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Outline of the lectures
These two lectures will focus on recent developments in quantum 
metrology.  The main questions to be answered are:  
(i) What are the ultimate precision limits in the estimation of 
parameters, according to classical mechanics and quantum mechanics? 
(ii) Are there fundamental limits? Is quantum mechanics helpful in 
reaching better precision?  
(iii) How to cope with the deleterious effects of noise? 

Our discussion is restricted to local quantum metrology: in this case, one 
is not interested in an optimal globally-valid estimation strategy, valid 
for any value of the parameter to be estimated, but one wants instead 
to estimate a parameter confined to some small range. The techniques to 
be developed are useful, for instance, for estimating parameters that 
undergo small changes around a known value, like sensing phase changes 
in gravitational-wave detectors; or yet if one has some prior (eventually 
rough) knowledge about the value of the parameter.



Summary of the lectures
The lectures will be organized as follows: 

LECTURE 1. General introduction: parameter estimation and classical 
bounds on precision. The Cramér-Rao bound and the Fisher information. 
Extension of Cramér-Rao bound and Fisher information to quantum 
mechanics. Quantum Fisher information for pure states. The role of 
entanglement. Application to optical and atomic interferometry 

LECTURE 2. Noisy quantum-enhanced metrology: General framework for 
evaluating the ultimate precision limit in the estimation of parameters. 
Application to optical interferometers and force estimation. Quantum 
metrology and the energy-time uncertainty relation.  Generalization to 
open systems. Application to atomic decay. 

For more details, see Lectures at College de France (2016): 
http://www.if.ufrj.br/~ldavid/eng/show_arquivos.php?Id=5 

http://www.if.ufrj.br/~ldavid/eng/show_arquivos.php?Id=5


I.1 - General introduction: 
parameter estimation and 
classical limits on precision



Parameter estimation
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Enhanced sensitivity of the LIGO gravitational
wave detector by using squeezed states of light
The LIGO Scientific Collaboration*

Nearly a century after Einstein first predicted the existence of
gravitational waves, a global network of Earth-based gravita-
tional wave observatories1–4 is seeking to directly detect this
faint radiation using precision laser interferometry. Photon
shot noise, due to the quantum nature of light, imposes a
fundamental limit on the attometre-level sensitivity of the
kilometre-scale Michelson interferometers deployed for this
task. Here, we inject squeezed states to improve the perform-
ance of one of the detectors of the Laser Interferometer
Gravitational-Wave Observatory (LIGO) beyond the quantum
noise limit, most notably in the frequency region down to
150 Hz, critically important for several astrophysical sources,
with no deterioration of performance observed at any
frequency. With the injection of squeezed states, this LIGO
detector demonstrated the best broadband sensitivity to
gravitational waves ever achieved, with important implic-
ations for observing the gravitational-wave Universe with
unprecedented sensitivity.

A fundamental limit to the sensitivity of a Michelson interferom-
eter with quasi-free mirrors comes from the quantum nature of
light, which reveals itself through two fundamental mechanisms:
photon counting noise (shot noise), arising from statistical fluctu-
ations in the arrival time of photons at the interferometer output,
and radiation pressure noise, which is the recoil of the mirrors
due to the radiation pressure arising from quantum fluctuations
in the photon flux. Both sources can be attributed to the quantum
fluctuations of the electromagnetic vacuum field, or vacuum fluctu-
ations, that enter the interferometer5,6.

An electromagnetic field can be described by two non-commut-
ing conjugate operators that are associated with field amplitudes that
oscillate out of phase with each other by 908, labelled as ‘in-phase’
and ‘quadrature phase’7. A coherent state of light (or vacuum, if
the coherent amplitude is zero) has equal uncertainty in both quad-
ratures, with the uncertainty product limited by the Heisenberg
uncertainty principle. For a squeezed state, the uncertainty in one
quadrature is decreased relative to that of the coherent state
(green box in Fig. 1). Note that the uncertainty in the orthogonal
quadrature is correspondingly increased, always satisfying the
Heisenberg inequality.

The vacuum fluctuations that limit the sensitivity of an interfero-
metric gravitational-wave detector enter through the antisymmetric
port of the interferometer, mix with the signal field produced at the
beamsplitter by a passing gravitational wave, and exit the antisym-
metric port to create noise on the output photodetector. Caves5,6

showed that replacing coherent vacuum fluctuations entering the
antisymmetric port with correctly phased squeezed vacuum states
decreases the ‘in-phase’ quadrature uncertainty, and thus the shot
noise, below the quantum limit. Soon after, the first experiments
showing squeezed light production through nonlinear optical
media achieved modest but important reductions in noise at high
frequencies8,9. However, squeezing in the audiofrequency region

relevant for gravitational-wave detection and control schemes for
locking the squeezed phase to that needed by the interferometer
were not demonstrated until the last decade10–12. Since then,
squeezed vacuum has been used to enhance the sensitivity of a pro-
totype interferometer13. The 600-m-long GEO600 detector14 has
deployed squeezing since 2010, achieving improved sensitivity at
700 Hz and above.

An important motivation for the experiment we present here
was to extend the frequency range down to 150 Hz while testing
squeezing at a noise level close to that required for Advanced
LIGO15. This lower frequency region is critically important for
the most promising astrophysical sources, such as coalescences
of black hole and neutron star binary systems, but also poses a
significant experimental challenge. Seismic motion is huge com-
pared to the desired sensitivity, albeit at very low frequencies of
less than !1 Hz, and LIGO employs a very high-performance
isolation system to attenuate the seismic motion by several
orders of magnitude. This uncovers a set of nonlinear couplings
that upconvert low-frequency noise into the gravitational wave
band. In the past, these processes have made it difficult for
gravitational-wave detectors to reach a shot-noise-limited
sensitivity in their most sensitive band near 150 Hz. Any
interactions between the interferometer and the outside world
have to be kept at an absolute minimum. For instance, randomly
scattered light reflecting back into the interferometer has to be
managed at the level of 1 × 10218 W. Past experience has shown
that measured sensitivities at higher frequencies are difficult to
extrapolate to lower frequencies2. For the first time, we employ
squeezing to obtain a sensitivity improvement at a gravitational-
wave observatory in the critical frequency band between 150 Hz
and 300 Hz. Similarly important, we observe that no additional
noise above background was added by our squeezed vacuum
source, firmly establishing this quantum technology as an
indispensable technique in the future of gravitational-
wave astronomy.

The experiment was carried out towards the end of 2011 on the
LIGO detector at Hanford, Washington, known as ‘H1’. The
optical layout of the detector is shown in Fig. 1. The interferometer
light source (‘H1 laser’) is a Nd:YAG laser (1,064 nm) stabilized
in frequency and intensity. A beamsplitter splits the light into
the two arms of the Michelson, and Fabry–Perot cavities
increase the phase sensitivity by bouncing the light !130 times
in each arm. The Michelson is operated on a dark fringe, so
most of the light is reflected from the interferometer back to the
laser. A partially transmitting mirror between the laser and
the beamsplitter forms the power-recycling cavity, which
increases the power incident on the beamsplitter by a factor of
40. To isolate them from terrestrial forces such as seismic
noise, the power recycling mirror, the beamsplitter and the arm
cavity mirrors are all suspended as pendula on vibration-
isolated platforms.

*A full list of authors and their affiliations appears at the end of the paper.
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tion from this motion leads to a fractional fre-
quency shift for the moving clock of (17)

df
f0

¼ 1
〈gð1 − v∥=cÞ〉

− 1 ð1Þ

Here v|| is the velocity of the Al+ ion along
the wave vector of the probe laser beam g ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
, c is the speed of light, v is the

ion’s velocity with respect to the laboratory ref-
erence frame, and f0 is the ion’s proper resonant
frequency. Angle brackets denote time averages.
Because the induced Al+ ion motion is harmonic,
its contribution to 〈v||〉 averages to zero; therefore,
any observed change in the ion’s transition fre-
quency is due to a change in g and corresponds to
relativistic time dilation (18). For v/c << 1, Eq. 1
can be approximated by df /f0 ≈ −〈v2〉/2c2 (17). We
measured the frequency difference between the
two clocks (df/f0) while varying the velocity of the
ion motion. The experimental results, which con-
firm the prediction of Eq. 1, are plotted in Fig. 2.

Differences in gravitational potential can be de-
tected by comparing the tick rate of two clocks. For
small height changes on the surface of Earth, a
clock that is higher by a distance ∆h runs faster by

df
f0

¼ gDh
c2

ð2Þ

where g ≈ 9.80 m/s2 is the local acceleration due
to gravity (4). The gravitational shift corresponds
to a clock shift of about 1.1 × 10−16 per meter of
change in height. To observe this shift, we first
compared the frequencies of the two Al+ clocks at
the original height difference of ∆h = h(Mg-Al) −
h(Be-Al) = −17 cm, which was measured with a
laser level. Then we elevated the optical table on
which theMg-Al clock was mounted, supporting
it on platforms that increased the height by 33 cm,
and compared the frequencies again. The two mea-

surements consist of approximately 100,000 s of
low-height data and 40,000 s of high-height data,
and the clocks exhibit (Fig. 3) a fractional fre-
quency change of (4.1 T 1.6) × 10−17. When this
shift is interpreted as a measurement of the change
in height of the Al-Mg clock, the result of 37 T
15 cm agrees well with the known value of 33 cm.

Although ideally 〈v||〉 = 0, small linear veloc-
ities of the Al+ ions can occur because of effects
such as slow electrical charging of insulating ma-
terial in the trap. FromEq. 1, the clock’s frequency
(that is, the frequency of the probe laser locked to
the moving ion’s clock transition) exhibits a frac-
tional frequency shift

df
f0

≈
〈v∥〉
c

ð3Þ

if the Al+ ion is moving at an average velocity 〈v||〉
in the propagation direction of a probe laser beam.
In the comparison measurements between the Al+

clocks, theDoppler effect was carefully constrained
by alternate use of probe laser beams counter-
propagating with respect to each other (11). Any
motion of the ion is detected as a difference in the
transition frequencies measured by the two laser
beams. In theAl-Mg clock,we observed a fractional
frequency difference of (1.2 T 0.7) × 10−17 be-
tween the two probe directions, which corresponds
to the ionmoving at a speed of (1.8 T 1.1) nm/s in
the lab frame. However, the clock rate is not sig-
nificantly affected by a velocity of this magnitude,
because it is derived from an average of the two
opposite laser-probe directions.

Small relativistic effects reported here have
been observed with optical atomic clocks of un-
precedented precision and accuracy. With im-
proved accuracy, the sensitivity of optical clocks
to small variations in gravitational potential might
find applications in geodesy (19, 20), hydrology
(21), and tests of fundamental physics in space

(22). The basic components for clock-based geo-
detic measurements were demonstrated here by
comparing two accurate Al+ optical clocks through
75 m of noise-canceled fiber and measuring
height-dependent clock shifts. In clock-based
geodesy (23, 24), accurate optical clocks would
be linked to form a network of “inland tide gauges”
(25) that measure the distance from Earth’s sur-
face to the geoid: the equipotential surface of
Earth’s gravity field that matches the global mean
sea level. Such a network could operate with high
temporal (daily) and geospatial resolution at the
clock locations. It would therefore complement
geodetic leveling networks, whose update period
is typically 10 years or longer, as well as biweekly
satellite-generated global geoid maps.

For a network to be useful, clock accuracy
must be improved to 10−18 or better (26–28) to
allow for height measurements with 1-cm uncer-
tainty. In Al+ clocks, improved control of the ion
motion is needed to reduce the uncertainty of
motional time dilation, and issues of reliability
must be addressed, so that the clocks can operate
unattended for long periods. High-quality links
are also needed to connect the optical clocks.
Realistic link demonstrations with telecommuni-
cations fiber akin to the links used in this work
have shown that optical frequencies can be trans-
mitted across fiber lengths of up to 250 km with
inaccuracy below 10−18 (29–31), and continent-
scale demonstrations are in progress (30). How-
ever, intercontinental links may require the faithful
transmission of optical carrier frequencies to sat-
ellites through the atmosphere, and this is an un-
solved problem under active investigation (32, 33).
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Fig. 3. Gravitational time dilation at the scale of daily life. (A) As one of the
clocks is raised, its rate increases when compared to the clock rate at deeper
gravitational potential. (B) The fractional difference in frequency between
two Al+ optical clocks at different heights. The Al-Mg clock was initially
17 cm lower in height than the Al-Be clock, and subsequently, starting at
data point 14, elevated by 33 cm. The net relative shift due to the increase in

height is measured to be (4.1 T 1.6) × 10−17. The vertical error bars rep-
resent statistical uncertainties (reduced c2 = 0.87). Green lines and yellow
shaded bands indicate, respectively, the averages and statistical uncertain-
ties for the first 13 data points (blue symbols) and the remaining 5 data
points (red symbols). Each data point represents about 8000 s of clock-
comparison data.
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One of the Fe-Cu dimers in Fig. 4B always
exhibits a larger T1 than the other. We speculate
that this variation is due to differences in the
nearby surface features as seen in the accompany-
ing topographs. This observation emphasizes the
capability of the all-electronic pump-probe tech-
nique presented here to resolve local variations in
the spin relaxation time with atomic precision.

The pump-probe scheme we have described
can be used to monitor the temporal evolution of
any excitation provided (i) the excitation can be
driven by tunneling electrons; (ii) the conduct-
ance of the tunnel junction exhibits a postexcita-
tion time dependence; and (iii) the system evolves
on an accessible time scale. Excitations fulfilling
these requirements include long-lived vibrational
excitations, conformational changes ofmolecules
(26) such as in molecular motors (27), or fast
localized heating (28). We emphasize that this
pump-probe scheme can in principle be used to
monitor the dynamical evolution of the excited
state, not just its relaxation; with sufficient tem-
poral resolution it should be possible to monitor
the vibration of an atom ormolecule and even the
precession of a spin.
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Optical Clocks and Relativity
C. W. Chou,* D. B. Hume, T. Rosenband, D. J. Wineland
Observers in relative motion or at different gravitational potentials measure disparate clock
rates. These predictions of relativity have previously been observed with atomic clocks at high
velocities and with large changes in elevation. We observed time dilation from relative speeds of
less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter
length of optical fiber. We can now also detect time dilation due to a change in height near
Earth’s surface of less than 1 meter. This technique may be extended to the field of geodesy, with
applications in geophysics and hydrology as well as in space-based tests of fundamental physics.

Albert Einstein’s theory of relativity forced
us to alter our concepts of reality. One of
the more startling outcomes of the theory

is that we have to give up our notions of simul-

taneity. This is manifest in the so-called twin
paradox (1), inwhich a twin siblingwho travels on
a fast-moving rocket ship returns home younger
than the other twin. This “time dilation” can be

quantified by comparing the tick rates of identical
clocks that accompany the traveler and the sta-
tionary observer. Another consequence of Ein-
stein’s theory is that clocks run more slowly near
massive objects. In the range of speeds and
length scales encountered in our daily life,
relativistic effects are extremely small. For
example, if two identical clocks are separated
vertically by 1 km near the surface of Earth, the
higher clock emits about three more second-ticks
than the lower one in a million years. These
effects of relativistic time dilation have been
verified in several important experiments (2–6)
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Fig. 4. Field and site dependence of the spin relaxation time. (A) Pump-probe measurements for different magnetic fields on an Fe-Cu dimer; solid
lines are exponential fits. (B) T1 as a function of magnetic field for the two Fe-Cu dimers shown in the accompanying 5-nm by 5-nm STM topographs.
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exhibits a larger T1 than the other. We speculate
that this variation is due to differences in the
nearby surface features as seen in the accompany-
ing topographs. This observation emphasizes the
capability of the all-electronic pump-probe tech-
nique presented here to resolve local variations in
the spin relaxation time with atomic precision.

The pump-probe scheme we have described
can be used to monitor the temporal evolution of
any excitation provided (i) the excitation can be
driven by tunneling electrons; (ii) the conduct-
ance of the tunnel junction exhibits a postexcita-
tion time dependence; and (iii) the system evolves
on an accessible time scale. Excitations fulfilling
these requirements include long-lived vibrational
excitations, conformational changes ofmolecules
(26) such as in molecular motors (27), or fast
localized heating (28). We emphasize that this
pump-probe scheme can in principle be used to
monitor the dynamical evolution of the excited
state, not just its relaxation; with sufficient tem-
poral resolution it should be possible to monitor
the vibration of an atom ormolecule and even the
precession of a spin.
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Albert Einstein’s theory of relativity forced
us to alter our concepts of reality. One of
the more startling outcomes of the theory

is that we have to give up our notions of simul-

taneity. This is manifest in the so-called twin
paradox (1), inwhich a twin siblingwho travels on
a fast-moving rocket ship returns home younger
than the other twin. This “time dilation” can be

quantified by comparing the tick rates of identical
clocks that accompany the traveler and the sta-
tionary observer. Another consequence of Ein-
stein’s theory is that clocks run more slowly near
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vertically by 1 km near the surface of Earth, the
higher clock emits about three more second-ticks
than the lower one in a million years. These
effects of relativistic time dilation have been
verified in several important experiments (2–6)
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Fig. 4. Field and site dependence of the spin relaxation time. (A) Pump-probe measurements for different magnetic fields on an Fe-Cu dimer; solid
lines are exponential fits. (B) T1 as a function of magnetic field for the two Fe-Cu dimers shown in the accompanying 5-nm by 5-nm STM topographs.
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High-precision interferometry: Advanced LIGO

Differential 
displacement 

sensitivity ! 10−19m

Relative 
change in 
distance ! 3×10−23

Hanford, Washington

Livingston, Louisiana
Up to 2.15dB improvement in sensitivity in 
the shot-noise- limited frequency band  



Experiments: Parameter estimation beyond 
classical physics in the XXI century

Phase resolution



Atomic clocks

Experiments: Parameter estimation beyond 
classical physics in the XXI century



Magnetometers

Experiments: Parameter estimation beyond 
classical physics in the XXI century
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Parameter estimation and uncertainty relations
What is the meaning of 

★Time-energy uncertainty relation?

 ΔEΔT ≥ ! / 2

★ Number-phase uncertainty relation?

 ΔNΔφ ≥ ! / 2
We shall see that quantum parameter estimation allows to understand 
these relations in terms of uncertainties in the estimation of parameters: 
while Heisenberg uncertainty relations are associated with Hermitian 
operators, the theory of parameter estimation allows one to obtain 
uncertainty relations for parameters, like time or phase, with no need to 
associate them to suitable Hermitian operators.



Mach-Zender interferometer: a beam  with complex amplitude ain is split on 
a balanced beam splitter BS1  and the two resulting beams acquire phases     
and     , interfering on the second beam splitter BS2. The photon numbers  
         and        are measured at the output ports.  One could also have two 
incident beams, with complex amplitudes ain and bin. 

An example: optical interferometry
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The outgoing fields are related to the incoming ones through the 
transformation (note that aout=ain, bout=bin when     =     =0, since 
[BS1]X[BS2]=1) — replacing complex amplitudes are replaced by operators:
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Optical interferometry and Jordan-Schwinger transformation

This has the advantage of providing a unified formalism, which can also be 
applied to problems in atomic spectroscopy and magnetometry.

Let Ĵ
x

=
1

2
(â†b̂+ b̂†â), Ĵ

y

=
i

2
(b̂†â� â†b̂), Ĵ

z
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1

2
(â†â� b̂†b̂)

Then [Ĵi, Ĵj ] = i✏ijkĴk and Ĵ2 =
N̂

2

 
N̂

2
+ 1

!
, N̂ = â†â+ b̂†b̂

Transformations of operators     and    can be considered as rotations in 
spin space:                                      with                              , where the 

â b̂
ˆU = exp(�i✓ ˆJ · n̂)

unit vector    is along the axis of rotation, and with the correspondence:n̂

BS1

BS2

Phase delay! ˆU = exp(�i⇡ ˆJ
x

/2)

! ˆU = exp(i⇡ ˆJ
x

/2)
! ˆU = exp(�i� ˆJz)

so these operators obey the angular momentum algebra.

â0 = Û †âÛ , b̂0 = Û†b̂Û ,

φ =ϕ2 −ϕ1



Angular momentum operators for optical 
interferometry

Corresponding transformation for the operators     (Heisenberg picture!): Ĵi
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Therefore, Mach-Zender 
transformation amounts to a 
rotation around y axis of the 
angular momentum operators.

The state transforms as ψ
out
= eiĴxπ /2e−iĴzϕe−iĴxπ /2 ψ

in



Precision of phase estimation
From                             , it is clear that                       . n̂a � n̂b = 2ĴzĴz =

1

2
(â†â� b̂†b̂)

On the other hand, the average of     in the output state is equal to the 
average of      , given by the previous matrix expression, in the input state.
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The precision of estimation can now be quantified by the error propagation 
formula:

where                      is a standard deviation (same for      ).
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From                                                   and                                                     

Optical interferometry with Fock states
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        Consider that a Fock state      is injected in port a, so that 

and                         .cov(
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x
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z

)in = 0

one gets

|Ni
| iin = |Nia|0ib . Since

which is the standard (or shot-noise limit) for optical interferometry.
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z

=
1

2
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Geometrical interpretation

(a) Initial state

Length of side of the cone:  
               , with j=N/2
Distance from apex to center of 
base: eigenvalue of     —> j=N/2Ĵz
Radius of the base of the cone:p

j(j + 1)� j2 =
p
j

(b) Action of first beam splitter
(c) Phase delay

(d) Action of second beam splitter
Minimum detectable    is of the 
order of 
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e → e + i g( ) / 2
e ≡ 1
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→ e → e + ieiϕ g( ) / 2
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→− e sin ϕ / 2( )
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Unified formalism for interferometers
Ramsey interferometry



General estimation theory

1. What are the best possible measurements? 

2. What are the best incoming states, in order to get better 
precision? 

3. Is it possible to find general bounds and strategies for 
reaching them, which could be applied to many different systems?



Parameter estimation in classical and quantum physics

  1. Prepare probe in suitable initial state 
  2. Send probe through process to be investigated 
  3. Choose suitable measurement 
  4. Associate each experimental result j with estimation



Parameter estimation in classical and quantum physics

  1. Prepare probe in suitable initial state 
  2. Send probe through process to be investigated 
  3. Choose suitable measurement 
  4. Associate each experimental result j with estimation

δ X ≡ 〈 Xest ( j)− X[ ]2 〉 j
X=Xtrue

 →  Merit quantifier

Xest = Xtrue ,  d Xest / dX
X=Xtrue

=1 →  Unbiased estimator

Then                                                               variance of Xest (average 
is taken over all experimental results)

�X2 = �2X =
D
[Xest � hXesti]2

E
!

Merit quantifier

Unbiased estimator

Estimator depends only on the experimental data.



Classical parameter estimation

H. Cramér                 C. R. Rao                         R. A. Fisher    

Cramér-Rao bound for unbiased estimators:

ΔX ≥1/ N F(X)
X=Xtrue

,   F X( ) ≡ Pj
j
∑ X( )

d  ln Pj X( )⎡⎣ ⎤⎦
dX

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

 

                                                                   N →  Number of repetitions of the experiment
Pj X( )→   probability of getting an experimental result j

Fisher 
information

or yet, for continuous measurements: 
where     are the measurement results

F (X) �
Z

d� p(�|X)


⇥ ln p(�|X)

⇥X

�2

⇠

(Average over all experimental results)



Exercises
1. Show that

2. Let us consider several identical and independent measurements, so 
that the probability distribution is                                            . Show 
that

p(~⇠|X) = p(⇠1|X) · · · p(⇠N |X)

F (N)(X) = NF (X)

with similar expressions for a discrete set of measurements. 
For instance,
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X
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"
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p
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Derivation of Cramér-Rao relation: See lectures by L. Davidovich at 
College de France, 2016:

http://www.if.ufrj.br/~ldavid/eng/show_arquivos.php?Id=5

http://www.if.ufrj.br/~ldavid/eng/show_arquivos.php?Id=5


Understanding the Fisher information (1)
Márcio Mendes Taddei, Ph. D. 
thesis, Federal University of 
Rio de Janeiro, available at 

arXiv:1407.4343v1 [quant-ph]

The gravitational field is measured by undergraduate students, via an inclined-
plane experiment, in two labs, situated at Huáscaran (Peruvian Andes) and the 
Artic Sea, so gtrue is different in both cases. Their precision is one decimal place. 
The same measurement is made by  higher-precision satellites, with one additional 
decimal place.

gtrue=9.76392 m/s2

gtrue=9.83366 m/s2



Understanding the Fisher information (2)
The higher precision of the satellite experiments implies that it is 
easier to distinguish the true values of g from the Pk of these 
measurements. Important question:   How much does the outcome 
distribution change by a change of the underlying true value of the 
parameter? I show now that the Fisher information is a measure of this 
change. 

The distance between  two probability distributions {Pk} for a given set 
{k}  of outcomes, which differ because they belong to two different 
values x and x’ of the parameter, can be defined by the Hellinger 
expression DH:

Then,
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H(x, x+ dx) = ds

2
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F (x)

8
dx

2 F(X) as a measure of change of 
the probability distribution!

DH(x, x0) =

s
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Pk(x)�

p
Pk(x0)

i2



Understanding the Fisher information (3)
The expression for the Hellinger distance can be written in terms of the 
fidelity between the two distributions:

where
(=1 for x=x’)

Therefore: 

p
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2
! Speed of change
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I.2 - Quantum parameter 
estimation

25



Quantum parameter estimation

The general idea is the same as before: one sends a probe through a 
parameter-dependent dynamical process and one measures the final 
state to determine the parameter. The precision in the 
determination of the parameter depends now on the 
distinguishability between quantum states corresponding to nearby 
values of the parameter. 

26



Example: Optical interferometry
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Example: Optical interferometry

  α αeiδθ
2
= exp − α 1− eiδθ( ) 2( )

≈ exp − n δθ( )2⎡⎣ ⎤⎦ ⇒δθ ≈ 1 / n
Standard limit (shot noise)

27



Example: Optical interferometry

Heisenberg 
limit:

Possible method to increase precision for the same average number 
of photons: Use NOON states [J. J. Bolinguer et al., PRA 54, R4649 
(1996); J. P. Dowling, PRA 57, 4736 (1998)]

ψ N( ) = N ,0 + 0,N( ) / 2 → ψ N ,θ( ) = N ,0 + eiNθ 0,N( ) / 2,   n = N( )

  α αeiδθ
2
= exp − α 1− eiδθ( ) 2( )

≈ exp − n δθ( )2⎡⎣ ⎤⎦ ⇒δθ ≈ 1 / n
Standard limit (shot noise)
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Example: Optical interferometry

Heisenberg 
limit:

Possible method to increase precision for the same average number 
of photons: Use NOON states [J. J. Bolinguer et al., PRA 54, R4649 
(1996); J. P. Dowling, PRA 57, 4736 (1998)]

ψ N( ) = N ,0 + 0,N( ) / 2 → ψ N ,θ( ) = N ,0 + eiNθ 0,N( ) / 2,   n = N( )

  α αeiδθ
2
= exp − α 1− eiδθ( ) 2( )

≈ exp − n δθ( )2⎡⎣ ⎤⎦ ⇒δθ ≈ 1 / n

ψ N( ) ψ N ,δθ( ) 2
= cos2 Nδθ / 2( )⇒δθ ≈ 1 / N

HEISENBERG LIMIT — Precision is better, for the same 
amount of resources (average number of photons)!

Standard limit (shot noise)

⇥
cos

2
(N�✓/2) = 0

) �✓ = ⇡/N
⇤

27



Quantum Fisher Information

p ξ | X( ) = Tr ρ̂ X( ) Êξ⎡⎣ ⎤⎦F X;{Êξ}( ) ≡ dξ  p∫ ξ | X( ) d  ln p ξ | X( )⎡⎣ ⎤⎦
dX

⎛

⎝⎜
⎞

⎠⎟

2

 

dξÊξ∫ = 1̂ POVM

(Helstrom, Holevo, Braunstein and Caves)



This corresponds to a given quantum measurement. Ultimate lower 
bound for                  : optimize over all quantum measurements        
so that                                             

Quantum Fisher Information

h(�Xest)
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FQ (X) = max Eξ{ }F X; Eξ{ }( )
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(Helstrom, Holevo, Braunstein and Caves)
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FQ (X) = max Eξ{ }F X; Eξ{ }( )
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       Quantum Fisher Information

(Helstrom, Holevo, Braunstein and Caves)



Quantum Fisher information for pure states

Initial state of the probe:             
Final X-dependent state:                                     ,           unitary operator.  

| (0)�
|�(X)� = Û(X)|�(0)� Û(X)

(See notes for derivation)



Quantum Fisher information for pure states

Initial state of the probe:             
Final X-dependent state:                                     ,           unitary operator.  

| (0)�
|�(X)� = Û(X)|�(0)�
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Quantum Fisher information for pure states

Initial state of the probe:             
Final X-dependent state:                                     ,           unitary operator.  

| (0)�
|�(X)� = Û(X)|�(0)�

FQ(X) = 4⇤(�Ĥ)2⌅0 , ⇤(�Ĥ)2⌅0 ⇥ ⇤�(0)|
h
Ĥ(X)� ⇤Ĥ(X)⌅0

i2
|�(0)⌅

Ĥ(X) ⌘ idÛ
†(X)
dX Û(X)

Then (Helstrom 1976):

where

If                            ,    independent of X, then ˆU(X) = exp(i ˆOX)

Ô Ĥ = Ô

Û(X)

) Should maximize the variance to 
get better precision!

δx ≥ 1 / 2 ν ΔĤ 2

(See notes for derivation)



Another expression for the quantum Fisher information

FQ(X) = 4

"
dh (X)|

dX

d| (X)i
dX

�
����
dh (X)|

dX
| (X)i

����
2
#

FQ(X) = 4⇤(�Ĥ)2⌅0 , ⇤(�Ĥ)2⌅0 ⇥ ⇤�(0)|
h
Ĥ(X)� ⇤Ĥ(X)⌅0

i2
|�(0)⌅

Ĥ(X) ⌘ idÛ
†(X)
dX Û(X)

From

and

it follows that

Exercise: Show this!



Example 1: Optical interferometry
n̂ = â†a ! Generator of phase displacements |↵i ! |↵ exp(i✓)i
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Example 1: Optical interferometry

Standard limit: coherent states

                            where              is the photon-number variance in 
the upper arm. 
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n̂ = â†a ! Generator of phase displacements

) FQ(✓) = 4h(�n̂)2i0

FQ(✓) = 4h(�n̂)2i0 = 4hn̂i ) �✓ � 1

2
p
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2
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Example 1: Optical interferometry

Standard limit: coherent states

                            where              is the photon-number variance in 
the upper arm. 

h(�n̂)2i0

n̂ = â†a ! Generator of phase displacements

) FQ(✓) = 4h(�n̂)2i0

FQ(✓) = 4h(�n̂)2i0 = 4hn̂i ) �✓ � 1

2
p

hni

) �✓ � 1

2
p

h(�n̂)2i
(⌫ = 1) ⌫ ! Number of repetitions

This lower bound is better by a factor of two than the bound found before, 
which was                     . This earlier bound corresponds to comparing the 
displaced-phase coherent state in the upper arm of an interferometer with 
an undisplaced coherent state with the same amplitude in the other arm.  
The result found here indicates that a better measurement of the phase is 
possible: indeed, a homodyne measurement allows the comparison of the 
displaced coherent state with a classical reference field (local oscillator), 
which is just a coherent state with a number of photons much larger than 
that of the measured state — this yields a better precision in the estimation 
of the phase. 

δθmin =1/ n

|↵i ! |↵ exp(i✓)i
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Example 1: Optical interferometry

Increasing the precision: maximize variance with NOON states:

ψ N( ) = N ,0 + 0,N( ) / 2
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Example 1: Optical interferometry

Increasing the precision: maximize variance with NOON states:

ψ N( ) = N ,0 + 0,N( ) / 2

Δn̂( )2
0
=
N 2

4
⇒δθ ≥

1
N

—> entangled state

) FQ(✓) = 4h(�n̂)2i0 ) �✓ � 1

2
p

h(�n̂)2i
(⌫ = 1)

32



Example 2: Spatial displacement

| (X)i = eiXP̂ | (0)i ) Ĥ = i
dÛ †

dX
Û(X) = P̂

FQ(X) = 4h(�P̂ )2i0 ) h(�X)2i � 1

4h(�P̂ )2i
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Example 2: Spatial displacement

Coherent state:                                                 —>   standard 
quantum limit — coherent state saturates Cramér-Rao bound
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Example 2: Spatial displacement

Coherent state:                                                 —>   standard 
quantum limit — coherent state saturates Cramér-Rao bound
Maximizing variance of P for better precision:  e.g., squeezed states 
—> Also saturate the bound (Gaussian states)

X X

| (X)i = eiXP̂ | (0)i ) Ĥ = i
dÛ †

dX
Û(X) = P̂

FQ(X) = 4h(�P̂ )2i0 ) h(�X)2i � 1

4h(�P̂ )2i

h(�P̂ )2i0 = 1/2 ) h(�X)2i = 1/2

Looks like Heisenberg uncertainty relation, but X is a parameter, 
not an operator! 33



Example 3: Phase-space displacement

34

A sensitive instrument…

ψ =Ν α + −α( )
x

p

ψ = ʹΝ α + −α + iα + −iα( )

W. Zurek, Nature 412, 712 (2001)

ΔX ≈ 1
α

Vlastakis et al., 
Science 342,  
607 (2013)

Sub-Planck 
sensitivity



Recall that                                so in order to increase the precision one 
needs to choose a state     that maximizes the variance            . If                     
has a discrete and bounded spectrum, this is accomplished by letting  

Possible strategies for quantum-enhanced metrology (1)

Single probe

FQ(| i) = 4h(�Ĥ)2i
h(�Ĥ)2i| i

| i
opt

=
1p
2
(|�

max

i+ |�
min

i)

where           and           are eigenstates of     corresponding to the 
maximum and minimum eigenvalues.

|�
max

i |�mini Ĥ

Then                                            and                      h(�Ĥ)2i = (�
max

� �
min

)2/4

Question: What is the best strategy if one has N probes?

(   —> number of repetitions of single 
probe experiment)
⌫
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Possible strategies for quantum-enhanced metrology (2)

Separable input states, 
separable measurements

Separable input states, general measurement 
schemes (with entanglement)

General input states (with 
entanglement), separable 
measurements

General input states, general 
measurement schemes (with 
entanglement)

V. Giovannetti, S. 
Lloyd, and L. Macone, 

PRL 96, 010401 (2006) 
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Possible strategies for quantum-enhanced metrology (3)

Separable input states, 
separable measurements

Separable input states, general measurement 
schemes (including entanglement)

N probes

Product initial state:
�
�Ĥ2

�
=

N�

j=1

�
�Ĥ2

j

�

|�j�

|��opt = |��(1)opt|��
(2)
opt · · · |��

(N)
opt �

�
�Ĥ2

�
= N(�max � �min)2/4

Therefore
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  generators of 
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Ψ
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= ψ
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(1)
⊗ ψ
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(2)
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(N )
→

�'
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� 1p
⌫N (�
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)
=

�'
(1)p
N

Û (N)(') = Û(')⌦N Ĥ =
NX

j=1

Ĥj ! Û(')



Possible strategies for quantum-enhanced metrology (4)

General input states, 
separable measurements

General input states, general 
measurement schemes 

N probes

Maximization of variance               :h(�Ĥ)
2i

h(�Ĥ)
2i = N2(�

max

� �
min

)2/4

Therefore:
gain!  
—> Heisenberg limit
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p
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Possible strategies for quantum-enhanced metrology (4)

General input states, 
separable measurements

General input states, general 
measurement schemes 

N probes

Maximization of variance               :h(�Ĥ)
2i

h(�Ĥ)
2i = N2(�

max

� �
min

)2/4

Therefore:
gain!  
—> Heisenberg limit

1/
p
N

Entanglement of initial 
state is necessary for 

going beyond shot-
noise scaling.
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PN

j=1 Ĥj !



Entanglement-assisted parameter estimation: phase estimation

39

The problem. One wants to estimate a small change of phase between states 
of a two-level system, which would allow to estimate say a small 
electromagnetic field, or yet a transition frequency between the two states. 
Two possible strategies:

Separable
Entangled

pS yes( ) ≡ pS = 1+ cosφ( ) / 2 pE yes( ) ≡ pE = 1+ cosNφ( ) / 2
pS no( ) =1− pS = 1− cosφ( ) / 2 pE no( ) =1− pE = 1− cosNφ( ) / 2

FS φ( ) = 1
pS
+

1
1− pS

⎛

⎝
⎜

⎞

⎠
⎟
∂ps
∂φ

⎡

⎣
⎢

⎤

⎦
⎥

2

=
1

pS 1− pS( )

⎡

⎣
⎢

⎤

⎦
⎥
∂ps
∂φ

⎡

⎣
⎢

⎤

⎦
⎥

2

         =1

FE φ( ) = 1
pE 1− pE( )

⎡

⎣
⎢

⎤

⎦
⎥
∂pE
∂φ

⎡

⎣
⎢

⎤

⎦
⎥

2

=1

δφS ≥1/ NFS φ( ) =1/ N δφE ≥1/ NFE φ( ) =1/ N

[Figures adapted from V. Giovannetti, S. Lloyd and L. 
Maccone, Nature Photonics 5, 222–229 (2011)]
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0 + eiφ 1

φ

φ
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φ
φ

φ

0 N
+

1 N

  0 N

+eiNφ 1 N
0 N

+

1 N ?

0 + 1( )→ exp i 1+σ̂ z( )φ / 2⎡⎣ ⎤⎦ 0 + 1( )



Entanglement-assisted parameter estimation: phase estimation (2)

1. Separable qubits. 

Are these the best measurements? 

40

0 + 1( )→ exp i 1+σ̂ z( )φ / 2⎡⎣ ⎤⎦ 0 + 1( )



              We know that for the best measurement                                  where     
here is the generator of phase displacements:                           . Since for the 
initial state       we have                           it follows that the measurement of 
maximizes the Fisher information, leading to the corresponding Cramér-Rao 
bound in                                            , the so-called standard limit.

Entanglement-assisted parameter estimation: phase estimation (2)

1. Separable qubits. 

|+�

Ĥ

h(�Ĥ)2i0 = 1/4,

FQ(�) = 4�(�Ĥ)2⇥0 ,
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Are these the best measurements? 

2. Entangled qubits. 

The generator of phase displacements is                                       , so that                          
                                             which means that the above measurement 
leads to the maximum value of the Fisher information and to the Cramér-
Rao bound in                                        the Heisenberg limit.
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Ĥ =
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Entanglement-assisted parameter estimation: phase estimation (3)

Bound can be achieved with local measurements! Measure observable 

2. Entangled qubits. 

41

  0 N
+ eiNφ 1 N

on final state 

Get σ̂ ⊗N = cos Nϕ( )

Δσ̂ ⊗N = sin Nϕ( )
So, from error propagation:

δϕ =
Δσ̂ ⊗N

∂ σ̂ ⊗N /∂ϕ
=
1
N

�̂⌦N =

which coincides with the Heisenberg bound.

Therefore, only the initial entanglement counts!
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NEXT LECTURE: QUANTUM METROLOGY FOR OPEN SYSTEMS
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