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Dynamic Lamb-dip effects in gas lasers with inhomogeneously broadened saturable absorbers
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We show, through a simple model, that as one changes the detuning of a standing-wave single-mode
gas laser containing an inhomogeneously broadened saturable absorber, a Lamb-dip generated stability
window may appear in the instability region. The width of this window is of the order of the homogene-
ous linewidth of the absorber, and it is not affected by power broadening.

PACS number(s): 42.55.Lt, 42.65.Pc

I. INTRODUCTION.

Passive Q switching (PQS) of a CO, laser containing an
intracavity saturable absorber is a phenomenon well

known from the early development of this infrared laser
[1-7]. PQS occurs in a single-mode laser, as opposed to

pulsing in mode-locked lasers. It represents thus a
single-mode instability, the electric-field amplitude being
modulated in time with a period determined by the relax-
ation parameters of the gain medium and of the absorber.
The origin of this modulation is the “mode-splitting”
effect discussed by Casperson and Yariv [8] within the
context of inhomogeneously broadened lasers: for the
same integer number of wavelengths in the cavity, multi-
ple steady-state solutions for the frequency of oscillations
may appear, due to the dispersive behavior of the intra-
cavity medium which may manifest itself even in a reso-
nant situation. This happens because the effective laser
frequency depends on the field intensity through a non-
linear relation (the linear version of this relation yields
the “frequency-pulling” formula). For lasers with satur-

able absorbers, it was shown by Mandel [9] that a similar

effect may arise, since, again due to the nonlinear depen-
dence of the oscillation frequency on the intensity, the ab-
sorptive cavity becomes dispersive for a sultable domaln
in parameter space. o

A simple model describing a standing-wave laser with a
saturable absorber was proposed by Powell and Wolga
[2]. They adopted a two-level description of both the
amplifier and the absorber, and predicted, through a
rate-equation treatment, a bistable regime for the laser in-
tensity, determining at the same time the conditions for
PQS. Deeper analyses of this system have been carried
out by several authors [3~7,9—~11], leading to many in-
teresting features, beyond the self-pulsing instability,
which have been the subject of both experimental and
theoretical investigations. The effect of extra nonresonant
levels has been considered [5-7,11], and it has been
shown that this system may exhibit Hopf bifurcations
and chaotic behavior [5,11].

In most of these references, both the gain and the ab-

sorbing media have been modeled as being homogeneous-
ly broadened. In fact, even though this is frequently not
true in the experiments performed so far, taking inhomo-
geneous broadening into account is usually a formidable
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theoretical task, involving cumbersome expressions and a
large amount of computing time. One hopes then that in-

"homogeneous broadening would have a small effect on

the final results. One expects this to be especially true if
one is interested in time-dependent phenomena with a
time scale much larger than the atomic collision time,
since velocity redistribution collisions eventually should
allow all the atoms in the Doppler profile to participate
in the process (collisional “hole filling”) [12].

This has not precluded, however, the observation of
shallow Lamb dips in CO, lasers [13], or even of a central
tuning peak (inverted Lamb dip) due to a low-pressure
CO, absorber [2,14]. This inverted dip is due to the satu-
ration of the group of absorbing molecules with zero
speed, which interact resonantly with both counterpro-
pagating beams. Therefore, the absorber gets less
effective around resonance, within a region of frequencies
limited by the power-broadened homogeneous linewidth
of the absorber. Furthermore, typical inhomogeneous
broadening effects in self-pulsing gas lasers have been put
into evidence recently. Thus, Gioggia et al. [15] have
demonstrated experimentally a Lamb-dip-like behavior of
the pulsing frequency in a standing-wave single-mode
He-Xe laser. A similar behavior was verified by Alcan-
tara, Jr. and Rios Leite, in a CO, laser with an intracavi-

“ty saturable absorber [16].

An experimental and theoretical investigation of pas-
sive Q switching in a CO, laser with a hot CO, internal

_absorbing cell was made by Brzhazovskii ef al. [3]. Their

modelization takes into account the inhomogeneous
broadening of both the gain and the absorber media, and
leads to numerical results for the single-mode instability
threshold in agreement with the experimental data.

A detailed theoretical treatment of a gas laser with an
inhomogeneously broadened saturable absorber was also
presented by Salomaa and Stenholm [10], who discussed
the generation of multimode instabilities in the regime
where the atomic populations can be adiabatically elim-
inated (good-cavity limit). In this case, the mode cou-
pling provided by the nonlinear absorber accounts for the
energy transfer from a strongly oscillating mode to other
cavity eigenmodes, located within the gain bandwidth,
which may thus undergo self-sustained oscillations. The
dispersive effect of the intracavity medium was neglected,
and therefore no discussion was presented of the single-
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mode instabilities mentioned above, which become the
sole source of pulsing when the intermode spacing is
sufficiently large. They may show up whenever the longi-
tudinal relaxation constants for the amplifier and the ab-
sorber become of the same order or smaller than the field
decay constant so that we are in a regime where the adia-
batic elimination of the populations is not allowed (we
may still proceed to the adiabatic elimination of the po-
larizations, however, since in CO, lasers transverse relax-
ation is usually much faster than the other processes).

In this paper we show that inhomogeneous broadening
may affect the single-mode self-pulsing or otherwise un-
stable regime in a quite dramatic way. Under some con-
ditions, one can get windows of stability, as the laser de-
tuning is changed. These regions are generated by a
Lamb-dip behavior of the complex eigenfrequency associ-
ated with the initial oscillations around the steady state,
and their width is of the order of the homogeneous
broadening of the absorber.

This result may be considered in fact to complement
those of Ref. [15]. The complex eigenfrequency comes
out from the linear stability analysis, its imaginary part
being just the frequency of the initial oscillations around
the steady state. At the same time, its real part controls
the stability of the cw solution and, through the quantum
regression theorem [17], yields in the’ stable case the
linewidth of the spectrum of fluctuations. In Ref. [15],
one looks at the dependence of the imaginary part of the
complex frequency on the detuning. Here, we focus on
the real pari, which may change signs when the laser is
detuned over the Lamb-dip region, thus affecting the sta-
bility of the cw solution.

At first sight, it would seem that these effects could be
interpreted as a mere consequence of the Lamb-dip be-
havior of the intensity, due to the dependence of the com-
plex eigenfrequency on the steady-state intensity. This is
not so, however, since the width of the dips here observed
is not affected by power broadening. In fact, the expres-
sion Lamb dip is used here in a generalized sense, taken
to include not only the dip in the intensity, but also any
analog manifestation, on any variable of the system, of
the resonant interaction between the zero-velocity molec-
ular group and the two counterpropagating beams in a
standing-wave gas laser.

Our results are based on a simple two-level model for
the amplifier and absorbing media. This is certainly an
oversimplification, since it is known that the rotovibra-
tional levels of both media play an important role in the
time-dependent behavior of the system [5-7,11]. The
two-level model fits, however, our objective of displaying
the novel Lamb-dip effects in the simplest possible way,
so as to make it easier to grasp the underlying physical
phenomena.

II. A RATE-EQUATION MODEL

We assume that the transverse relaxation rates for the
amplifier and the absorber are much larger than the rate
of change of the other variables, as is usually the case in
CO, lasers with hot CO, absorbers, so that the polariza-
tion can be adiabatically eliminated [17]. Even though
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we are considering a standing-wave laser, we neglect the
spatial dependence of the population inversion densities,
since in a gas laser the molecules actually experience an
averaged intensity, because of their fast motion, as com-
pared to the population decay time [17]. We get then a
set of rate equations for the photon number density S and
the inversion densities of the amplifier n (representing the
number of molecules in the upper state minus the number
of molecules in the lower state per unit volume) and the
absorber 7 (v) (representing the number of molecules in
the lower state minus the number of molecules in the
upper state per unit of volume and velocity),

n==y(n—ny)—alw)ns , e

A()==7,[A()~ )] —Blw,p)aw)S ,  (Ib)

S’=—ycS+a(a))nS—f_+wdv Blo,v)a(®)s . (lc)

Here a(w) is the atom-field interaction coefficient for
the gain medium and for a field angular frequency o (all
our frequencies and decay constants are specified in
rad/s), Blw,v) is the corresponding quantity for the ab-
sorber, while ¥, 7|, and y ¢ are the relaxation rates for
the amplifier, the absorber, and the field, respectively. Fi-
nally, ny and 7y(v) are the amplifier and absorber inver-
sion densities in the absence of the laser field but in the
presence of pumping.

The coefficient a(w) is given by

) ] vl
2%y €6 Y2+ A0® ’

(2)

alw)=

where p is the magnitude of the transition dipole for the
amplifier, ¥, is the gain medium bandwidth (which is just
the polarization relaxation rate), Ae is the atom-field de-
tuning, and ¢ is the vacuum dielectric constant. On the
other hand, B(w,v) is given by

7i
7+ (Ao +kv)?

—2
Blo,v)=—H2
4ﬁ'}_/l€0

71

e 3)
72+ (Aw—kv)?

where k =w/c, and [i is the magnitude of the absorber
transition dipole. This expression exhibits the Doppler
broadening due to the molecular velocity distribution.
The two Lorentzians correspond to the interaction of the
group of molecules with velocity v with the two counter-
propagating running modes which form the standing-
wave field.

The gain medium is considered to be homogeneously
broadened, since its pressure is usually much greater (one
to three orders of magnitude) than that of the absorbing
gas, so that the homogeneous linewidth (y,) gets larger
than the Doppler one. On the other hand, we have for the
absorber
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where 7=(2KT/m)'/? is the average speed of the gas
molecule, m is its mass, T is the temperature, K is the
Boltzmann constant, and 7, (without the v argument) is
the total inversion density for the absorber.

Equations (1) are similar to those discussed by Powell
and Wolga [2], with the only difference that Eq. (1c) in-
corporates the contribution of the entire absorber line
profile, as considered in Refs. [3] and [10]. Our equations
are in fact a particular case of the corresponding ones in
Ref. [3], where the inhomogeneous broadening of the ab-
sorber was also taken into account. The specialization to
an homogeneously broadened absorber allows us to make
a more detailed analysis of the system than the one made
in Ref. [3].

We find now the steady-state solutions of these equa-
tions, and show that they may display a bistable behav-
ior.

III. BISTABLE BEHAVIOR

The steady state of the system is obtained by setting
the time derivatives in Eqgs.(1a)-(1¢) equal to zero,

L T S S
n = — - = ,,, L FrEERsE AT vy T o TAEw ) TR (Sa)
oy tale)Sy :

7y +B@,0)S

YeSs =@ ngSy—Sy [ “dv Blo,p)a ) . (5¢)

N 1)

Rg(v)=

As in Ref. 1, there is a trivial solution Sy =0. Further
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solutions can be obtained from the equation

ale)yng

+o  Bla,w)7fy(v)
YC=———_—- —_——
vitale)Sy

v
71 +Ble,v)S

which is derived from (5c) by canceling out the common
factor Sg. The right-hand side of the above equation is
just the effective gain G .4(Sg) of the laser, so (5d)
expresses the threshold condition for laser operation:
gain equals losses. Plotting G .4 and y . as functions of
the steady-state intensity allows a qualitative analysis of
the system behavior (Fig. 1). The intersections of these
two curves will provide the extra steady-state solutions,
besides the trivial one. We see from (5d) that G 4 de-
creases monotonically for large S,,. However, for small
values of S, G . may present an initial increase with S,
leading to two extra steady-state solutions and a possible
bistable behavior (see Fig. 1). Conditions for this to hap-
pen can be easily figured out by expanding G . in a
power series of S;;,. We get then

GCE(‘SSt )=alw)ng— f_+ * dv 71y(v)Blw,v)

»  (5d)

—

Blw,v )*iy(v) _ alw)n,

+ o0
+S dv
* f_‘"’ 7 Yi

.

+...

order to have the extra solutions, the linear term in S
must be positive.

We see from this expression and from Fig. 1(b) that, in

---Figure 1 may also be used to analyze the stability of

the solutions. Thus, in Fig. 1(a) only S0 can be stable,
since for S =0 the gain overcomes the cavity loss rate,
so that any small fluctuation will make the intensity

(b)

) 0.002

Ss/no

FIG. 1. Effective gain of the laser as a function of the steady-state photon density S,;. The horizontal line represents the losses. (a)
The effective gain decreases monotonically and the system presents only one steady state. Here, u=g=0.87X1073! Cm,

©=2mX3X 10" rad/s, no=3.0X10"m™3, y, =407 X 10° rad/s, r

=7Il/yli= L5, s=7l/7/[l=4007 q='}’c/'}’”= 125, Z=’}’1/’}’||=6900,

P =Fy/ng=0.3. (b) The effective gain has an initial increase due to the saturation of the absorption and the system presents bistable
behavior. Same parameters as in (a), except for r=0.5 and ¢ =337.5.
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grow. Notice, however, that even though this simple
graphical approach leads easily to the identification of
unstable solutions, points here identified as stable may
turn out to be unstable under a more detailed analysis,
which takes into account the possibility of independent
fluctuations of the inversion densities. This will be done
in Sec. IV. In the present discussion, the fluctuations of
the inversion densities are tied up to the field fluctuations
through Eqgs. (5a) and (5b), so that our analysis is in prin-
ciple correct only in the regime in which the populations
adiabatically follow the field (y|,7,>>y ). This is the
regime considered, for instance, in Ref. [10], where a
similar discussion was presented.

Proceeding with this simplified case, we see that for
Fig. 1(b) two solutions are possible, besides the trivial one
S =0. The figure suggests that the solution S =0 is
now a stable one, since in this case the effective gain is
less than the cavity loss rate. On the other hand, the
solution .S'stl is unstable, since increasing the intensity by

a small amount will cause the gain to become larger than
the loss rate, so the intensity will keep increasing. By a
similar argument, we can show that S is stable. We

have thus in this case a bistable behavior.

In the next section we extend the above analysis in or-
der to consider independent fluctuations of the inversion
densities and the field. That is, we go beyond the adiabat-
ic regime mentioned above (the polarization is still as-
sumed to follow the other variables). We show then that
some of the stable solutions found in this section may be-
come unstable, giving rise to a self-pulsing behavior, still
within the single-mode model.

IV. STABILITY ANALYSIS

We adopt the usual procedure [18] of linearizing Egs.
(1) around each steady state, geiting in this way a set of
equations for the population and field displacements. If
the corresponding normal modes are damped, then the
solution is stable; otherwise, it is unstable.

We set, therefore,

n(t)=ngy+6n(t), . (6a)
(v, t)=Rgy(v)+387(v,1) , ) (6b)
S()=8,+85(1) , (60

so that, neglecting higher-order terms in 8n, 67 (v) and
58S, we get o

dn=—y8n—aS,dn—anyds , - (Ta)

87 = —¥,87 —BS 87 — B (v)3S , ' (7b)
8S= [aSn — fj:dv pdn ]Sst

+ [anst— [ dvBrg—ye ]as . (7c)

We will be interes£ed in the case S 70. The lasti term ;)n

gcel)]r'ight-hand side of (7<‘:) is then equal to zero [cf. Eq.

The normal modes of the above set of equations corre-
spond to solutions of the form
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dn (1) dng
87 (v,t) |= |8rg(v) | exp(At) . (8)
88(1) 58S,

It is important to observe that (7) and (8) actually stand
for an infinite set of equations, corresponding to the
range of velocities from —« to + «. Replacing (8) into
(7), we obtain, after a little amount of algebra, the charac-
teristic equation for A,

. a(.w)znst‘SZst
alw)Sy+y,+2

0 ( ? )2—8(
+5, [Toap Pt )
oV Bl0,0)S AT A

The steady state will be stable if all the roots of this equa-
tion have negative real parts. Then, the imaginary parts
will yield the frequencies of the relaxation oscillations to-
wards equilibrium. On the other hand, if at least one of
the roots has a positive real part, the steady state will be
unstable. The imaginary part of this root will then corre-
spond to the frequency of the initial pulsation of the field,
as it departs from the unstable steady-state value. In this
case, the actual behavior of the field does not necessarily
correspond to self-pulsing, and cannot be found by a
linear stability analysis.

We search now for roots of Eq. (9) with a positive real

" part, which are the ones which yield the unstable behav-

ior. The computing time involved in evaluating the roots
of (9) is reduced by finding bounds to the region of the
complex plane where the roots are located. We notice
first that, since the coefficients of this equation are real,
then if A is a root with a nonvanishing imaginary part, its
complex conjugate A* is also a root. So we can restrict
our search to roots with a positive imaginary part.

By setting A=x +iy, we get, for the imaginary part of
9),

a(w)2nstSst
[a(@)Sy+y,+xTP+yp?
Blw,v )y (v)

+ i
—8 dv . (10)
Y e T [Ble,0)S + 7 +x P2

This equation shows that the roots of (9) are in a finite re-
gion of the complex plane, since as A— oo the right-hand
side of (10) tends to zero while the left-hand side is always
equal to one, so leading to a contradiction. One also gets,
from (10), that

aznstsst o1
(S, +y,+x)2+y?

(11)
By setting x =0 in (11), we obtain an upper limit for the
imaginary part of the roots, that is,

ymax=[a2nstSst_(a‘sst+7’||')2]1/,2 . - (12)
Now setting y =0 in (11), we obtain for the real part

. aznstsst >(aSy+y+x 7,
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which yields

.

_(agﬁgtfsrst ).1/2 :

(a®nySy)'?*>aSy +Y:}in‘.’_‘._>{

The last inequality does not give us any further informa-
tion, since we are interested only in x > 0. So for the real
part we are restricted to the interval

=

X s = (@ nstSst)1 aSst——'y">x 0 o 13)

Equations (12) and (13) establish bounds for the region
where one can find the roots of (9) with y > 0. Within this
region, we adopt now the following procedure. We
divide the region in small rectangles and test for thé cen-
tral point of each piece if the function

a(w)lznstsst .

f(?»)=k+————~—a(m)sst+Yl+)L
® ( ) ( ) :

_s, + & - Blo,v) Ay (v) —(14)
-  Blo, v)Sst-i-y“-i-k ‘

is smaller than a critical value . When this condition is.

satisfied, we consider this point as imitial trial in the nu-
merical routine ZANLYT of the IMSL [19], which yields
then the roots of (14). Different partitions and critical
values must be tried in order to check the procedure and
make sure that no root is missed. We scan the region
starting from x _,,, since we are interested in the root
with greatest real part. We repeat this procedure for
each value of the detuning, being thus able to plot the
real value of that root as a function of the detuning.

We discuss in" the following section the results of thls
numerical analysis. : -

V. NUMERICAL RESULTS

In a typical experimental setup, the parameters that
can be controlled in order to study the dependence on the
detuning of the dynamics of the system ate the pressure
and the temperature of the gain and absorbing media, the
pumping discharge current of the gain medium, and the
reflectivity of the cavity mirrors. In the theoretical
" description we deal instead with the inversion and polar-
ization decay rates of both media, the Doppler bandwidth
of the absorber (which depends on ), the zero-field inver-
sion densities, and the cavity decay rate. We have chosen
for these parameters values which stay close to typical
experimental conditions, for the case of a hot CO, ab-
sorbing cell [16]. o

We take p=g=0.87%1073! Cm, o= =6 10" rad /s.
For the gain medium we consider the i inversion and po-
larization relaxation rates of the order of 407X 10* rad/s
and 27X 138 X 10% rad/s, respectively, corresponding to a
pressure of about 20 Torr (note that angular frequencies
are used throughout). For the absorber the polarization

relaxation rate is taken to be of the order of 16wX10°%
rad/s, corresponding to a pressure of the order of 1 Torr.

The ratio between the inversion and polarization decay
rates of both media are assumed to have the same order
of magnitude, since the dependence of the relaxation
rates on the pressure is approximately linear (they are not
precisely the same, however, since the gain medium usu-
ally involves a mixture of CO,, N,, and He, while the ab-

e e
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sorber is composed only of CO,).” However, the effective
lifetime of a molecule of the absorber, moving across the

-laser beam, is taken as a combination of the inversion life-

time T with the average tranSIt time across the beam
T, that is,

D S | 1 . .
- R T L TE— L . (15
T T T) Ty s
The first term on the right-hand side of (15) is the inver-
sion decay rate which should be of the order of 27X 103
rad/s. The second term has a maximum value of the or-
der of 2 X5 X 10* rad/s for molecules with velocities or-
thogonal to the beam. So the mean value of the effective
lifetime is compatible with a decay rate of the order of
2mX3X 104 rad/s, adopted by us in the numerical calcu-
latlons The temperature of the absorber is typically of
600 K, which corresponds to U of the order of 500 m/s.
Considering the "pressure of the gases, the pumping
discharge current and the dimensions of the cells contain-
ing the gases, the zero-field inversion of the gain medium
is approximately 10'*-10'° molecules/m* and for the ab-
sorber we have the third or fourth part of this. For a
cavity length of L=1.2 m with an output mirror
transmissibility of the order of 2%, the field decay rate is
Ye=2wXcT /2L =2wX2.5X10°% rad/s. The corre-
sponding mode separation ¢/2L is of the order of
27X 125X 10° rad/s. Although still smaller than the gain
bandwidth (27X 138X 10° rad/s) — two cavity modes fit
into the gain profile — this is usually sufficient to inhibit
multimode operation, since most frequently for only one
of the modes will gain overcome the losses (actually, for a

- homogeneously broadening gain medium, as assumed

here, gain clamping should occur, so only one of the
modes would oscillate). For these typical experimental
values, we are in fact in the limit of applicability of the
adiabatic elimination of the polarization, since
Vi/vc=3.2. (

0.0055 ~
Sst/no

0.0050 -

0.0040 .
- =/0-8-6-4-20 2 4 6 8 10

Ao/

LN SN A S - S A BA R LA N M BN S R B T
Y

FIG. 2. Normalized steady-state photon density S /ny as a

_ function of the normalized detuning Aw/7;. Same parameters

as in Fig. 1(a).
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1.0

Re?\/yu

0.5 A

(b)

/ N

-8 -6 -4 -2 0 2 4 6 8

- Aco/7l

0.-0 7

-1.0

FIG. 3. (a) Imaginary part of A as a function of the detuning (solid line corresponds to the stable regime, dashed line to the unsta-
ble one); (b) real part of A as a function of the detuning. Same conditions as for Fig. 2.

The numerical solution of Eq. (9) was found in terms of
the set of parameters ng, vy, p=Ho/ng, ¢=Yc/Y)

=P,/Yp S=Y./7, and z=v /y|. We discuss here the )

results correspondmg to a particular set, associated with
a situation in which the power-broadened absorber
homogeneous linewidth is comparable with the inhomo-
geneous broadening. For this particular set of parame-
ters, the system is not bistable, its steady-state behavior
being the one depicted in Fig. 1(a).

The order of magnitude of the inhomogeneous
broadening is given by the product of ¥ with the wave
number k, so that y;,,=k0. On the other hand, the
power-broadened homogeneous linewidth 7, of the ab-
sorber may be estimated from the expression for the pop-
ulation inversion of the non absorbing atoms with zero
velocity,

07, mONFitAlh)
7, FBO0)Sy AP +7H1+S,/Ig)

h-st

so that 7,, =7,V 1+S,/Is, where I=tie;7,7,/u’0 is .

the saturation intensity. »

For ny=3.0X10" m™3, y, =407 X 10° rad/s, r=1.5,
q =125, s=400, z=6900, p=0.3, and v=500 m/s, we
get 7,,/7,~5.0, and ¥ ;,/7,, ~1.25. The photon densi-
ty S, in this case is plotted in Fig. 2. We notice that, su-
perimposed to a hole in the photon-density curve, due to
the presence of the inhomogeneously broadened absorb-
ing molecules, there is an antidip, with power-broadened
width 7.

In Fig. 3(a) we plot the oscillation frequency
Q=1Im(),) as a function of the detuning, where A, is
the root of Eq. (9) with the greatest real part. It displays
clearly an antidip [Fig. 3(a)], which is, however, not power
broadened. Therefore, the antidip in the oscillation fre-
quency cannot be attributed to the intensity dependence
of the eigenvalue A,. It can be traced back to the

stronger dependence on Blw,v) of A, due to the extra
 Blw,v) factor in the integrand on the right-hand side of
" Eq. (9), with respect to the integrand in Eq. (5d), which
yields the steady-state values of the intensity.

In Fig. 3(b) we display the behavior of the real part of
A as a function of the detuning. It presents a Lamb dip,
also with a width of the order of ¥,. But the most impor-
tant feature is that, as exemplified in Fig. 3(b),the dip may
cause a sign change of Re (A, ), and therefore an abrupt
modification in the behavior of the laser.

The different regions determined by this behavior of

Re(A, ) are displayed in Fig. 3(a). When Re(A.)<0, Q
0.5 A
00 /\\/ A
-0.5 A
_1 .O T T T T A T 1

-7 -5 -3 -1 7 3 5 7
Ao/,

FIG. 4. Dependence of ReA on the parameter r =7,/y), the
other parameters remaining fixed. From top to bottom
r=1.7,1.6,1.5,1.4,1.3.
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FIG. 5. Half-width of the cw window as a function of

r=/T : _ e

represents the frequency of the relaxation oscillations to-
wards equilibrium, since the laser is then in cw operation
(solid line). On the other hand, when Re(A,)>0, Q
stands for the frequency of the initial oscillations away
from the steady-state value (dashed line). If the corre-
sponding instability is a PQS, then this Q should be ap-
proximately equal to the pulsation frequency if the mag-
nitude of the pulsations is not too large.

Changing the parameter 7, while at the same time
keeping fixed the other parameters, amounts to displac-
ing vertically the curve for Re(A, ), as shown in Fig. 4.
This will affect the width of the cw region. Changing T or

J

1.5 . e T A ot T

AT
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**FIG. 7. Half-width of the cw window as a function of 7.

p will produce the same effect. In Fig. 5, we display the
half-width of the cw window as a function of . As 7 in-
creases, the width decreases from a value of the order of
7. to zero. On the other hand, these parameters affect
very little, in this region, the pulsation frequency Q. In
Figs. 6 and 7 we display the half-width of the cw window
as a function of p and 7, respectively.

One should remark that a Lamb-dip structure of the
instability region may also show up in a multimode gas
laser, where it is possible to suppress oscillation of a weak
mode, due to the self-saturation of a strong mode. This
was discussed in detail in Ref. [10]. It is important to no-
tice, however, that the mechanism of suppression of oscil-
lations is quite different in our case, since we are dealing

i thh a single-mode case, the instabilities being generated

y nonlinear dispersive effects (“mode splitting”). In par-
cular, as opposed to the multimode laser, the width of

L rthe stablhty region is not affected by power broadening in
—--our case.

1.0 A

0.5 +-

0-0 EEIR
0.27

r e

0.31

p

0.29

0.28 0.30

FIG. 6. Half-width of the cw window as a function of
p=Hy/no. ' - '

VI. CONCLUSION

We have shown that the inhomogeneous broadening of
a saturable absorber placed inside a gas laser cavity may

~.....produce interesting effects in the unstable single-mode

operation. Not only may the pulsing frequency exhibit

<= e~ ——an antidip as the laser tuning is changed, as demonstrated
" Sy ,Bgf [15], but the instability may cease altogether, the

laser becoming stable as a consequence of a Lamb- ~-dip

 like behavior of the complex eigenfrequencies of the
- -—linear stability analysis.

The stability window thus
formed has a maximum width which is of the order of the
homogeneous linewidth of the absorber, and, contrary to
what happens to the intensity, it is not affected by power
broademng It offers therefore a new possibility for a
“more precise Lamb-dip stabilization of the laser.
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We have adopted the strategy of demonstrating these

effects within the framework of a very simplified model.
It would be certainly interesting to check the effect of
other levels, and especially of the rotovibrational relaxa-
tion, on the above results. Also, in order to study the
time-dependent behavior of the system in the instability
region a nonlinear numerical calculation must be made.
Work along these lines is in progress, and will be report-
ed elsewhere.
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