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We investigate how decoherence affects the short-time separation between quantum and classical dynamics
for classically chaotic systems, within the framework of a specific model. For a wide range of parameters, the
distance between the corresponding phase-space distributions depends on a single priidaetelates an
effective Planck constarite, the Lyapunov coefficient, and the diffusion constant. This distance peaks at a
time that depends logarithmically diy, in agreement with previous estimations of the separation time for
Hamiltonian systems. However, far<1, the separation remains small, going down Vﬁﬂﬂ, so the concept
of separation time loses its meaning.
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One of the most subtle problems of quantum mechanics ifor a wide range of their values, can be combined in a single
the description of the classical world, particularly for classi-parameter, which will be shown to govern the quantum-
cally chaotic systems. Even for initial states that are classielassical transition, as conjectured in RE§] for general
cally allowed, one expects that the dynamics of the quantunshaotic systems.
and the corresponding classical system should differ, after The relevant dimensionless parameters correspond to the
some time. Indeed, while for linear systems the Wigner disdiffusion coefficientD, the kicking strengthK, and an effec-
tribution can be shown to obey the same dynamical equatiotive Planck’s constant.s. We show that, in the chaotic re-
than the classical phase-space distribution, nonlinearities withime, for any finite diffusion coefficient, and in the semiclas-
eventually set the two distributions apart. sical limit #A.4<1, the distance between the two

For a classically chaotic system, the separation time cadistributions, defined as the integral of the magnitude of their
be very short, due to the exponential stretching of the distridifference over all phase space, is proportional o
bution, for positive Lyapunov coefficients, which quickly al- :thﬁ/4D3’2, as long asy=<1. In this regime, the time for
lows the distribution to explore the nonlinearities of the sys-which this distance peaks is shown to be a logarithmic func-
tem, even if the linear dimensions of the initial wave packettion of 7.4, as estimated previously for Hamiltonian chaotic
are smaller than the typical nonlinear scale of the problemsystems. However, in this case the concept of separation time
The separation time in this case has been shown by marig not meaningful anymore, since the two distributions re-
authorg[1-3] to scale as Il /%), whereho4=%/S, andSis  main close together throughout the evolution.

a typical action of the system. Thus, even whgp<1, the The Hamiltonian of the kicked harmonic oscillator is de-
separation time can still be small, as compared to a typicdined as

evolution time of the system. Such logarithmic law may pose -, .

a probl_em to the quantum—classmal correspondence of. mac- b= P + }mv262+Acos(kQ)2 St-nn). (1)
roscopic objects, leading to consequences that contradict ob- 2m 2 =0

servation[4]. Reconciliation of theory and observation is o )

provided by the irreversible coupling of the system with aThis Hamiltonian can be shown to describe the center-of-
reservoir, which leads to the elimination of quantum signa/nass dynamics of an ion in a one-dimensional trap submitted
tures. This has been investigated numerically and analytit® @ sequence of standing-wave laser pulses, off-resonance
cally for several model§4—6]. with a transition between the electronic g'round state and an-

In the presence of the environment, one expects that th@ther internal statg9]. The wave numbek in Eq. (1) is the
logarithmic law should not hold anymore. In RET], it was ~ Projection along the trap axis of the correspondiiigntica)
shown that, for the kicked harmonic oscillator, diffusion Wave vectors of two opposite propagating pulses with ob-
helps to decrease the difference between quantum and cldidue incidence. The high degree of control in ion experi-
sical variances, so that, if one defines any arbitrary value ofents[10], plus the possibility of engineering several kinds
this difference as the “critical separation value,” the separa®f reservoir for the center-of-mass motiddl], greatly
tion time becomes infinite for a sufficiently large diffusion Stimulates the interest in using this system for testing funda-
coefficient, that is, the difference remains always smallefmental fgatures of the quqntum—classmal transition. Th.e cor-
than the critical value. In that work, however, the depen-fésponding phase space is unbounded, and no long-time lo-
dence on the relevant parameters of the difference betwediflization occurs, as opposed to the kicked rotator, which has
classical and quantum dynamics could not be elucidated. Peen subject to experimental test concerning the dependence

In this paper, we derive for the kicked harmonic oscillatorOf localization on nois¢12]. _ _ -~
[3,8] the precise dependence of the separation between quan- Itls convgment to work with the dimensionless quantities
tum and classical distributions on the parameters that contr@|=kQ, p=kP/mv, and K=k?A/mw, so that [§,p]=2i7?
macroscopicity, noise, and chaotic behavior. These factorszifig, with 7=kAQy=kv#%/2my, and AQ, being the width
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of the ground state of the harmonic oscillator. The dimen-
sionless parametey is the so-called Lamb-Dicke parameter e
[10], which measures the ratio between the ground state ks
width and the wavelength=27/k that sets the scale of the =
nonlinearity of the Hamiltonian. It is important to note that, 3] ° .
in experiments with trapped ions, the classical limit>0 ] .
can be approximated simply by changing the angle of inci- 1 ° . .
dence of the incoming pulses, or by increasing the trap fre- " 2 .«
quency. (N
The time-dependent classical evolution can be described ;] » o e
as a composition of a discrete map corresponding to the kick, . . et L-—) 'J ]
plus a rotation in phase spacg.;=R°K(x,) where x, ] fn=e i kmea 0 dnce
=(q,,p,) are the coordinates before kick (note that our 0 T T T T .
first kick corresponds ta=0). The operatiorK is defined as o & 4 6 8 10
Un=0Cn Pp=Pn*Ksin(gy), 2 FIG. 1. (Color onling SeparationD, between quantum and
and the phase space rotatiBnis given by classical distributions as function of the number of kicks, fpr
=0.3,K=2, for unitary evolution. The initial distribution is a coher-
One1= Cog(w)q; + sin(vr)p;, ent state centered around the origin of phase space with wigth

=Ap=#» much smaller than the nonlinearity scélg<1). The peak
. + + correponds to the first folding of the distribution, leading to the
Pn+1 = ~ SIN(v7)Q, + COS 7). S appearance of interference fringes in the Wigner functiopper
For definiteness, we consider hereT/6 (T=2#/v is the  insed. The lower inset displays the classical distribution. The fold-
period of the harmonic oscillatbwich leads to the so-called ing appears when the distribution starts probing the nonlinearity.
“stochastic web” in phase spaf®), i.e., a pattern of groups
of stability islands with hexagonal symmetry immerse in a In the low-temperature limih<1, the diffusion term be-
sea of chaotic trajectories. The strong-chaos regime corresomes negligible in the semiclassical regime 1, and one

sponds toK>1. then gets purely dissipative dynamics. On the other hand,
In order to study the separation between quantum anwhenn—o, I'—0, with nI" constant, one gets a purely dif-
classical dynamics, we shall use the quantity fusive dynamics. In this limit, Eq(5) is also the diffusion
equation for a classical distributio®®(x), as long asl"7?
D, = f dx|Wi(x) —V\/ﬁ'(x)|, (4) is identified with a classical diffusion constalit
The first limit has already been investigated in Refs.

[7,13], where it was shown that pure dissipation, in the sense
described above, does not change the logarithmic law for the
separation time. In fact, they show that the separation tyne

tion of the distributions is taken equal to one. A typical ex- for an initial wave packet centered around the origin of phase
ample of the variation oD, as a function of the number of S P 9 P
space, is given by

kicks, in the absence of decoherence, is shown in Fig. 1-
Separation becomes evidentBg gets larger than one. The
first peak ofD,, corresponds to the first folding of the distri-
butions, as their widths become of the order of one and the
system starts exploring the nonlinearity of the Hamiltonian.

We discuss now how decohererjce'affects the behavpr %here)\ is the logarithm of the expansion eigenvalue of the
Dy The effect of a thermal reservoir with average populationnearied map at the origin. With dissipation, the expansion
n, in the Markovian and Weak—coupllng limit, may be de- eigenvalue includes a factor dx{’'7/2), so in this casex
zggbed by the Fokker-Planck equation for the Wigner func-z)\o_n_/z, where), is the expansion eigenvalue without

dissipation. If instead one takes an average over initial con-
rl o P ditions in the chaotic region, then one can show thas
:—{—(qV\l) + —(DW)} replaced by the Lyapunov coefficietk. With dissipation,
reservoir 294 P one hasA=A,—T'7/2. The limitI"'7/2=A is never attained
— 1\, PW  PW in the chaotic regime, since before that the chaotic behavior
+T n+3)7 (9_qz+a_pz : (5)  disappears, being replaced by simple attractors in phase
space[7]. This implies that dissipation by itself is not an
whereT is the dissipation rate. For the complete evolutionefficient mechanism to increase the quantum-classical sepa-
we must add to the right-hand sid®HS) of Eq. (5) the ration time, as defined by E@6). In fact, the logarithmic
unitary evolution given by Eq). In the classical case, the dependence remains, in spite of the dissipation. For the sys-
complete evolution is obtained by adding the correspondingem considered here, in the strong chaos and weak dissipa-
Liouville term to the RHS of Eq(5). tion regime,Ay=In[(K/2)sin(v7)] and \g=In[Ksin(v7)].

whereW, andWﬁ' are respectively the Wigner and the clas-
sical distributions immediately before kick The normaliza-

te~ %In(l/n), (6)

w
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FIG. 2. Renormalized distances between quantum and classical 5 \ ! \ .
distributions, with diffusion. The seven different curves correspond T © 1 (@ i
sequentially top=0.1(dashed ling 0.04, 0.02, 0.015, 0.007, 0.005, L L
0.003 (dotted ling andD=5.13x 1072 (dashed ling 4.5x 1073, 7 2 o0 2 2 o0 =z
X107 3.25x107% 4.5x107° 1.74x107° 4.5x10° (dotted g g

:‘Iirrft). lgailIotfhti:a:jsigtsgn:cg.(():gr.ggeaclfn@iqr-l IS ttohz I'T/inatvg:'cr;gje FIG. 3. (Color onling Distributions immediately before the kick
P ponding toa g & n=20, for y=0.017. Classical(a) 7=0.04, D=4.5x1073, (b) 7

E:Jsrtsnbl-:-tt]oen second peak happens at the second folding of th:e0.007’|:):4_5>< 10°5, and (¢) 4=0.003, D=4.5x 10°5. Wigner:

(d) same parameters as (0).

We show now that diffusion can drastically change this
scenario. Without a reservoir the unitary evolution of the
Wigner function can be written 4&]

we can use€®)~g%+i5¢’ and then perform the
u-integration. One should note that, wher< K, which is
always true wherK>1 and »<1, theny<<1 implies that
D> 7" We get then the following approximation to the
Wia(X) :j dx’ L(xR,x" ) Wi(x'), (1) smoothed quantum propagator:

R 7\ i

whereL(Z ,X") is the propagator E(XR,X’) zEC'(xR,x’)[l £ s, 1)
j d_ﬂzewn%[K sina)sinw-wPP)] 5qR—- ), (8)
o 27T wheref(y)=1/4(y-2y3/3).

The correction to the classical propagator depends only on
x. Since|f(y)exp(-y?)|=<0.081, Eq.(11) is valid under the
less restrictive conditiory<1. One should note tha¢ de-
pends on the Lyapunov coefficient throughFor K> 1, the
Lyapunov coefficientA, depends logarithmically oK, and
thereforey is proportional to ex\), which differs from the
general expression conjectured in R
LYxRx") = gp’ - pR+Ksin(q@)]s(qR-q'). 9 The fact thaty rules the corrections to the classical propa-
In the classical limitr— 0. stafi oh techni gator implies that the separation between the classical and
n the classical limitz—1, stationary-phase tec niques uantum distributions, defined by E@), is also scaled by
guarantee that this classical propagator is formally recovereﬁ1is parameter. This is shown in Fig. 2, which displays the

from the quantum one. : ;
e . scaled separation, for a wide range of valuegahdD. The
Diffusion leads to a smoothing of the propagator, for bmhhorizontal axis is scaled biy,eq(7), the number of kicks for

classical and guantum cases. The classical smoothed ProRghich the first peak oD,(7) is attained. Al the curves fit in
9 the same scale, which establishes that, e (K7*)?3

corresponding to one kick plus a harmonic evolution, with
xR=[R(x),pR(x)]=R7Y(x) being the phase space coordi-
nates rotated with the inverse transformation of &j. The
Liouville evolution of the classical distributioldvﬁ'(x) can
also be written in the form of Eq(7) with the classical
propagator

N sk > 2", which is always attainable in the semiclassical limit,
LX) == (100 independently of the value @, the separation between the
_ quantum and the classical distributions goes down wjith
wherey=(p’-pR+K sing’)/2\D andxz(q’—qR)IZV“B. and therefore may become arbitrarily small. Figure 2 also

Note that wherD — 0 we recover Eq(9). In the quantum  shows that the position of the peaks as a function (/)
case diffusion leads to a factor éxDu?/ 7% in the inte- s fitted by the straight lin@peq=1.45IM1/7)+0.54, in ex-
grand of Eq.(8). When the width of this Gaussian is small, cellent agreement with Eq(6), since in this case ij
771ND <1, theu’s that effectively contribute to the integra- =1.47. Therefore, the time when the first peakllp occurs
tion are those close to the origin. This allows us to usestill behaves logarithmically with). However, in view of the
sin(u) = u— 1316 in the phase of the integrand. Moreover, if smallness oD, the concept of separation time is not mean-
x=K7*/D%2<1, the term withu® in the phase is small, so ingful anymore.
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Note that the conditiorD= 7* prevents us from taking 2 ' ' —
the limit D— 0 for every fixed value ofy. This restriction
does not necessarily imply a diffusion strong enough to sub-
stantially change the chaotic classical dynamics, since we are
interested in the semiclassical limjt<1. Figure 3 displays
the classical and quantum phase-space portraits xfor -2 - ' L
=0.017 anK =2, for different values oD and ». Sincey is ~
fixed, asn decreases, so do&s implying that it is possible, 1 =
even forD=(K#%?3, to have a nontrivial dynamics, which
is not dominated by diffusion.

Up to now, only the casg=<1 has been considered. The
b_ehaV|or qf the distance for other va_Iues,\_oi‘s d_'SplaYed In FIG. 4. Maximum distance between quantum and classical dis-
Fig. 4, which shows that the proportionality fois valid up  riputions as a function of for K=2, andD=4.5x 10°5 (circles or
to Dy=1, when the concept of separation time becomes app=4.5x 104 (crossep The linear behaviotdashed ling charac-
propriate. terized by the unit value of the slope of the linear region, is verified

In conclusion, we have shown that, in the macroscopiGyp to values ofy well beyond one, for which the distributions are
limit, and in the chaotic regime, the distance between quanclearly separated.
tum and classical distributions scalesyasK */D%?, when
x=1, which implies that, no matter how smdll is, this  ,oaxs is still present, its use to define a separation time be-
distance can be made as small as one wants, by decreasi es meaningless.
the effective Planck constant

We have also shown that the maximum distance between This work was partially supported by the Brazilian agen-
the two distributions is attained at a time that scales logaritheies CNPq, FAPERJ, and FUJB, and the programs PRONEX
mically with In(1/%). Without diffusion, this leads to the and Millennium Institute for Quantum Information. We
well-known logarithmic dependence of the separation timethank A. R. R. Carvalho, C. H. Lewenkopf, A. M. Ozorio de
With diffusion, and y=<1, although this behavior of the Almeida, and R. Vallejos for discussions.
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