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But de cette legon

Dans cette legon, on discute I'extension quantique de la théorie de
Cramér-Rao-Fisher. Le role de I'intrication pour accroitre la
précision de I'estimation est discuté. La théorie générale, ainsi
développée, est appliqué a l'interférométrie optique et atomique, et
aussi a I'analyse de la méthode connue comme "amplification de
valeurs faibles” (weak-value amplification).

Téléchargement de la premiére legon: http://www.college-de-
france.fr/site/jean-dalibard/guestlecturer-2016-02-04-11h00.htm




Rappel de la prémiere legon: théorie classique de |'estimation de parameétres
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Cramér-Rao bound for unbiased estimators:
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P,(X)— probability of getting an experimental result j
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or yet, for continuous measurements: F(X) = /dfp(f|X) [
where & are the measurement results

(Average over all experimental results) 3



I.2 - Quantum parameter
estimation



Quantum parameter estimation

Initial State == Dynamical Process w=fp Final State = Measurement == Estimator
Q -

The general idea is the same as before: one sends a probe through a
parameter-dependent dynamical process and one measures the final
state to determine the parameter. The precision in the
determination of the parameter depends now on the
distinguishability between quantum states corresponding to nearby
values of the parameter.



Example: Optical interferometry
SR »

r

wl>  Siandard limit (shot noise)

(Coincides with the limit calculated in Lecture 1)

= exp| —(n)(80)" | = 80 =1/ /(n)

Possible method to increase precision for the same average number
of photons: Use NOON states [J. J. Bolinguer et al., PRA 54, R4649
(1996); J. P. Dowling, PRA 57, 4736 (1998)]

W (V) = (N,0) +0.8)) 152 = [w(W.0) = (IN.0)+ ¢"*[0.W) 12, ((n)=N)
[cos®(NG66/2) =0
= 00 = 7/N]|

HEISENBERG LIMIT — Precision is better, for the same
amount of resources (average number of photons) 6

(y (N)|w (N,80))| = cos* (N6 /2)= 60 =1/ N




Quantum Cramér-Rao bound

The derivation of the Cramér-Rao bound is as before. But now the
probability density for output &, given that the value of the parameter is
X and the probe is in the state|y(X)), is

pEIX) = WOIEE(X))
where the non-negative Hermitian operators F(¢) describe a (generalized)
measurement, that is, they are members of a positive-operator valued
measure (POVM) — a set{F(¢)} of Hermitian positive semi-definite
operators in Hilbert space such that [ d¢ E(¢) = 1, implying that
[ dép(€]X) =1, as expected. The elements of a POVM are not necessarily
orthogonal, as is the case for Von Neumann projectors, so that the
number of elements may be larger than the dimensionality of the space.
One has, as before, for a given set{E£(¢)}:

5 1
| \/<(AXest) >Z \/NF(X)
with

FIX;{E(&)}] Z/dﬁp(ﬁlX) [mngﬁﬁmr :/dfp(gl\x) lap((?i(X)r 7




Quantum Cramér-Rao bound (2)

The above bound corresponds to an optimization over estimators for

a given quantum measurement. In order to get the ultimate lower

bound for ((AXet)?) one should still optimize over all quantum

measurements. One gets then the Quantum Fisher Information:
Fo(X) = MaX e pe)y FX; {E(O}]

so that

V{(AXest)?) > 1/4/NFq(X)

We show now that, for pure states, this maximization can actually
be carried out analytically, yielding a simple expression for the
quantum Fisher information.



Quantum Fisher information for pure states (1)

Consider a unitary process, the initial state of the probe is|¢(0)), and the
final X-dependent state is|i)(X)) = U(X)[)(0)), where U(z) is a unitary
operator. Define the auxiliary operator

2 Like Schrdinger equation,
h(X) = zdzg) UT(X) | so that with Hamil’ronia—fz(X)
() _ a0) 10(X) - iy
2l = T ) = T U0 0) = ih(0)R(x)
fz(X )—> generator of U (X)
Let p(¢|X) = (Y(X )|E( fde = 1.Then _
e = | >|] E©Iw(X)) + WIEE) | 7 o(X)

= P COIEX), RO (X)) = —21m [((OIECORX)IS(X))

which may also be written as [with g(X) a real function]:

%éi\(m = —2m {{$(X)| E(X) [A(X) — g(X)] [:(X)) }




Quantum Fisher information for pure states (2)

Squaring ) — o {s(00) | 6) [(X) — 90)] o))}
onegets | [OPEOT"_ e {woolite) [ - o00)] 600}

< 4|26 [h(X) - g0] [w(x)|
< WX)BEWX)) (X)EE) [h(X) - g(X)] [0(X))

where in the last step we have used the Schwarz inequality. Therefore

PEE <m0 we0lE© [0 - 900)] o)

Dividing by p(£|X) and integrating with respect to &:

e [EX)) o
P = [ de s [ <4 [agtuoiie [hx) - 0] o)

= 4 (X)] [A(X) = g(X)| " [(xX))

since [d¢ B(¢) =1.




Quantum Fisher information for pure states (3)

“ 2
The right-hand side of the expression FI(X) < 4(¢)(X)] [h(X) _ g(X)] (X))
can be written in ferms of the initial state |4(0)) by defining

dUT(X) This looks like
- Hamiltonian in the

Heisenberg picture

so that F(X) < 4((0)] [#(X) — g(X)] " [1:0))

Note that, if U(X) — exp(z'@X), O constant, Thenf](X) —0.IfOisa
Hamiltonian, then X is a time displacement, andU (X ) is the evolution operator.

This bound attains its minimum value when g(X) = (¢(0)|H (X)|4(0)) = (H (X))o

Therefore, we find finally the upper bound for the Fisher information:
2

F(X) <4(AH?)o,  (AH))o = ($(0)] [H(X) = (H(X))o]| [1(0))

We show now that this upper bound is actually attained by a proper measurement,
and therefore it coincides with the quantum Fisher information.



Quantum Fisher information for pure states (4)

We consider that the outqgoing state is [¢(X’)), and the measurement defined by
By = [pX)(W(X)], Ex=1— (X)) (¥(X)]
and show that the corresponding Fisher information attains the upper bound
derived in the last slide when X’ — X. We have, in this case:

N1 [dp(X)]? 1 [dp(X)]°
FX(X)_pl(X/)[ dX' ] +zoz(X’)[ ax’ ] |
p1(X") = [((X)p(X)?, pa(X') =1—pi(X).

Therefore, N 1 dp1(X')7°
FX(X)_pl(X’)[l—pl(X’)][ dX’ ]

Since limX/_>X pl(X) = land limx/_, x [dpl (X)/dX] =0, the limit X =X of
this expression is indeterminate.

Using I'Hopital's rule, one gets:

. N dzpl(X,) _ T\ 2
Jim Pe(x) =2 TS| o))
here, as before, . - A :
wnere, a erore H(X) E/LdU;)((X) U(X)

This is precisely the upper bound found before! 12



Quantum Fisher information for pure states (5)

Therefore, for pure states,

AN

Fo(X) = 4(AR)2)a,  (AH))o = W(O)| [H(X) ~ (H(X))o] [0(0)

From the definition of H(X) and from the above expression, it follows
that the quantum Fisher information can also be written as

2]
This expression is very useful, and it will be used a few times in these
lectures.

41 (X)] djip(X)) W(X” (X))

FQ(X)_4[ dX dx | dx




Example 1: Optical interferometry

n = a'a — Generator of phase displacements |a) — |a exp(if))

= Fo(0) = 4{(An)?),where ((An)?)q is the photon-number variance in
the upper arm.

= 00 >

1
— 2¢/{(AR)?)

(v=1) v — Number of repetitions

This lower bound is better by a factor of two than the bound found before,
which was 06_. =1/\/@. This earlier bound corresponds to comparing the
displaced-phase coherent state in the upper arm of an interferometer with
an undisplaced coherent state with the same amplitude in the other arm. The
result found here indicates that a better measurement of the phase is
possible: indeed, a homodyne measurement allows the comparison of the
displaced coherent state with a classical reference field (local oscillator),
which is just a coherent state with a number of photons much larger than
that of the measured state — this yields a better precision in the estimation
of the phase. 14



Example 1: Optical interferometry

Increasing the precision: maximize variance with NOON states:
W (N))=(IN,0)+|0,N))/v2 —> entangled state

1
2¢/{(A7)?)

Fol(0) = 4((An)?)y = 60 >




Example 2: Spatial displacement

Coherent state: (AP)?)y =1/2 = ((AX)?) =1/2 —> standard
quantum limit — coherent state saturates Cramér-Rao bound
Maximizing variance of P for better precision: e.g., squeezed states

—> Also saturate the bound (Gaussian states)
Looks like Heisenberg uncertainty relation, but X is a parameter,

not an operator! 6



Rappel sur |'intrication

Consider a multipartite system S of N particles. The state of the system is
defined in a Hilbert space resulting from the tensor product of the N
individual Hilbert spaces of the subsystems:
H=H1QHQ - Q@HnN
A pure state describing a system with many parts is said to be separable if
and only if it can be written as the product of the states of each part:
V) =¢1) ® - Q [¢N)
This means that it is possible to assign a state vector to each subsystem: this
implies that one has full information about each part. Otherwise, the state is
said to be entangled. The most general state in this space can be written as
W)= > ajgylin) @ @in) = ) aj, gyl in)
JiJN JiJN
where |7;), with 0 < j; < d; — 1, is an orthonormal basis of H; (dimension d;).
This is not necessarily a product of vectors belonging to the subspaces #,;.
Examples of entangled states (two qubits): Bell states
- 1 - 1
) = \/5(\01>i\10>) @) = \/i(|00>i\11>)
In this example, one has maximal ignorance on the state of each qubit - these
are maximally entangled states. 17



Schroédinger on entanglement

Naturwissenschaften
23, 807 (19395)

“This is the reason that knowledge of
the individual systems can decline to
the scantiest, even zero, while that of
the combined system remains
continually maximal. Best possible
knowledge of a whole does not include
best possible knowledge of its parts -
and that is what keeps coming back to
haunt us.”



Possible strategies for quantum-enhanced metrology (1)

Single probe

Recall that 7, (|«))) = 4((AH)?) so in order to increase the precision one
needs to choose a state|) that maximizes the variance (AH)?). If H
has a discrete and bounded spectrum, this is accomplished by letting

1
‘¢>opt - ﬁ
where [Anax) and [Amin) are eigenstates of H corresponding to the
maximum and minimum eigenvalues.

(‘)‘maX> - |>‘min>>

Then (AH)?) = (Amax — Amin)?/4 and

1 (v —> number of repetitions of single
VV (Amax — Amin)  probe experiment)

AXaqy >

Question: What is the best strategy if one has N probes?



Possible strategies for quantum-enhanced metrology (2)

V. Giovannetti, S.

Lloyd, and L. Macone,
PRL 96, 010401 (2006)

CC
Separable input states, Separable input states, general measurement
separable measurements schemes (with entanglement)

QC
General input states (with General input states, general
entanglement), separable measurement schemes (with

measurements entanglement) 20



Possible strategies for quantum-enhanced metrology (3)

Separable input states, Separable input states, general measurement
separable measurements schemes (including entanglement)

A

N
Uwny(X) = U(X)®Y H= Zﬁj —> generators of ﬁ(X)
=t N

)

Product initial state: <A7:(2> = Z <Aﬁ2>lw'>

W), =l @) @ @y) = (

opt opt opt

Therefore | Ay, .. > _
)= V vIN (Amax _ )\min) \/N 21




Possible strategies for quantum-enhanced metrology (4)

IREE
RN

Sy
R eY!
RIRAR:

3888

Entanglement of initial
state is necessary for

333N
SRS

3388

SR
SRR

going beyond shot-

C : .
Q noise scaling. Q
General input states, General input states, general
separable measurements measurement schemes

A 3 2 R
Uny(X) =0(x)®Y #=3" A,
Maximization of variance <(A77Z)2>:

|
|lp>0pt = ﬁq A’max>1 ®|A‘max>2 ®”.®|A‘max>N +|A'min>1 ®|A’min>2 ®”'®‘A‘min>N)

(A - N

1 ~ AX(y,| 1/VN gainl

NV Amax — Amin) N —> Heisenberg limit
22

Therefore:|AX () >




Entanglement-assisted parameter estimation: atomic spectroscopy

1. Separable qubits. Prepare N qubits . \
in the state |+) = (]0) + [1))/V2 . Préparation e
The evolution of each qubit is givenby | | o
0) = |0), |1) = exp(i¢)[1) . Therefore, | ® ' R | :
.\ - =
the state |+) evolves into e e —
+) = l¢) = (|0) +€[1))/V2 ydbarg Covfé degrand 0 T

We must now choose a proper measurement to estimate ¢. We choose the one
associated with the Pauli 7, operator (and show that this is the best onel!). The
measurement of d, has two possible outcomes, 4-1, with probabilities

p(£1|¢) = [(£])|* = (1 £ cos$)/2, |£) = (|0) £ [1)/)v2
The Fisher information for this measurement is thus given by

F(9) =30, (£119) [Op(119) /9¢)" =

However, we know that for the best measurement Fo(¢) = 4((AH)?), ,where H
here is the generator of phase displacements: H = (1 + 6,,)/2 . Since for the
initial state |[+) we have ((AH)?)q = 1/4,it follows that the measurement of &
maximizes the Fisher information, leading to the corresponding Cramér-Rao
bound in ¢ > 1/1/NFo(¢) = 1/V N , the so-called standard limit.




Entanglement -assisted parameter estimation: atomic spectroscopy (2)

2. Entangled qubits. Now N qubits form a GHZ-like state, with the same
evolution as before, [0) — |0), |1) — exp(i¢)|1),

D (0)) = [ = ([T + 1) /3. where [0) = [0,0+- ,0), [T) = [1,1--+ ,1),
and we define also|—y) = (|0) — [1))/v/2. After the evolution, the initial
state becomes |1 (¢)) = [|0) + exp(iN)|1)]/v/2.

In order to estimate the phase, we choose the observable
(33(31) R (33(32) LR U(N)

with eigenvectors |£x) corresponding to the eigenvalues*1, so that

p(F1[Y()) = (En[¥(9))]* = (1 £ cos N¢)/2 2
which leads to the Fisher information F'(¢) = Z ! [8p(i1|¢)] = N2
2 p(=1l9) | 06

The generator of phase displacements is H = Zf\fz . /2, so that
(1h(0)|(AH)2[4(0)) = N?/4, which means that the above measuremenT
leads to the maximum value of the Fisher information and to the Cramér-
Rao bound in §¢ > 1//Fo(¢) = 1/N,the Heisenberg limit. Note that the
higher precision for the same N was obtained by entangling the qubits and
making local measurements of o{") on the outgoing state. 24




Recent experimental result

LE I TER 28 JANUARY 2016 | VOL 529 | NATURE | 503

doi:10.1038/nature16176

Measurement noise 100 times lower than the
quantum-projection limit using entangled atoms

Onur Hosten!, Nils J. Engelsen!, Rajiv Krishnakumar' & Mark A. Kasevich!
T — —

Lattice potential 5p
A 3/2
ke Probe intensity

nt-polarized

1,560 nm Atoms
IT) % [2,0)
—_ Clock states
780 nm ==4-= 55/, m——)p ~ .
D=1.0) (insensitive to

magnetic fields)

Rb®” atoms are trapped at the maxima of the probe intensity profile by the 1,560 nm
lattice. The 780 nm probe light, which is uniformly coupled to the atoms, is detuned by
equal and opposite amounts from the two clock states. Change in the frequency of the
probe field allows a collective population difference measurement on the atom — the
frequency shift of the cavity resonance is a direct predictor of J,. This is a quantum
non-demolition (QND) measurement of J;(nho atomic transitions, since the coupling is
dispersive), which projects the quantum state into one with a narrower distribution of
J; than that of a coherent spin state. 25




QND measurements of atoms and fields

Using a field to make a QND
measurement of the
collective atomic state —>
leads to squeezed atomic
state

Using atoms to make a QND
measurement of the field
(ENS) —> leads to sub-
Poissonian field, eventually to
a Fock state of the field.

26



Preparation of an atomic coherent state

Projection noise with Apply a 7/2 microwave pulse
200,000 atoms to the atoms, initially in the
ground state. Resulting state

N I | s not entangled:
S0
,,,j]ll | |hh, , ) +19)\ :
" LU NG (eigenstate of J,)

-800-480 -1 63 160 480 800

For this state, (J,) = N/2 , since J, = S, S, and (Si.) = 1/2.
From [Ji, J;] = i€ijuJx, it follows the uncertainty relation AJ, - Ajy > [(J,)/2].

A

A A A A 2
For the above state, (J,) = (J,) =0, and (J7) = (J;) = Z£1<S¢y> = N/4,
so that AJ, = AJ, = v/N/2. We have then a minimal uncertainty state:
AJ, - Afy = |(J,)/2|. Since AJ, = Ajy, it corresponds to a coherent spin
state, and the value of these variances is the projection noise (equivalent

to the shot noise for the electromagnetic field). Bound on uncertainty in
the measurement of a phase displacement is Agmin = AJ./|(J,)| = 1/VN.

This uncertainty can be reduced by 10 by multiplying N by 100. >7



Recent experimental result (2)

Metrological improvement provided by squeezing
is quantified by

e (W/z | |<Jx>>

AJ, NJ/2
where first factor on the r.h.s corresponds to
hoise reduction, and second factor represents
coherence loss. For a coherent state, the two
factors are equal to one, and x* = 1.In the
experiment, X2 = 100 (20 dB) was attained,
equivalent to increasing 100 times the number of

atoms in a coherent state.
Owing to systematic errors arising from

collisions between atoms, there is typically an

upper bound to the number of atoms that can be
employed in state-of-the-art cold atom sensors.
In this experiment, up to 7X10° atoms are used.

The single-shot phase resolution of 147
microradians achieved by the apparatus is better
than that achieved by the best engineered cold
atom sensors despite lower atom numbers.

(a)

018
6.5 x 10° atoms

The Jz measurement resolution is
determined by the competition between
photon shot noise and probe induced
Raman scattering (spin- flips). The
former limits the precision of the cavity
frequency measurements; the latter
leads to a random walk in the measured
observable.

0.06
0.04 1

0.02 r

0
-1,000-800-600-400-200 O 200 400 600 800 1,000
J

¥4

(a) Two squeezed spin states, one rotated
by 660 prad in the direction of the white

arrow, by a weak microwave pulse. (b) The
corresponding measured squeezed
distributions compared to the un-
squeezed distribution. 28



Quantum metrology and weak-value amplification

Usual framework: Start with Von Neumann measurement scheme
Hi(t) = hgd(t — tg)A @ M = U(g) = exp(—igA ® M) Free-evolution neglected

A— System observable (assume discrete non-degenerate spectrum: Aja;) = a;|a;))
M — Meter observable (assume continuous spectrum)

Initial state of A+M: |\Ifz> = ‘¢i>A 024 |¢z>M

Value of pointer observable -
/ canonically conjugate to M

Strong measurement: |g|da > Ax

Al Vi) a
M| [Di) s

Weak measurement: \g|5a < Ax

Example: If M = momentum, X = position

[Wi)a = Zczlaz |hi) 1 /da: c(z)|x) ’C@)’QT_ZAM R

X

S 1T )) = exp(—igA ® )|} 4 ® b = 3 erlas) @ / 0 ()| — gaihas

)

29



Quantum metrology and weak-value amplification
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The experiment of Stern and Gerlach
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The experiment of Stern and Gerlach
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Pre- and post-selected measurements

System PosT-s;lecTed state
Al ) a ) a Measurement of X is conditioned on
measurement of A in state ‘?,Uf> .
M |di) s —
Measuring device [Uy) = exp(—igA ® M)[ti)a @ |¢i) m

Unnormalized meter state after post-selection (assuming weak interaction):

¢(9)) M = a{vyl exp(—igA @ M)|1h;) 4 ® |¢i)m
~ APl —igA® Mlhi) a4 @ [9i)m
= A(Wr|i)a(1 — igAwM)|di) m

Could be much larger than (4),

Ay = als | Alvi)a > Weak value by choosing § = 4{tr|vi)
AYrli)a sufficiently small

Must have, however, [gA,,|AM < 1, where AM — width of |(/§i>M
Then, probability of post-selection is very small:
pr(9) = [(05(9)|s(9)1° = [(Ws1U(9)|Wi) |* = [ (5 1403)|* + O(g?)
Note that | |¢r) = 16¢(9))/VPr = (Ws¥s)/\/Pr :




Example: Quantum version of random walks

PHYSICAL REVIEW A VOLUME 48, NUMBER 2 AUGUST 1993

Quantum random walks

Y. Aharonov,* L. Davidovich,! and N. Zagury!

| Azl(zo))
""’l"‘ﬁ’:,:g'ooocoo’:\ooo

Consider a particle with spin 1/2 moving on a one-dimensional lattice, with

the width of the wave-packet in position space much larger than the
lattice parameter, and centered around zo.

The spin works as a "quantum coin” for the movement of the particle: if the

spin is up, the particle moves right, if it is down it moves left. This dynamics
can be described by the evolution operator U = exp(—iS.Pl/h).

We have therefore

Initial state |¥;) = |¢(x0))(ct] 1) + ¢ 1))
—> Final state |U;) = ci| D|(zo + £)) 4 cy| L)|e(zg — £))

where|y(zo £ ¢)) is centered around xg & ¢ 1



Example: Quantum version of random walks

s

® 6 o o ® 6 6 6 6 6 o o o o
Zo

(@l (o)) “gﬂ = cr| DY (o +0)) + e Hlb(zo — )

Suppose one measures the spin component along a direction (0, ¢). The
state in configuration space after the measurement is then a coherent
superposition of ¢ (%o +¢))and [¢(zo — {)). Assuming the spin—h/2 is
found and choosing ¢ as the argument of c; /¢t and

tan(0/2) = ey fer|(1 + ¢)

with0 < € < 1, the direction(d, ¢) becomes
almost orthogonal to the initial direction
of the spin. The resulting wave-packet is
shown in the picture. The interference
between the two wave-packets produces,
after a few steps, a displacement much
larger than the elementary step in the
lattice.

PROBABILITY AMPLITUDE
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0.4 |-
0.2 f
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- 10 steps /™ ., -
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- ] 2 \
s f i\ \
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- '-' A \
" H / \
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What about the precision?

Quantum Fisher information corresponding to g (averages in initial state):
U(g) = exp(—igA @ M) = F(g) = 4 |{A)(M2) — (A)(V1)?| — F(g) = 4(A%)(31?)
A i\M\pi)pr =0

Set of measurement operators (POVM's) corresponding to post-selection procedure:

{15y (s |®Ei, Aa—ths) (Wg)@Im} i=1...n

where the operators {E;}, with S E; = 14, act on the Hilbert space of M.

This set leads to the corresponding probabilities (averages of the measurement
operators on the final state):

{Pi(9), 1 = ps(9)} = LW slor) (s  Eil ), (1= [(Tsleoy) )}

where pr(g)is the probability of post-selection and, according to the expression
9r) = (Vr|Vr)/\/DF, one has P;(g) = pf(g)PiM(g), where

PM(g) = <¢f(g)‘Ei‘§bf(g)> is the probability of getting the result associated
with the operator F; after the proper state is selected.

34



What about the precision?

Fisher information with post-selection procedure

50~ 1 () i (")

ps(g) = [eslU @) W:)* | |Pilg) = pr(9) P (9)| | B (9) = (85(9)|Eildr(9))

This can be r'ewr'i‘r’ren as
1 [dPM( q)

r ] +pf<g>[11—pf<g>] [dpég(g)IQ

7 TV

M

7

A

Fisher information Information on g
corresponding to encoded in py(g)

measurements on.‘rhe meter ;) — Post-selected state of A
after post-selection, degraded
by loss of statistical data E; — Generalized measurements on M

35



What about the precision?

i Ml [dp/\;( >] +pf(g)[ll—pf(g)] [dpcj;g(g)r

\ . 7
7 TV

FM(g) pr(g)

Fisher information corresponding ~ Lhformation on g encoded inps(9)

to measurements on the meter
after post-selection, degraded
by loss of statistical data

The quantum Fisher information for the meter, corresponding to the best
possible measurement, is given by the expression
2]

d(p(g)| dlo(g)) |d(o(g)]
FM(9)=4[ a7 i | dg [9(g))

multiplied by the post-selection probability ps(g).

36



What about the precision?

FPS :fM(gZ+pr(g)

Quantum Fisher information Information on g encoded in py(g)

corresponding to measurements on
the meter after post-selection,
degraded by loss of statistical

data

Perturbation theory is tricky, since there are two small parameters: g
and | 4{¥¢|¥i) a]. So, must consider two regions separately:

|gAw|AM <1 = Region of validity of weak-value theory

gAL|AM > 1 => Attained if |a(Vr|i)al < 1

PHYSICAL REVIEW A 91, 062107 (2015)

Weak-value amplification as an optimal metrological protocol

G. Bié Alves, B. M. Escher, R. L. de Matos Filho, N. Zagury, and L. Davidovich
Instituto de Fisica, Universidade Federal do Rio de Janeiro, P.O. Box 68528, Rio de Janeiro, RJ 21941-972, Brazil
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What about the precision?

FPS :fM(gZ+pr(g)
Quantum Fisher information /

corresponding to measurements on
the meter after post-selection,
degraded by loss of statistical
data

In PRA 91, 062107 (2015) it is shown that, if the post-selected state is given by

o AW@> : A ~ o, Quantum Fisher
pty - lim F,, o 2 2 uantum
Vi (AZ)1/2 = (9) = F(g)= 4{A%)(M7) information

Information on g encoded in ps(9)

However, the contributions to Fps depend on the region of parameters:

9Aw|AM <1 =Fn(g9) = F(g) Region of validity of weak-value theory
AL AM > 1 = F,,(9) — F(g) Region|(¢y|hi)| <1

For this optimal choice of post-selected state, one has

. _ (WrlAls) (s A% ) 1 Al
Weak value: A, = i) = oy A > (| Aly)

so there is indeed amplification. 38




Example: spin measurement

A

. . X . ) Al
A=6, A’ =1 U(8)=6Xp(—ig0'ZM) Wfpt> _ i) _

6Z|l//i>

<A2>1/2 N
(Rotation of JT

Initial state of the meter is a pure state with a Gaussian

A A around the z axis
distribution of the eigenvalues of M, with width AM = (M?)1/2 )

Vr) = 62]1;) ;) : 0.85 | ).\\ '.'
5 I FM \\ "
= 06F [glaM = 0.1 '
s F i
= 0'4: .'1‘ j
2 ol i
i 0.2 J |“:

A =<1/Jl- A2|w,->= | _ 1 0; pr

’ <?/Ji A|'/Ji> <1/J,- (ATZ|1/J,-> <1/J]?pt ¢i> Transition region: |gA,|AM ~ 1

o J/
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Displacement of the pointer

Example: spin measurement

Post-selection ly>=o3ly;>

|
[gA=0.063 — |

At 0 ==xm /2, pointer does not
movel —> no informationong |

-7t -7t/2 0 /2 T
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week ending

PRL 112, 040406 (2014) PHYSICAL REVIEW LETTERS 31 JANUARY 2014

£

Weak Value Amplification is Suboptimal for Estimation and Detection
Christopher Ferrie and Joshua Combes VGI ue Of weda k-VCler

Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA

(Received 25 July 2013; revised manuscript received 21 November 2013; published 31 January 2014) ampl If | CGT'On: a deba"'e

We show by using statistically rigorous arguments that the technique of weak value amplification does
not perform better than standard statistical techniques for the tasks of single parameter estimation and
signal detection. Specifically, we prove that postselection, a necessary ingredient for weak value
amplification, decreases estimation accuracy and, moreover, arranging for anomalously large weak values
is a suboptimal strategy. In doing so, we explicitly provide the optimal estimator, which in turn allows us to
identify the optimal experimental arrangement to be the one in which all outcomes have equal weak values
(all as small as possible) and the initial state of the meter is the maximal eigenvalue of the square of the
system observable. Finally, we give precise quantitative conditions for when weak measurement
(measurements without postselection or anomalously large weak values) can mitigate the effect of
uncharacterized technical noise in estimation.

PHYSICAL REVIEW X 4, 011031 (2014)

Technical Advantages for Weak-Value Amplification: When Less Is More

Andrew N. Jordan,'? Julidn Martinez-Rincén,' and John C. Howell'
lDeparrmem of Physics and Astronomy and The Center for Coherence and Quantum Optics,
University of Rochester, Rochester, New York 14627, USA

*Institute for Quantum Studies, Chapman University, 1 University Drive, Orange, California 92866, USA
(Received 19 September 2013; published 6 March 2014)

The technical merits of weak-value-amplification techniques are analyzed. We consider models of
several different types of technical noise in an optical context and show that weak-value-amplification
techniques (which only use a small fraction of the photons) compare favorably with standard techniques
(which use all of them). Using the Fisher-information metric, we demonstrate that weak-value techniques
can put all of the Fisher information about the detected parameter into a small portion of the events and
show how this fact alone gives technical advantages. We go on to consider a time-correlated noise model
and find that a Fisher-information analysis indicates that the standard method can have much larger
information about the detected parameter than the postselected technique. However, the estimator needed to
gather the information is technically difficult to implement, showing that the inefficient (but practical)
signal-to-noise estimation of the parameter is usually superior. We also describe other technical advantages
unique to imaginary weak-value-amplification techniques, focusing on beam-deflection measurements. In
this case, we discuss combined noise types (such as detector transverse jitter, angular beam jitter before the
interferometer, and turbulence) for which the interferometric weak-value technique gives higher Fisher
information over conventional methods. We go on to calculate the Fisher information of the recently
proposed photon-recycling scheme for beam-deflection measurements and show it further boosts the Fisher
information by the inverse postselection probability relative to the standard measurement case.
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Sommaire de la troisieme lecon
Jeudi, 18 Février, 2016

Dans cette legon, on a discuté I'extension pour la mécanique
quantique de la théorie de Cramér-Rao-Fisher, qu'on a appliqué a des
systemes fermés, pour lesquels I'evolution de la sonde est décrite
par une operation unitaire. La prochaine legon introduira I'extension
de cette théorie pour les systémes ouverts, comme l'interférometre
optique qui subit des pertes de photons ou la diffusion de la phase.
On considere aussi le probleme d'estimation de forces faibles, qui
agissent sur an oscillateur harmonique amorti.

42



