE(p) is an invariant along the
evolution, a result that generalizes the one found in [30].
This invariant is plotted in Fig. 8 (blue line), and shows that
the quantity E2

0 = C2
AB(0) = 0.99 ± 0.001, though constant,

changes its physical meaning depending on the value of p: it
is totally bipartite entanglement at p = 0, and is completely
transformed into tripartite entanglement at p = 1, when all
the qubit-qubit (bipartite) entanglement vanishes. At interme-
diate stages E2

0 is distributed in bipartite and GHZ type of
entanglement.

For the case of the AD channel, the evolution of the tangles
is shown in Fig. 9. C2

AB(p) (black squares) decays, and C2
AE(p)

(red circles) increases linearly with p, whereas the entangle-
ment between system B and its environment, C2

BE(p) (blue
diamonds), evolves quadratically. The theoretical predictions
of Eq. (17) are the solid lines. We can see that there is a good
agreement between theory and experiment in this analysis.
For the three-tangle, the theory predicts τABE = 0 for all
p, which is also in agreement with measurements in this
approximation (green stars). This result emphasizes the idea
that the mixed component of the states generates the GHZ
type of entanglement discussed in the end of Sec. IV. The
plots show that the AD channel entangles E and B (with
the entanglement vanishing only in the limits p = 0,1), and

FIG. 9. (Color online) Bipartite tangles for the AD channel and
three-tangle, considering only the dominant eigenvalue. C2

AB (p)
(black squares) decays and C2

AE(p) (red circles) grows linearly with
p. The entanglement between qubit B and the environment E, C2

BE(p)
(blue diamonds), evolves quadratically. The three-tangle (green stars)
is nearly zero during the evolution.
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FIG. 10. (Color online) Fidelity with respect to multipartite en-
tangled states. Red circles show the fidelity with respect to GHZ state
in the case of the PD channel. Blue squares show the fidelity with
respect to W state in the case of the AD channel. The solid lines
correspond to theoretical evolutions of the initial pure state. We can
see that, for the evolution of both channels, the emerging states have
genuine entanglement using this fidelity as witness [27]. The dashed
lines represent the threshold for each one of the witnesses.

transfers the initial entanglement E0 from the pair AB to the
pair AE, characterizing the swapping process mentioned in
Sec. IV. This transfer is linear in p.

As remarked in Ref. [26], the three-tangle defined in Eq. (6)
is not sensitive to genuine tripartite entanglement for states of
the W family. Thus the emergence of genuine entanglement
in these cases must be detected using other quantities or
witnesses. Here we employ the fidelity FW = ⟨W |ρ|W ⟩,
which has been recognized as a good witness to detect
W -type entanglement [27]. In this case, the criterion states
that a three-qubit state ρ has W -type genuine entanglement
whenever FW " 2/3. Figure 10 shows that for p ∈ (0,1)
the experimental fidelity FW (blue squares) is greater than
2/3. This confirms that the measured state has W -type
entanglement. As expected, FW reaches a maximum value
at p = 0.5, when the state (16) ideally becomes a W state.
The experimental points are in very good agreement with the
theoretical predictions (blue line).

For detecting genuine entanglement in states belonging to
the GHZ family, we use FGHZ = ⟨GHZ|ρ|GHZ⟩. In this case
it has been shown that a three-qubit state ρ is nonbiseparable
whenever FGHZ > 1/2 [27], but the GHZ type of entanglement
is assured only if FGHZ > 3/4. The experimental results for
FGHZ are also shown in Fig. 10 (red circles). We observe that for
p > 0.2 the measured states are nonbiseparable. However, we
cannot assure that the genuine entanglement is of the GHZ type
until p = 0.66, where FGHZ is larger than 3/4. Comparison
of the results obtained for FGHZ with those obtained for
τABE shows that this latter is a better indicator of GHZ type
of genuine entanglement, since τABE is different from zero
already for p > 0. The discrepancy between the experimental
points and the theoretical curve (red solid line) is due to the
mixed components of the measured states, in the same way as
in Fig. 8.

C. Evolution of the quantum discord

Over the past decade, it was demonstrated theoretically and
experimentally that the QD could be a resource to improve
some tasks [8,11] related to information processing. Further-
more, it was shown that its dynamics may present nonanalytic
points [17]. This effect was demonstrated experimentally in an
optical setup [18], and a physical interpretation of these abrupt
changes was related to the quantum measurement problem
in Ref. [21], where it was shown that the so-called pointer
basis may emerge much before the decoherence process is
significant. These results support the idea that the analysis of
the dynamics of the QD can shine light on different kinds of
problems in physics and applications.

In the following, we investigate the dynamics of genuine
(tripartite) QD (GQD) and total QD (TQD) theoretically and
experimentally for the PD and AD channels. For this analysis,
we utilize the tools introduced in [35]. The expressions
for GQD and TQD are obtained by generalizing the usual
definition of QD [6] to the tripartite case. This generalization
presents the advantage of quantifying quantum correlations
in more general systems, even for mixed states. First, the
total information in a tripartite system ABC is obtained and
expressed as

T (ρ) = S(ρA) + S(ρB) + S(ρC) − S(ρ), (22)

where ρ = ρABC and S(ρj ) = −tr[ρj ln(ρj )] is the von Neu-
mann entropy of the reduced state ρj . The classical correlation
for the tripartite case is also generalized as

J (ρ) = max
p{i,j,k}

[S(ρj ) − S(ρj |i) + S(ρk) − S(ρk|ij )], (23)

where the maximum is taken over all the possible permutations
of the indices i, j , and k. The conditional entropy is
defined as S(ρj |i) = minEi

l
[S(j |{Ei

l })], where S(j |{Ei
l }) =∑

l plS[ri(Ei
l ρijE

i
l /pl)]. The probabilities pl are obtained as

usual, pl = Trij (ρijE
i
l ). The Ei

l represents a set of POVMs
for the parties i. An analogous definition for the conditional
entropy is applied for the case in which two parties are
measured S(ρk|ji) = minEi

l ,E
j
m
[S(j |{Ei

l ,E
j
m})]. With these two

generalizations it is possible to define the total discord for the
system ABC, as

D(ρ) = J (ρ) − T (ρ). (24)

Now it is easy to see that the genuine quantum correlations can
be obtained by a simple subtraction of the bipartite quantum
corrections in the expression (24). So the GQD can be defined
as

D(3)(ρ) = D(ρ) − D(2)(ρ), (25)

where D(2)(ρ) = max[D(ρAB),D(ρAC),D(ρBC)] with D(ρij )
being the usual definition of the QD for the bipartite system
ij [6]:

D(ρij ) = min
{Ei

l }

[
S(ρi) − S(ρij ) + S

(
j
∣∣{Ei

l

})]
. (26)

Let us analyze the experimental data using these quantities.
We begin by examining the dynamics for the measured states
shown in Fig. 5. In Fig. 11 we show the evolution of the
GQD for the AD interaction. We can see that the experimental
results (blue squares) are quite close to the evolution obtained

022339-8



FLOW OF QUANTUM CORRELATIONS FROM A TWO-QUBIT . . . PHYSICAL REVIEW A 89, 022339 (2014)

FIG. 11. (Color online) Evolution of the genuine quantum dis-
cord. Evolution for the AD channel (blue squares), and its theoretical
evolution from the initial state (blue line).

from the application of the theoretical map to the measured
initial state (blue line). We can also see that the blue curve
presents abrupt changes. It is related to the permutation of the
terms in Eq. (23), which maximizes J . This is conceptually
different from the abrupt changes observed in the evolution
of a bipartite system [17], which occur when the optimal set
of measurement operators {Ej

m} changes during the evolution.
In the tripartite case, the abrupt changes also depend on the
partitions considered for the computation of the correlations.

For the PD channel (not shown), the experimental results
cannot be described by the theoretical evolution of the initial
state. The most probable reason is that the phase damping
channel is highly sensitive to phase fluctuations (even very
small ones) in the interferometers, as we have already seen in
the analysis of the entanglement.

Let us now analyze the same evolutions as before, using the
dominant eigenvectors obtained in the spectral decomposition
of Eq. (19), and shown in Fig. 7. For pure states it was shown
in Ref. [35] that the GQD can be simply calculated as

D(3) = min
i

[S(ρi)], (27)

where S is the Von Neumann entropy and ρi is the reduced
density matrix of the system i. In Fig. 12 we can see the
evolution of the genuine QD for the two quantum channels.
For the AD channel, there is a very good agreement between
experimental data (blue squares) and theory (blue solid line).
We can see a sudden change at p = 0.5. This is related to the
fact that the reduced entropy that takes the smallest value for
p < 0.5 is different from the one that takes the smallest value
for p > 0.5. In the inset, we show the evolution of the two
reduced entropies of interest. For p < 0.5 S(ρE) (environment
reduced entropy) is the one that takes the smallest value among
all the reduced entropies. This happens until p = 0.5, the point
at which S(ρB ) (system B reduced entropy) starts to take the
smaller value.

The reduced entropy S(ρi) is a measure of bipartite
entanglement between system i and system jk for pure
states [36]. Thus we can associate the abrupt change in GQD
with the redistribution of entanglement in the tripartite system.

En
tr

op
y

p

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0

0.8

p

G
en

ui
ne

 D
is

co
rd

1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

FIG. 12. (Color online) Evolution for the genuine quantum dis-
cord in the quasipure approximation. Evolution for the AD channel
(blue squares) and theory (blue solid line). Evolution for the PD
channel (red circles) and theory (red line). In the inset we plot the
theoretical predictions for the reduced entropies: S(ρE) in cyan and
S(ρB ) in magenta.

In particular, we can observe that the minimum reduced
entropy, corresponding to the minimum bipartite entanglement
between system i and system jk, is given by S(ρE) for p < 0.5
and by S(ρB ) for p > 0.5. In this sense, p = 0.5 appears as
the value at which the transition between these two regions
occurs.

This effect can be analyzed in terms of the monogamy
relations. For pure states, we can replace S(ρi) with C2

i(jk)
in Eq. (27), and since τijk = 0 for the AD evolution, the
monogamy relation in Eq. (6) can be rewritten as

min
i

[
C2

i(jk)

]
= min

i

[
C2

ij + C2
ik

]
, (28)

showing that the GQD can also be understood in terms of
the bipartite entanglement between two subsystems. Figure 12
shows that, for p < 0.5 the minimum tangle is given by C2

E(AB),
which corresponds to the sum of the blue and red curves in
Fig. 9. On the other hand, for p > 0.5 the minimum tangle
is C2

B(AE) related with the sum of blue and black curves in
Fig. 9. In this context, we can observe that GQD discontinuity
is related to the crossing between the two lines of Fig. 9.

For the case of the PD channel, the experimental data (red
circles) in this analysis have a reasonable agreement with
the theory (red solid line). However, in the same way as
in the analysis of the entanglement, even in the quasipure
approximation, the agreement between experiment and theory
is not perfect. We notice that an advantage of the genuine
discord, as compared to the entanglement parameter three-
tangle, is that it is able to detect genuine quantum correlations
for both tripartite families: the W type and the GHZ type [35].
This is clearly seen in Fig. 12.

Another interesting aspect of this approach is that it
permits one to analyze the nonclassicality of the tripartite
states for each dynamics. This can be done with the total
quantum discord (TQD) defined in [35]. In Fig. 13 we show
the TQD computed from the pure states obtained from the
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FIG. 13. (Color online) Evolution of the total quantum discord.
Evolution for the AD channel (blue squares) and theory (blue line).
Evolution for the PD channel (red circles) and theory (red line).

spectral decomposition of the measured states, as described
in Sec. IV A. We can see that during the evolution of the AD
channel (blue squares), the TQD takes greater values than
the ones corresponding to the evolution for the PD channel
(red circles). This is related to the fact that the W family
possesses not only genuine tripartite entanglement, but also
bipartite entanglement. We can observe that the TQD for the
case of PD is constant during all the evolution, like the invariant
shown in Fig. 8. This means that there are also changes in the
kind of correlation along the evolution. In the beginning it is
completely bipartite, and in the end it is tripartite.

The fact that some states have higher TQD indicates that
there might exist some task, like the one reported in [11], for
which these states perform better.

V. CONCLUSIONS

We presented in this paper a detailed theoretical and
experimental analysis of the flow of quantum correlations,
including entanglement and quantum discord, for an initially
entangled state of two qubits coupled to a local environment.

A recently proposed experimental photonic setup is the perfect
scenario for this study, since it allows full tomography of the
entangled system and its environment. The main purpose of our
experimental investigation was to get insights into the process
of decay of entanglement in open-system dynamics, and into
the emergence of genuine multipartite quantum correlations
between a system and its environment.

The mechanism of distribution and mutation of bipartite
entanglement was elucidated with the help of monogamy rela-
tions for open systems. The emergence of GHZ entanglement
was analyzed with the help of a useful expression for the
three-tangle, which is shown to be expressible as a product
of the initial entanglement and a function of solely the Kraus
operators that define the open-system dynamics. This result is
valid for a wide class of important quantum channels.

On the other hand, the emergence of W -type entanglement
was signaled by the appearance of genuine multipartite
quantum discord, which was investigated experimentally here.
The dynamics of this quantity may exhibit a nonanalytical
behavior, which was shown to occur at the same instant of
time when the genuine W -type entanglement between the
two-qubit system and the environment becomes maximal. We
emphasized that this nonanalytical behavior is different from
other similar phenomena already reported in the literature
for bipartite systems, and has its origin in the distribution of
correlations in the different partitions of the tripartite system.

Our experiment aims to emulate the isolated dynamics
which comes from the inclusion of the environment. While
our results imply global states with very high purity, ideal
pure states are of course never reconstructed. Nevertheless,
by considering the main component in the spectral decompo-
sition of the density matrix, we were able to conciliate our
experimental results with the theory developed for pure states.
This technique, quite useful in the present context, may be
easily generalized to other systems involving the dynamics of
quasipure states.
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