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Measurement of a microwave field amplitude beyond the standard quantum limit
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We report a quantum measurement beyond the standard quantum limit (SQL) for the amplitude of a small
displacement acting on a cavity field. This measurement uses as a resource an entangled mesoscopic state,
prepared by the resonant interaction of a circular Rydberg atom with a field stored in a superconducting cavity.
We analyze the measurement process in terms of Fisher information and prove that it is, in principle, optimal.
The experimental precision achieved, 2.4 dB below the SQL, is well understood in terms of experimental
imperfections. This method could be transposed to other systems, particularly to circuit QED, for the precise
measurement of weak forces acting on oscillators.
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I. INTRODUCTION

Metrological measurements are of paramount importance
in fundamental physics and technology. They generally rely on
the estimation of the value of a parameter β (e.g., the amplitude
of a dc or ac electromagnetic field and a small mechanical
force) controlling the evolution of a quantum system. This
system, initially prepared in a resource state, evolves according
to the parameter value and is finally measured directly or
indirectly through ancillae.

Due to the intrinsically statistical nature of the quantum
measurement, the final standard deviation �β of the parameter
estimation scales as 1/

√
ν, in the limit of a large number

ν of experimental realizations: �β = �β(1)/
√

ν (saturated
Cramér-Rao bound [1,2]). Here �β(1) = 1/

√
F , where F is

the Fisher information provided by a single realization of the
measurement protocol.

For a given resource state, F is bounded from above
by the quantum Fisher information FQ. It measures the
maximal information on β that can be imprinted onto
the resource state and is independent upon the final measure-
ment procedure (quantum Cramér-Rao bound [3]). Optimizing
the measurement precision amounts to choosing the resource
state so that FQ is large and to choosing the final system’s
measurement to realize F = FQ.

When the resource state is classical (e.g., a coherent state
for a harmonic oscillator), FQ defines the standard quantum
limit (SQL) [4]. This limit can be overcome by using a
nonclassical resource state [5], such as a squeezed state [6]
or a mesoscopic quantum state superposition (MQSS) [7].
This strategy has led to a considerable development for
quantum-enabled metrology [8] beyond the SQL. Among the
many remarkable achievements of this active field, we mention
sensitive optical phase measurements [9], magnetometry [10],
and gravitational wave detection [11].

A particularly interesting class of measurements is that of
a weak force acting on an oscillatorlike system and resulting
in a small displacement of the resource state [12,13]. It is
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relevant for the detection of small forces in the optomechanical
context [14], of a photon scattering recoil in ion traps [15], and
of weak fields in spin systems [16].

For harmonic-oscillator displacements, the SQL is simply
determined by the extension of the Wigner distribution in phase
space of a classical coherent state, of the order of

√
�. As

shown in Ref. [17], beating the SQL thus amounts to using a
resource state whose Wigner representation has structures at a
scale lower than

√
�, i.e., sub-Planck structures, conspicuous

in squeezed states or in MQSS.
In this paper we report the quantum-enabled measurement

of a microwave field amplitude based on a mesoscopic non-
classical resource state of an entangled atom-cavity system.
It uses the resonant interaction between an initially coherent
field in a superconducting cavity and a single circular Rydberg
atom, as proposed in Ref. [18]. This interaction prepares
a MQSS entangled state, which is used as a resource for
measuring the amplitude of a microwave field injected into
the cavity, and leads to a quantum Fisher information value
much larger than that resulting from the initial coherent state.
The resource state undergoes the displacement by an amplitude
β to be measured. The subsequent atom-field interaction and
the final state-selective atomic detection lead to a quantum
measurement approaching the quantum Cramér-Rao bound.
The precision �β(1) is found to beat the SQL, by 2.4 dB. This
quantum-enabled measurement protocol could be fruitfully
transposed in other contexts, particularly that of circuit QED.

The paper is organized in the following way. Section II
describes in more detail the measurement protocol. Section III
analyzes the measurement in terms of Fisher information and
shows that it ideally saturates the quantum Cramér-Rao bound.
Section IV is devoted to the description of the experiment and
Sec. V to a discussion of its results. We summarize in Sec. VI.

II. MEASUREMENT PROTOCOL

The aim of this experiment is to measure the amplitude β of
a small displacement produced by a classical source coupled to
a cavity. Along the lines of Ref. [18], we use as the measuring
system a two-level atom (upper state |e〉, lower state |g〉) and a
field stored in the cavity. The resource state is produced by the
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FIG. 1. Schematic evolution of the cavity field in phase space
during the experimental protocol measuring small coherent field
displacement β. See the text for details.

resonant interaction during a time T1 of the atom, initially in
|e〉, with a coherent field |α〉 = e−α2/2 ∑

n(αn/
√

n!)|n〉, where
|n〉 is the Fock state with n photons and α is taken as real
without loss of generality.

The atom undergoes in the initial coherent field a quantum
Rabi oscillation entangling it with the cavity. In an approxi-
mation valid for a large enough α and for moderate interaction
times, the atom-field state |�〉 after interaction time T1 reads

|�〉 � 1√
2

[e−i�α2 |α+〉|�+〉 − ei�α2 |α−〉|�−〉], (1)

where � = �0T1/4α and the field and atomic states are

|α±〉 = |αe∓i�〉, (2)

|�±〉 = 1√
2

[e∓i�|e〉 ± |g〉], (3)

respectively [19]. The field is thus split into two coherent
components |α±〉, which rotate in opposite directions in phase
space.

For small values of T1, these two coherent fields still par-
tially overlap. The atom and the cavity are not yet maximally
entangled and the population of state |g〉 undergoes a Rabi
oscillation at the average frequency �0

√
α2 + 1. As the two

components separate further, the atom-cavity entanglement
grows and the Rabi oscillations accordingly collapse after the
characteristic collapse time Tc = 2

√
2/�0. For T1 > Tc, the

two field components are nearly orthogonal and the atom-field
system is cast in a MQSS.

Figure 1 schematically shows the evolution of the field in
phase space starting from the initial state |α〉. The creation
of the resource MQSS corresponds to two arrows labeled
1. After time T1, we perform the displacement by a real
amplitude β, both field components being changed into |α±

β 〉 =
e−iαβ sin �|α± + β〉 (see arrows labeled 2).

The measurement of the system starts after this injection.
It relies on the observation of a revival of the Rabi oscillation.
As shown in Refs. [20,21], the Rabi signal can be revived after
its initial collapse by applying a time inversion, induced by a
π -phase shift between atomic states |g〉 and |e〉. This inversion
results in an atom-cavity state

|�〉 = 1√
2

[
e−i�α2 |α+

β 〉|� ′−〉 − ei�α2 |α−
β 〉|� ′+〉], (4)

with the new atomic states reading

|� ′±〉 = 1√
2

[e∓i�|e〉 ∓ |g〉]. (5)

Due to this atomic phase flip, the subsequent field evolution
is time reversed from that during time T1. The two components
of the field MQSS merge again (arrows labeled 3 in Fig. 1) for
a measurement time T2 around T1. At the end of this period,
the interaction is stopped by detuning the atomic frequency
out of the cavity resonance and the atomic state is measured
in the {|g〉,|e〉} basis.

For T2 = T1, the final probability Pg for finding the atom
in state |g〉 has the following simple expression:

Pg = 1
2 {1 + cos(2Dβ)} ≈ 1

2 {1 + cos(�0T1β)}, (6)

where D = 2α sin � is the separation, in phase space, of
the field components |α±〉 before the measurement. These
expressions hold when D is notably larger than 1 (atom-field
entanglement condition) and when � is not too large (implying
that α is large) so that D ≈ �0T1/2. The Pg signal is an
oscillatory function of β, providing direct information on
the displacement amplitude. Note that for large initial field
amplitude α, the oscillation period is independent of α.

It is noteworthy that the oscillation phase 2Dβ is about
4 times the shaded area in Fig. 1 and reflects the geometric
phase accumulated by the MQSS coherent components during
their excursion in phase space. Clearly, this area, and hence the
sensitivity, is maximal when the phase of the initial coherent
state matches that of the measured displacement.

Moreover, these oscillations are not limited to small values
of β, allowing one in principle to measure arbitrarily large
field amplitudes with the same high precision. Note that the Pg

oscillation period π/D is the same as that of the oscillations
observed close to the origin in phase space for the Wigner
function of the MQSS (|α+〉 + |α−〉)/√2. Indeed, such states,
known as photonic cat states [22], can also be used for sub-
Planck metrology. However, the corresponding methods are
limited to small-β values β < 1.

In the general case of T2 �= T1, the final probability Pg reads

Pg = 1
2 {1 + C cos(γ )}, (7)

where

γ = �0T2β + �0α(T2 − T1). (8)

The contrast C of this oscillating function of β is set by the
overlap of the coherent field components at T2, given by

C = exp
{ − �2

0(T1 − T2)2/8
}
. (9)

The highest sensitivity for a given resource state (fixed T1

and large α) is obtained by compromising a faster oscillation
frequency (obtained for large T2 values) and the decay of C

for T2 > T1.

III. FISHER INFORMATION

Let us now discuss the performance of this measurement in
terms of Fisher information. The absolute quantum limit for a
given resource state is set by the quantum Fisher information
(QFI) FQ. Following Refs. [23,24], the QFI is linked to the
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variance in the resource state of the operator ĥ = −i(â† − â)
generating the unitary displacement D̂(β) = eβ(â†−â):

FQ = 4〈(�ĥ)2〉. (10)

Using the resource state of Eq. (1) and for the same approxi-
mation as above, we obtain

FQ = 4(1 + D2). (11)

The smallest value of FQ is 4, corresponding to a coherent
resource state (T1 = 0). It thus defines the SQL and leads
to �β

(1)
SQL = 0.5. Increasing the resource size D and using a

proper measurement, we go beyond the SQL and enter the
sub-Planck region. Ultimately, for � = π/2 reached at T1 =
2πα/�0, the size D is maximal (D = 2α) and FQ ≈ 16α2.
This corresponds to the Heisenberg limit in this context. Since
in our experiment, as will be discussed later, we are technically
limited by the interaction duration, rather than by the resource
energy, from now on we focus on moderately large values of
T1 so that

FQ ≈ 4
(
1 + �2

0T
2

1

)
. (12)

The actual information extracted by the measurement
protocol is measured by the Fisher information (FI) of the
atomic signal. For a discrete measurement with two possible
outcomes s ∈ {g,e}, this FI is given by

F (β) =
∑

s

Ps(β)

(
∂

∂β
ln Ps(β)

)2

. (13)

Using (7), we get

F (β,T1,T2) = C2�2
0T

2
2

sin2(γ )

1 − C2 cos2(γ )
. (14)

The variation of F with γ , except for C = 1, reflects
the oscillations of Pg . Maximum information is obtained
at the midfringe points where Pg = 1/2, i.e., cos γ = 0 or
γ = π/2 + pπ with p integer, and we get then

Fmax(T1,T2) = C(T1,T2)2�2
0T

2
2 . (15)

It is easy to show that, as expected, Fmax(T1,T2) is always lower
than FQ(T1). Getting the maximum information results from
a compromise between two opposite trends. On the one hand,
the quantum phase accumulated on the coherent components
trajectories increases linearly with T2. On the other hand, the
contrast C decreases rapidly when T2 increases above T1. The
maximum resulting from this compromise indeed approaches
the FQ limit for large enough D values (the difference is below
1.8% for D > 2).

IV. EXPERIMENTAL SETUP

The scheme of the experimental setup is presented in
Fig. 2(a). The field is stored in a high-Q superconducting
cavity C. Its resonant frequency is ωc/2π = 51.1 GHz and its
energy damping time is Tc = 65 ms. The cavity is cooled down
to 0.8 K with 0.06 thermal photons per mode on the average.
The injection into C is made by the classical microwave source
S via diffraction on cavity mirrors’ edges.

The levels |g〉 and |e〉 are the circular Rydberg levels
with principal quantum numbers 50 and 51, respectively. The

FIG. 2. (a) Scheme of the experimental setup. A coherent field
is injected into a high-Q cavity C by a microwave source S. A
single Rydberg atom (magenta toroid) flying across the cavity mode
is prepared from atomic beam in B and its state is detected in D.
The atomic frequency ωa is tuned via Stark shifting atomic levels in
an electric field applied between the cavity mirrors by the voltage
source V. (b) Temporal variation of the atom-cavity coupling �. (c)
Modulation of the atomic frequency ωa . (d) The coherent field β to
be measured is injected in C at time t = 0.

|g〉 → |e〉 transition is resonant with C. The atom is initially
prepared in |g〉 in box B from a thermal beam of ground-state
rubidium atoms. After having interacted with C, the atomic
states are selectively detected by field ionization in D.

The cavity Gaussian mode has a waist w = 5.96 mm. The
atom-cavity vacuum Rabi frequency at the cavity center is
�0/2π = 46 kHz. The atom crosses C with a v = 250 m/s
velocity. The temporal variation of the atom-cavity coupling
is thus �(t) = �0 exp[−v2t2/w2], where the time origin is set
when the atom is at the cavity center [see Fig. 2(b)]. It is con-
venient to define an effective interaction time T . Between the
times t and t ′, it is given by T (t,t ′) = ∫ t ′

t
exp{−(vτ/w)2}dτ .

The maximal interaction time corresponding to the whole
cavity mode extension is thus Tmax = √

πw/v ≈ 42 μs. From
now on all interaction times are given in terms of effective
times.

The atomic resonance frequency ωa is controlled via the
Stark shift produced by an electric potential difference V
applied across the mirrors. This allows us to quickly switch on
and off the resonant atom-cavity interaction and thus to control
its duration, as shown in Fig. 2(c). In addition, the same control
is used to realize the atomic phase shift operation around time
t = 0.

We first investigate the collapse of the Rabi oscillations.
We initially inject in C a coherent field |α〉 with 12.7 photons
on the average α = √

12.7 and then send an atom in |g〉. We
let the atom and the cavity interact for a time T1 and record
Pg(T1) by repeating the experimental sequence 1000 times for
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FIG. 3. Quantum Rabi signals. (a) Collapse of the Pg(T1) os-
cillations. The diamonds show experimental values (error bars are
statistical). The solid lines result from a numerical integration of
the atom-field evolution with no free parameters. (b) Revival of the
Rabi oscillations Pg(T2) for T1 = 13.4 μs. The open blue circles are
experimental values with statistical error bars. The closed red circles
show the induced revival of the Rabi oscillation after injecting a small
coherent field |β = 1〉 into C at T2 = 0. The solid lines are as in (a).

each T1 value. Figure 3(a) shows the evolution of Pg(T1) (open
diamonds). It exhibits the collapse due to the photon-number
dispersion in α. The solid line is the result of a numerical
integration of the atom-field interaction taking into account the
limited state resolution of the detection (wrong state attribution
in 5% of cases) and the longitudinal spread of the atomic
sample (about 1 mm), which is non-negligible at the scale of
the cavity mode waist.

We now proceed with the complete sequence, involving the
revival of the Rabi oscillations induced by the atomic phase
flip. The atom, initially in |g〉, interacts first resonantly with
the cavity for time T1. When it reaches the cavity center, at
time t = 0, a short voltage pulse is applied across the mirrors.
It detunes the atomic frequency by 1.25 MHz during a 0.4-μs
time interval, producing the required π phase shift between
states |g〉 and |e〉. The resonant interaction then resumes for
the time T2. Figure 3(b) shows (blue circles) the revival of
the Rabi oscillations, for T1 = 13.4 μs, induced by the phase
reversal. The contrast of the revival is slightly reduced by
the experimental imperfections. These imperfections are well
understood and measured, as shown by the agreement with the
solid blue line resulting from a numerical model.

The field amplitude β to be measured is injected into C at
time t = 0 during the time reversal phase flip [see Fig. 2(d)].
Since at this time the atom is detuned from the cavity mode,
it is quite impervious to the resonant injection. The closed red
circles in Fig. 3(b) present the revival signal after the injection
of an amplitude β = 1 and the solid red line corresponds to
the numerical model. The phase shift between the red and blue
curves is about 1.3π for T2 = T1, in good agreement with our
expectation: 1.23π for D = 1.94 used here.

V. RESULTS

We have recorded, for fixed T1 and T2 values, the Pg(β)
signal as a function of the injected amplitude, making it
possible to determine the available FI. For each T1, we choose

FIG. 4. Typical experimental interference signal Pg(β). The
points here are experimental for T1 = 12.0 μs and T2 = 13.5 μs.
The dashed line is an interpolation from which we calculate the
Fisher information (the solid line is related to the right y axis).

two T2 values closest to T1, such that Pg = 1/2 for β = 0.
This midfringe condition provides the best sensitivity for the
measurement of small displacements.

The circles in Fig. 4 present the experimental signal as a
function of β for T1 = 12 μs and T2 = 13.5 μs. The dashed
line is an interpolation with a polynomial function. From this
continuous interpolation, we calculate the FI (solid line). It
is, as expected, maximum for β = 0 and reaches a value, 7,
which is notably larger than FSQL = 4. The FI of the ideal
signal of (15) would be 14.9. The information loss is due
to dispersion in T1 and T2, which originates from the finite
longitudinal spread of the atomic samples, having a larger
effect for larger displacements.

Figure 5 presents (red circles) the square root of the FI
obtained (equal to 1/�β(1)) as a function of T2 for five values
of T1. As expected, for each T1 the largest FI corresponds to
the largest T2 value. The solid curves are given by (15). The
horizontal bands correspond to the sub-Planck region with F

between FSQL = 4 and FQ = 4 + �2
0T

2
1 . As explained above,

the theoretical FI is maximal for a value of T2 larger than T1.
This maximum is very close to the QFI limit for all nonzero
values of D considered. The convergence to optimality of this
measurement process is thus quite fast.

The difference between the measured data and the theory
is due to the spatial spread of the atomic samples leading to
a dispersion in �0, T1, and T2. This spread is increasingly
disturbing when T2 increases, preventing us from exploiting
midfringe values of T2 larger than those presented here.

Note that, for a coherent resource state (T1 = 0), this mea-
surement scheme is far from being optimal, since it provides a
FI value smaller than FSQL for all measurement durations T2. In
this simple case, the SQL can be straightforwardly obtained by
a quantum nondemolition measurement of the photon-number
parity after the displacement starting from the vacuum state.
It is easy to show that the FI of this measurement procedure
equals exactly the QFI of the vacuum state. By increasing T1,
we enter into the nonclassical regime and take advantage of
the MQSS to overcome the SQL.
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FIG. 5. Square-root Fisher information versus measurement time.
Five subplots (from bottom to top) correspond to five values of the
state preparation time T1: 0, 6.8, 9.2, 12.0, and 14.7 μs, respectively.
The circles are FI extracted from the measured data. The straight line
is theoretical FI given by (15). The horizontal bands correspond to the
sub-Planck region of FI values between the SQL value of FSQL = 4
and the QFI FQ given by (12). The vertical dashed lines indicate the
time of the complete revival (T2 = T1) and are given for reference.

We summarize our main precision measurement results in
Fig. 6. We plot �β(1) versus the preparation time T1 and,
equivalently, versus the resource MQSS size D. We choose
for all T1 values the largest T2 in the pair. The red points
are experimental. The solid line is the optimum theoretical FI
maximized over both T2 and β. The blue band is the sub-Planck
region, limited by the SQL from above and the QFI from
below. The measurements with D > 3 go beyond the SQL
and approach the QFI for increasing D values.

For the measurement with the largest D (i.e., T1 =
14.7 μs), we give all the relevant theoretical and experimental
values of F and FQ in Table I. The first row corresponds to
the prediction of the simple model of Sec. III. The second row
takes into account in an explicit numerical simulation a small
distortion of the coherent components during the resonant
atom-field interaction, neglected in (12). It reduces FQ by
about 5%. The next lines give three sets of FI values for
the two T2 values: 1, the ideal theoretical FI approximated
by (15); 2, the same FI with the detector imperfection taken
into account; and 3, the FI extracted from the measured data.
The discrepancy between the expected and measured FI can

FIG. 6. Measurement precision versus preparation time and
superposition size. The circles are �β (1) extracted from the measured
data. The straight line is F of (15) maximized over measurement
time T2. The shaded (cyan) zone is the sub-Planck region bound from
below by �βQ = F −0.5

Q for a resource size D and from above by
�βSQL = 0.5.

be explained by the atomic sample spatial extension resulting
in the non-negligible dispersion of experimental parameters
in different experimental realisations. Even with all these
limitations, we obtain a measurement F three times higher
than the SQL value. The corresponding improvement on the
displacement measurement precision is 10 ln(

√
F/FSQL) ≈

2.4 dB.

VI. CONCLUSION

We have presented an experimental scheme allowing us
to measure field displacements with a precision exceeding the
standard quantum limit. The scheme uses mesoscopic quantum
superpositions generated and probed by the interaction of a
single circular Rydberg atom with a field in a cavity. We
analyzed in detail the performance of the measurement in
terms of Fisher information. The Fisher information carried by
the measurement signal in principle approaches the quantum
Fisher information of the initial resource state of the atom-
cavity system. This shows that the measurement strategy is
indeed optimal. Experimental imperfections to some extent
reduce the observed Fisher information. However, it is still far
above that of the standard quantum limit for the larger MQSS

TABLE I. Fisher information for the largest state preparation time
T1 = 14.7 μs. The numbers to compare are bold: the ultimate upper
bound set by FQ of the resource state, F of the measured data, and
FSQL of a coherent state setting the SQL bound.

Fisher information T2 = 13.5 μs 16.3 μs

FQ approximated by (12) 21.6
FQ obtained from numerical integration 20.5
F approximated by (15) 13.9 21.0
F from (15) with 5% detection errors 11.2 17.0
F of the measured data 5.1 12.0
FSQL (FQ of a coherent state) 4.0
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used. This experiment illustrates the potential of nonclassical
entangled states for quantum-enabled metrology.

The measurement precision is mainly limited by the
available range of atom-cavity interaction times (total time
limited to about 40 μs). An experiment with slow Rydberg
atoms in a cavity should allow one to reach much higher
sensitivities, approaching the Heisenberg limit in this context.
The principle of the measurement could also be transposed
in the thriving circuit QED context, for instance, for the
measurement of the amplitude of small propagating coherent
fields.
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