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We investigate how decoherence affects the short-time separation between quantum and classical dynamics
for classically chaotic systems, within the framework of a specific model. For a wide range of parameters, the
distance between the corresponding phase-space distributions depends on a single parameterx that relates an
effective Planck constant"eff, the Lyapunov coefficient, and the diffusion constant. This distance peaks at a
time that depends logarithmically on"eff, in agreement with previous estimations of the separation time for
Hamiltonian systems. However, forx&1, the separation remains small, going down with"eff

2 , so the concept
of separation time loses its meaning.
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One of the most subtle problems of quantum mechanics is
the description of the classical world, particularly for classi-
cally chaotic systems. Even for initial states that are classi-
cally allowed, one expects that the dynamics of the quantum
and the corresponding classical system should differ, after
some time. Indeed, while for linear systems the Wigner dis-
tribution can be shown to obey the same dynamical equation
than the classical phase-space distribution, nonlinearities will
eventually set the two distributions apart.

For a classically chaotic system, the separation time can
be very short, due to the exponential stretching of the distri-
bution, for positive Lyapunov coefficients, which quickly al-
lows the distribution to explore the nonlinearities of the sys-
tem, even if the linear dimensions of the initial wave packet
are smaller than the typical nonlinear scale of the problem.
The separation time in this case has been shown by many
authorsf1–3g to scale as lns1/"effd, where"eff=" /S, andS is
a typical action of the system. Thus, even when"eff!1, the
separation time can still be small, as compared to a typical
evolution time of the system. Such logarithmic law may pose
a problem to the quantum-classical correspondence of mac-
roscopic objects, leading to consequences that contradict ob-
servation f4g. Reconciliation of theory and observation is
provided by the irreversible coupling of the system with a
reservoir, which leads to the elimination of quantum signa-
tures. This has been investigated numerically and analyti-
cally for several modelsf4–6g.

In the presence of the environment, one expects that the
logarithmic law should not hold anymore. In Ref.f7g, it was
shown that, for the kicked harmonic oscillator, diffusion
helps to decrease the difference between quantum and clas-
sical variances, so that, if one defines any arbitrary value of
this difference as the “critical separation value,” the separa-
tion time becomes infinite for a sufficiently large diffusion
coefficient, that is, the difference remains always smaller
than the critical value. In that work, however, the depen-
dence on the relevant parameters of the difference between
classical and quantum dynamics could not be elucidated.

In this paper, we derive for the kicked harmonic oscillator
f3,8g the precise dependence of the separation between quan-
tum and classical distributions on the parameters that control
macroscopicity, noise, and chaotic behavior. These factors,

for a wide range of their values, can be combined in a single
parameter, which will be shown to govern the quantum-
classical transition, as conjectured in Ref.f6g for general
chaotic systems.

The relevant dimensionless parameters correspond to the
diffusion coefficientD, the kicking strengthK, and an effec-
tive Planck’s constant"eff. We show that, in the chaotic re-
gime, for any finite diffusion coefficient, and in the semiclas-
sical limit "eff!1, the distance between the two
distributions, defined as the integral of the magnitude of their
difference over all phase space, is proportional tox
=K"eff

2 /4D3/2, as long asx&1. In this regime, the time for
which this distance peaks is shown to be a logarithmic func-
tion of "eff, as estimated previously for Hamiltonian chaotic
systems. However, in this case the concept of separation time
is not meaningful anymore, since the two distributions re-
main close together throughout the evolution.

The Hamiltonian of the kicked harmonic oscillator is de-
fined as

Ĥ =
P̂2

2m
+

1

2
mn2Q̂2 + A cosskQ̂do

n=0

`

dst − ntd. s1d

This Hamiltonian can be shown to describe the center-of-
mass dynamics of an ion in a one-dimensional trap submitted
to a sequence of standing-wave laser pulses, off-resonance
with a transition between the electronic ground state and an-
other internal statef9g. The wave numberk in Eq. s1d is the
projection along the trap axis of the correspondingsidenticald
wave vectors of two opposite propagating pulses with ob-
lique incidence. The high degree of control in ion experi-
mentsf10g, plus the possibility of engineering several kinds
of reservoir for the center-of-mass motionf11g, greatly
stimulates the interest in using this system for testing funda-
mental features of the quantum-classical transition. The cor-
responding phase space is unbounded, and no long-time lo-
calization occurs, as opposed to the kicked rotator, which has
been subject to experimental test concerning the dependence
of localization on noisef12g.

It is convenient to work with the dimensionless quantities

q̂=kQ̂, p̂=kP̂/mn, and K=k2A/mn, so that fq̂, p̂g=2ih2

; i"eff, with h=kDQ0=kÎ" /2mn, andDQ0 being the width
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of the ground state of the harmonic oscillator. The dimen-
sionless parameterh is the so-called Lamb-Dicke parameter
f10g, which measures the ratio between the ground state
width and the wavelengthl=2p /k that sets the scale of the
nonlinearity of the Hamiltonian. It is important to note that,
in experiments with trapped ions, the classical limith→0
can be approximated simply by changing the angle of inci-
dence of the incoming pulses, or by increasing the trap fre-
quency.

The time-dependent classical evolution can be described
as a composition of a discrete map corresponding to the kick,
plus a rotation in phase space:xn+1=R +K sxnd where xn

;sqn,pnd are the coordinates before kickn snote that our
first kick corresponds ton=0d. The operationK is defined as

qn
+ = qn, pn

+ = pn + K sinsqnd, s2d

and the phase space rotationR is given by

qn+1 = cossntdqn
+ + sinsntdpn

+,

pn+1 = − sinsntdqn
+ + cossntdpn

+. s3d

For definiteness, we consider heret=T/6 sT=2p /n is the
period of the harmonic oscillatord wich leads to the so-called
“stochastic web” in phase spacef3g, i.e., a pattern of groups
of stability islands with hexagonal symmetry immerse in a
sea of chaotic trajectories. The strong-chaos regime corre-
sponds toK@1.

In order to study the separation between quantum and
classical dynamics, we shall use the quantity

Dn ;E dxuWnsxd − Wn
clsxdu, s4d

whereWn andWn
cl are respectively the Wigner and the clas-

sical distributions immediately before kickn. The normaliza-
tion of the distributions is taken equal to one. A typical ex-
ample of the variation ofDn as a function of the number of
kicks, in the absence of decoherence, is shown in Fig. 1.
Separation becomes evident asDn gets larger than one. The
first peak ofDn corresponds to the first folding of the distri-
butions, as their widths become of the order of one and the
system starts exploring the nonlinearity of the Hamiltonian.

We discuss now how decoherence affects the behavior of
Dn. The effect of a thermal reservoir with average population
n̄, in the Markovian and weak-coupling limit, may be de-
scribed by the Fokker-Planck equation for the Wigner func-
tion

U ]W

]t
U

reservoir
=

G

2
F ]

]q
sqWd +

]

]p
spWdG

+ GSn̄ +
1

2
Dh2S ]2W

]q2 +
]2W

]p2 D , s5d

whereG is the dissipation rate. For the complete evolution
we must add to the right-hand sidesRHSd of Eq. s5d the
unitary evolution given by Eq.s1d. In the classical case, the
complete evolution is obtained by adding the corresponding
Liouville term to the RHS of Eq.s5d.

In the low-temperature limitn̄!1, the diffusion term be-
comes negligible in the semiclassical regimeh!1, and one
then gets purely dissipative dynamics. On the other hand,
when n̄→`, G→0, with n̄G constant, one gets a purely dif-
fusive dynamics. In this limit, Eq.s5d is also the diffusion
equation for a classical distributionWclsxd, as long asn̄Gh2

is identified with a classical diffusion constantG̃.
The first limit has already been investigated in Refs.

f7,13g, where it was shown that pure dissipation, in the sense
described above, does not change the logarithmic law for the
separation time. In fact, they show that the separation timetS,
for an initial wave packet centered around the origin of phase
space, is given by

tS<
t

l
lns1/hd, s6d

wherel is the logarithm of the expansion eigenvalue of the
linearized map at the origin. With dissipation, the expansion
eigenvalue includes a factor exps−Gt /2d, so in this casel
=l0−Gt /2, wherel0 is the expansion eigenvalue without
dissipation. If instead one takes an average over initial con-
ditions in the chaotic region, then one can show thatl is
replaced by the Lyapunov coefficientL. With dissipation,
one hasL=L0−Gt /2. The limit Gt /2=L0 is never attained
in the chaotic regime, since before that the chaotic behavior
disappears, being replaced by simple attractors in phase
spacef7g. This implies that dissipation by itself is not an
efficient mechanism to increase the quantum-classical sepa-
ration time, as defined by Eq.s6d. In fact, the logarithmic
dependence remains, in spite of the dissipation. For the sys-
tem considered here, in the strong chaos and weak dissipa-
tion regime,L0= lnfsK /2dsinsntdg andl0= lnfKsinsntdg.

FIG. 1. sColor onlined SeparationDn between quantum and
classical distributions as function of the number of kicks, forh
=0.3,K=2, for unitary evolution. The initial distribution is a coher-
ent state centered around the origin of phase space with widthDq
=Dp=h much smaller than the nonlinearity scalesh!1d. The peak
correponds to the first folding of the distribution, leading to the
appearance of interference fringes in the Wigner functionsupper
insetd. The lower inset displays the classical distribution. The fold-
ing appears when the distribution starts probing the nonlinearity.
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We show now that diffusion can drastically change this
scenario. Without a reservoir the unitary evolution of the
Wigner function can be written asf2g

Wn+1sxd =E dx8LsxR,x8dWnsx8d, s7d

whereLsxR,x8d is the propagator

E
−`

` dm

2ph2esi/h2dfK sinsq8dsinsmd−mspR−p8dgdsqR − q8d, s8d

corresponding to one kick plus a harmonic evolution, with
xR;fqRsxd ,pRsxdg;R−1sxd being the phase space coordi-
nates rotated with the inverse transformation of Eq.s3d. The
Liouville evolution of the classical distributionWn

clsxd can
also be written in the form of Eq.s7d with the classical
propagator

LclsxR,x8d ; dfp8 − pR + K sinsq8dgdsqR − q8d. s9d

In the classical limith→0, stationary-phase techniquesf2g
guarantee that this classical propagator is formally recovered
from the quantum one.

Diffusion leads to a smoothing of the propagator, for both
classical and quantum cases. The classical smoothed propa-
gator becomes

L̃clsxR,x8d =
e−sx2+y2d

4pD
, s10d

wherey=sp8−pR+K sinq8d /2ÎD andx=sq8−qRd /2ÎD.
Note that whenD→0 we recover Eq.s9d. In the quantum

case diffusion leads to a factor exps−Dm2/h4d in the inte-
grand of Eq.s8d. When the width of this Gaussian is small,
h2/ÎD!1, them’s that effectively contribute to the integra-
tion are those close to the origin. This allows us to use
sinsmd<m−m3/6 in the phase of the integrand. Moreover, if
x=Kh4/D3/2!1, the term withm3 in the phase is small, so

we can use eisu+dd<eiu+ id eiu and then perform the
m-integration. One should note that, whenh,ÎK, which is
always true whenK.1 andh,1, thenx,1 implies that
D.h4. We get then the following approximation to the
smoothed quantum propagator:

L̃sxR,x8d < L̃clsxR,x8df1 + x sinsq8dfsydg, s11d

where fsyd=1/4sy−2y3/3d.
The correction to the classical propagator depends only on

x. Since ufsydexps−y2duø0.081, Eq.s11d is valid under the
less restrictive conditionx&1. One should note thatx de-
pends on the Lyapunov coefficient throughK. For K@1, the
Lyapunov coefficientL0 depends logarithmically onK, and
thereforex is proportional to expsL0d, which differs from the
general expression conjectured in Ref.f6g.

The fact thatx rules the corrections to the classical propa-
gator implies that the separation between the classical and
quantum distributions, defined by Eq.s4d, is also scaled by
this parameter. This is shown in Fig. 2, which displays the
scaled separation, for a wide range of values ofh andD. The
horizontal axis is scaled bynpeakshd, the number of kicks for
which the first peak ofDnshd is attained. All the curves fit in
the same scale, which establishes that, forDù sKh4d2/3

.h4, which is always attainable in the semiclassical limit,
independently of the value ofD, the separation between the
quantum and the classical distributions goes down withh4,
and therefore may become arbitrarily small. Figure 2 also
shows that the position of the peaks as a function of lns1/hd
is fitted by the straight linenpeak=1.45 lns1/hd+0.54, in ex-
cellent agreement with Eq.s6d, since in this case 1/l0
=1.47. Therefore, the time when the first peak inDn occurs
still behaves logarithmically withh. However, in view of the
smallness ofDn, the concept of separation time is not mean-
ingful anymore.

FIG. 2. Renormalized distances between quantum and classical
distributions, with diffusion. The seven different curves correspond
sequentially toh=0.1 sdashed lined, 0.04, 0.02, 0.015, 0.007, 0.005,
0.003 sdotted lined andD=5.13310−2 sdashed lined, 4.5310−3, 7
310−4, 3.25310−4, 4.5310−5, 1.74310−5, 4.5310−6 sdotted
lined. In all the cases,x=0.017.npeakshdt is the time at which the
first peak of the distance corresponding to a given value ofh oc-
curs. The second peak happens at the second folding of the
distribution.

FIG. 3. sColor onlined Distributions immediately before the kick
n=20, for x=0.017. Classical:sad h=0.04, D=4.5310−3, sbd h
=0.007, D=4.5310−5, and scd h=0.003, D=4.5310−6. Wigner:
sdd same parameters as inscd.

DECOHERENCE AND THE QUANTUM-CLASSICAL LIMIT… PHYSICAL REVIEW A 71, 010101sRd s2005d

RAPID COMMUNICATIONS

010101-3



Note that the conditionDùh4 prevents us from taking
the limit D→0 for every fixed value ofh. This restriction
does not necessarily imply a diffusion strong enough to sub-
stantially change the chaotic classical dynamics, since we are
interested in the semiclassical limith2!1. Figure 3 displays
the classical and quantum phase-space portraits forx
=0.017 andK=2, for different values ofD andh. Sincex is
fixed, ash decreases, so doesD, implying that it is possible,
even forDù sKh4d2/3, to have a nontrivial dynamics, which
is not dominated by diffusion.

Up to now, only the casex&1 has been considered. The
behavior of the distance for other values ofx is displayed in
Fig. 4, which shows that the proportionality tox is valid up
to Dn<1, when the concept of separation time becomes ap-
propriate.

In conclusion, we have shown that, in the macroscopic
limit, and in the chaotic regime, the distance between quan-
tum and classical distributions scales asx=Kh4/D3/2, when
x&1, which implies that, no matter how smallD is, this
distance can be made as small as one wants, by decreasing
the effective Planck constanth.

We have also shown that the maximum distance between
the two distributions is attained at a time that scales logarith-
mically with lns1/hd. Without diffusion, this leads to the
well-known logarithmic dependence of the separation time.
With diffusion, and x&1, although this behavior of the

peaks is still present, its use to define a separation time be-
comes meaningless.
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