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We consider graph states of an arbitrary number of particles undergoing generic decoherence. We

present methods to obtain lower and upper bounds for the system’s entanglement in terms of that of

considerably smaller subsystems. For an important class of noisy channels, namely, the Pauli maps, these

bounds coincide and thus provide the exact analytical expression for the entanglement evolution. All of

the results apply also to (mixed) graph-diagonal states and hold true for any convex entanglement

monotone. Since any state can be locally depolarized to some graph-diagonal state, our method provides a

lower bound for the entanglement decay of any arbitrary state. Finally, this formalism also allows for the

direct identification of the robustness under size scaling of graph states in the presence of decoherence,

merely by inspection of their connectivities.
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Introduction.—Graph states [1] constitute an important
class of entangled states with broad-reaching applications
in quantum information, including measurement-based
quantum computation [2,3], quantum error correction [4],
and secure quantum communication [5]. Moreover, instan-
ces of this family, such as the Greenberger-Horne-
Zeilinger states, play a crucial role in fundamental tests
of quantum nonlocality [6]. Consequently, great effort has
been made both to theoretically understand their properties
[1,7] and to create and coherently manipulate them experi-
mentally [8].

Needless to say, it is crucial to understand the dynamics
of their entanglement in realistic scenarios, where the
system unavoidably decoheres due to experimental errors
or to the interaction with its environment. Previous studies
on the robustness of graph-state entanglement in the pres-
ence of decoherence observed a disentanglement time (or
lower bounds thereof) insensitive to the system size [9,10].
However, the disentanglement time on its own is not in
general able to provide any faithful assessment about the
entanglement’s robustness, since it can grow with the
number N of particles and yet the entanglement can get
closer to zero the faster, the larger N [11]. The full dy-
namical evolution of entanglement must then be studied to
draw conclusions on its fragility. By taking the latter into
account, the entanglement of the linear-cluster states, an
example of graph states, was shown to be robust with the
size of the system against the particular case of collective
dephasing decoherence [12].

The present work provides a general framework for the
study of the entanglement evolution of graph states under
decoherence. Our techniques apply to (i) any graph, and
graph-diagonal, states, (ii) arbitrary kinds of noise, indi-
vidual or collective, and (iii) any convex (bi- or multi-

partite) entanglement quantifier that does not increase
under local operations and classical communication
(LOCC). In the developed formalism, we consider local
measurement protocols to efficiently obtain lower and
upper bounds for the entanglement of the whole system
contained in any given partition in terms of that of a
considerably smaller subsystem consisting only of those
qubits lying on the boundary of the partition. No optimi-
zation on the full system’s parameter space is required
throughout. For an important class of noisy channels—
namely, arbitrary Pauli maps, to be defined below—the
lower and upper bounds coincide, providing thus the exact
entanglement evolution. With the same methods we also
establish a second family of lower bounds that, despite
being less tight, depend only on the connectivity of the
graph and not on its size. This allows us to assess the
robustness based on the full dynamics of the entanglement
and not just its disentanglement time. Our approach can
also be used to establish lower bounds to the entanglement
behavior of any initial quantum state.
Graph states.—Consider a mathematical graph

GðV ;EÞ � fV ; Eg, composed of a set V , of N vertices i 2
V , and a set E, of edges fi; jg 2 E connecting each vertex i
to some other j. The associated physical state is operation-
ally defined as follows: To each vertex i associate a qubit,
initialize all N qubits in the product state jgðV Þ0i �N

i2V jþii, where jþii ¼ ðj0ii þ j1iiÞ=
ffiffiffi
2

p
, and to all pairs

fi; jg of qubits joined by an edge apply a maximally en-
tangling control-Z (CZ) gate CZij ¼ j0i0ji�
h0i0jj þ j0i1jih0i1jj þ j1i0jih1i0jj � j1i1jih1i1jj. The re-

sulting N-qubit graph state is

jGðV ;EÞ0i ¼
O
fi;jg2E

CZijjgðV Þ0i: (1)
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An example of such a graph is shown in Fig. 1, where the
system is divided into three regions:A,B, and C. We call
all edges that go from one region to the other the boundary-
crossing edges and label the subset of all such edges byX.
All qubits connected by the boundary-crossing edges are in
turn called the boundary qubits, and the subset composed
of all of these is called Y.

Open-system dynamics.—Our ultimate goal is to quan-
tify the entanglement in any partition of arbitrary graph
states undergoing a generic physical process during a time
interval t. The action of such a process on an initial density
operator � can be described by a completely positive trace-
preserving map � as �t ¼ �ð�Þ, where �t is the evolved
density matrix after time t. All such maps can be expressed
in a Kraus representation �ð�Þ ¼ P

�p�K��K
y
�, whereffiffiffiffiffiffiffi

p�
p

K� are called the Kraus operators (each of which

appear with probability p�), which satisfy the normaliza-

tion conditions Tr½Ky
�K�� ¼ 1 and

P
�p� ¼ 1 [13]. The

Kraus representation guarantees that the map is (com-
pletely) positive and preserves trace normalization. When
the map can be factorized as the composition of individual
maps acting independently on each qubit, the noise is said
to be individual (or independent); if not, it is said to be
collective.

A very important class of processes is described by the
Pauli maps, separable (nonentangling) maps whose Kraus
operators are given by tensor products of Pauli operators X,
Y, and Z and the identity. Examples of these are the
collective or individual depolarizing, dephasing, or bit-
flip channels [13]. As we show next, it is possible to
determine the exact entanglement evolution of graph and
graph-diagonal states (whose formal definition is provided
below) subject to individual Pauli maps.

Exact entanglement of graph states under Pauli maps.—
Let us start by recalling that a graph state is the simulta-
neous eigenvector—of eigenvalue 1—of the N generators
of the stabilizer group, that is, of the N operators each
consisting of one X acting on each single qubit and Z’s on
all of its neighboring ones [1]. Therefore, the application of
an X or Y operator on a qubit k of a graph state is equivalent
to the application of Z operators on all neighboring qubits
of k or on all of its neighboring qubits and on k itself,

respectively. The action of any Pauli map � on a graph

state is thus equivalent to that of another separable map ~�,
whose Kraus operators ~K� are obtained from K� replacing

in the latter each X and Y operator by tensor products of Z
and identity operators according to the rule just described
[14]. Thus we need to consider how a general combination
of Z operators acts on a graph state. We use the multi-index
~� ¼ ð�1; . . . ; �NÞ, with �i ¼ f0; 1g, to denote such a
combination through Z�1 � Z�2 � � � � � Z�N . The action
of such operator on a graph state jGðV ;EÞ0i generates an-
other graph state jGðV ;EÞ ~�i, orthogonal to the former one

[1,10]. These considerations imply that �t can be expressed
as

�t ¼ �ðjGðV ;EÞ0iÞ ¼ ~�ðjGðV ;EÞ0iÞ
¼ X

~�

~p ~�jGðV ;EÞ ~�ihGðV ;EÞ ~� j: (2)

All possible 2N graph states jGðV ;EÞ ~�i associated to the

graph GðV ;EÞ form a complete orthonormal basis of the

N-qubit Hilbert space. State (2) is a graph-diagonal state.
Calculating the exact entanglement in any partition of such
a state is in general a problem that involves an optimization
over the entire parameter space of �t. In what follows we
will show that it is possible to greatly reduce the complex-
ity of this optimization problem. Consider any partition of
the state �t. We now factor out explicitly all of theCZ gates
but those corresponding to the boundary-crossing edges
and write the state as

�t ¼
O

fi;jg2E=X

CZij

X
�;�

~p�;�jGðY;XÞ�ihGðY;XÞ� j

� jgðV =YÞ�ihgðV =YÞ� j
O

fk;lg2E=X

CZkl: (3)

Here we have grouped together all indices inside ~� into
two new multiple indices � and �. Multiple index �
accounts for all possible graph states jGðY;XÞ�i generated
by applying tensor products of Z and identity operators to
the graph state jGðY;XÞ0i �

N
fi;jg2XCZij � jgðYÞ0i, associ-

ated to the boundary graph GðY;XÞ ¼ fY;Xg, with

jgðYÞ0i �
N

i2Yjþii. Multiple index �, on the other

hand, accounts for all states jgðV =YÞ�i generated from Z

or identity operators on the state jgðV =YÞ0i �
N

i2V =Yjþii
of the nonboundary qubits V =Y. Probability ~p�;� is de-

fined as the sum of all p� such that ~K�jGðY;XÞ0i �
jgðV =YÞ0i ¼ jGðY;XÞ�i � jgðV =YÞ�i. Because the CZ gates

explicitly factored out in state (3) are local unitary opera-
tions with respect to the partition of interest, the entangle-
ment of �t, Eð�tÞ, reads

E

�X
�;�

~p�;�jGðY;XÞ�ihGðY;XÞ� j � jgðV =YÞ�ihgðV =YÞ� j
�
; (4)

where E is any convex entanglement quantifier not increas-
ing under LOCC. In what follows, we first establish a lower

FIG. 1 (color online). Example of a mathematical graph asso-
ciated to a physical graph state. We have displayed a possible
partition of this graph, splitting the system in three parts A, B,
and C. The vertices and edges in gray correspond to the boundary
qubits and the boundary-crossing edges, respectively.
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and an upper bound to this expression and then show that
these bounds coincide, obtaining the exact expression of
the graph-state entanglement evolution.

First, consider an LOCC protocol consisting of measur-
ing all of the nonboundary qubits V =Y of the state within
brackets in Eq. (4) in the product basis composed by all
orthonormal states fjgðV =YÞ�ig and tracing out the mea-

sured subsystem after communicating the outcomes. The
remaining subsystem Y is flagged by each measurement
outcome �—meaning that outcome � provides full infor-
mation about to which state Y has been projected after
each measurement run. The final entanglement after the
entire protocol is then given by the average entanglement
over all measurement runs. Since E is nonincreasing under
LOCC, Eð�tÞ must satisfy

Eð�tÞ �
X
�

~p�E

�X
�

~pð�j�ÞjGðY;XÞ�ihGðY;XÞ� j
�
; (5)

where ~p� � P
� ~p�;� is the total probability of occurrence

of an event � and ~pð�j�Þ is the conditional probability of an
event � given that event � has happened.

On the other hand, the convexity of E implies that Eð�tÞ,
as given by (4), must necessarily be smaller or equal toP

� ~p�Eð
P

� ~pð�j�ÞjGðY;XÞ�ihGðY;XÞ� j � jgðV=YÞ�ihgðV=YÞ� jÞ,
which, since locally added ancillary systems do not change
the entanglement, is in turn equal to the right-hand side of
(5). This means that the right-hand side of Eq. (5) provides
at the same time an upper and a lower bound to Eð�tÞ and
therefore yields its exact value, i.e.,

Eð�tÞ ¼
X
�

~p�E

�X
�

~pð�j�ÞjGðY;XÞ�ihGðY;XÞ� j
�
: (6)

A comment on the implications of this exact result on
the computational cost is now in place. The calculation of
the entanglement of systems composed by N ¼
NY þ NV=Y qubits (NY and NV =Y being the number of

boundary and nonboundary qubits, respectively) is a prob-
lem that, in general, involves an optimization over Oð22NÞ
real parameters. Through Eq. (6), such a calculation is
reduced to that of the average entanglement over a sample
of 2NV=Y states (one for each measurement outcome �) of
NY qubits, which involves at most 2NV =Y optimizations

over Oð22NY Þ real parameters. Thus the present method
provides an exponential decrease in the computational
power needed to calculate Eð�tÞ, since only the boundary
qubits appear in the computation of Eq. (6).

In order to illustrate the power of the method, we have
calculated, using (6), the exact entanglement of formation
EF [15] of 1D graph states under the action of independent
depolarizing channels, which mix, with probability p, any
one-qubit state with the maximally mixed state 1=2 [13]. In
Fig. 2, we display the curves corresponding to the biparti-
tion first qubit versus the rest, although other partitions can
be considered. The 1D graph state (also called the linear-
cluster state), given by jLCi ¼ N

N�1
i¼1 CZi;iþ1

N
N
k jþki,

evolves from p ¼ 0 towards a final maximally mixed state
at p ¼ 1. Not only would this calculation have been im-
possible had we attempted a brute-force optimization ap-
proach, but also, since in this particular case the boundary
qubits are just two, the use of (6) allows us to perform the
calculation with no optimization at all, for an explicit
formula for the entanglement of formation exists for arbi-
trary two-qubit systems [15].
Beyond graph states and Pauli maps.—The expression

(6) is actually a method for calculating the entanglement of
any graph-diagonal state as the one in (2). Since Pauli maps
acting on initial graph-diagonal states also produce graph-
diagonal states, all of the arguments used so far are also
valid for this class of initial states. Furthermore, any quan-
tum state can be depolarized to a graph-diagonal state by
means of LOCC [16]. Using again the fact that the entan-
glement of a state does not increase if an LOCC protocol is
applied, one can see that the present method also provides
(in general, nontight) lower bounds to the decay of the
entanglement of any initial state subject to any decoher-
ence process.
Robustness of graph-state entanglement.—The devel-

oped techniques can be further simplified to obtain new
lower bounds to graph-state entanglement during all of the
evolution that, despite not being tight, can be calculated in
a much more efficient way than (5) and often turn out to be
independent of the total number of qubits. This dramati-
cally simplifies the study of the entanglement robustness of
graph states as a function of the system’s size, a central
question for the applicability of these states as quantum
information resources. As an illustration, we compare next
graph states of different sizes under the action of general
N-qubit Pauli maps � that scale with N in a way such that,
for each

ffiffiffiffiffiffiffi
p�

p
K�, the Kraus operators of the map acting on

M more qubits are obtained as tensor products of
ffiffiffiffiffiffiffi
p�

p
K�

with Pauli or identity operators on the other M qubits,
weighted with some new probabilities that sum up to one

E
F

p
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FIG. 2 (color online). Entanglement of formation (EF) in the
partition of the first particle versus the rest for 1D graph states of
2 (black), 4 (gray), and 7 (red) particles undergoing individual
depolarization as a function of the depolarization probability p.
The dashed curve represents a size-independent lower bound.

PRL 103, 030502 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JULY 2009

030502-3



(for each�), that is, so that the total probability of event�
on the N first qubits p� remains the same. All of the

individual or collective Pauli maps mentioned above fall
into this category. The state between brackets in Eq. (4)
can then be written also as

P
� ~p�jGðY;XÞ�ihGðY;XÞ� j �P

� ~pð�j�ÞjgðV =YÞ�ihgðV =YÞ� j, where ~p� � P
� ~p�;� and

~pð�j�Þ is the conditional probability of � given �. By

tracing out the state of the nonboundary qubits [i.e., by
disregarding the flag that lead to (5) above] and using again
the fact that E does not increase under LOCC, we arrive at

Eð�tÞ � E

�X
�

~p�jGðY;XÞ�ihGðY;XÞ� j
�
: (7)

Now, notice that—for the maps considered here—proba-
bility ~p� depends only on the boundary graph GðY;XÞ and
the number of nonboundary qubits directly connected to it
(the boundary graph is affected by the noise on up to its
first neighbors), not on the total system sizeN. Bound (7) is
unaffected by the addition ofM extra particles if these new
particles are not connected to the boundary subsystem. In
the latter sense, and for the considered noise scenario,
noisy graph-state entanglement is thus robust with respect
to the variation of the system size provided GðY;XÞ and its

connectivity to the rest do not vary.
Size-independent bound (7) (for the case of E ¼ EF) is

compared with the exact entanglement, again for a linear
cluster and the individual depolarizing channel, in Fig. 2.

Discussion.—In summary, in this work we have pre-
sented a general framework to study the entanglement
decay of graph states under decoherence. It is important
to emphasize that any function that satisfies the require-
ments of convexity and monotonicity under LOCC falls
into the range of applicability of the machinery developed
here. This includes genuine multipartite entanglement
quantifiers, as well as those functions aiming at quantifying
the usefulness of quantum states for given quantum infor-
mational tasks.

In conclusion, let us make the following observations.
First, the techniques developed to obtain perfect bounds
can also be applied to tackle some cases other than Pauli
maps. For example, for graph states in the presence of
individual thermal baths at an arbitrary temperature, an
LOCC procedure similar to the one used to obtain the
bound (5), but using general measurements instead of
orthogonal ones, can be used to obtain highly nontrivial
entanglement lower bounds.

Second, bound (7), when restricted to bipartite entangle-
ment, provides the same type of lower bound as the one
used in Sec. V B of Ref. [10] to find lower bounds to the
entanglement lifetime for the case of E being the negativ-

ity. The present bound has the advantage of dealing with
other possible partitions and general entanglement quanti-
fiers. All of these topics will be touched upon elsewhere.
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