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Classical parameter estimation

C.R.Rao R.A. Fisher

H. Cramer

Cramér-Rao bound for unbiased estimators:

dln[ ( )]

2

AX =1 /\/N F(X),, - EP

N — Number of repetitions of the experiment

P.(X)— probability of getting an experimental result j

J

. Olnp(¢X)]”
or yet, for continuous measurements: F(X) = /dﬁp(g\X) { 5% }
where & are the measurement results

(Average over all experimental results)



Quantum Fisher Information

(Helstrom, Holevo, Braunstein and Caves)
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dX

F(X:{E}) = [ag p(le)(d 1n[p(§|x)]j2

This corresponds to a given quantum measurement. Ultimate lower
bound for ((AXes)?): optimize over all quantum measurements
so that

(X) = max {Eg}F(X;{Eé: })




Quantum Fisher Information

(Helstrom, Holevo, Braunstein and Caves)

d In[ p(&1 X)]T

F(X:{E,})= jdgp(glx)( -

This corresponds to a given quantum measurement. Ultimate lower
bound for {(AXes)?): optimize over all quantum measurements
so that

%(X) = maX{Eg}F(X{Eg }) Quantum Fisher Information




Quantum Fisher information for pure states

Initial state of the probe: |1/(0))
Final X-dependent state: |¢(X)) = U(X)|y(0)), ﬁ(X) unitary operator.
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Quantum Fisher information for pure states

Initial state of the probe: |1/(0))
Final X-dependent state: |¢(X)) = U(X)|y(0)), U(X) unitary operator.

Then (Helstrom 1976):

2

Fo(X) = 4((AM)),  (AH)2)o = ((0)] [A(X) = (H(X))o|  [4(0))

where

~ AUt (x)
H(X) =i% 2 U(X)
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Parameter estimation with decoherence

|y > ><

e

j_

Loss of a single photon transforms NOON state into a separable statel

P(N))

_IN,0) +1]0,N)

>N —1,0) or |0, N —1)

No simple analytical expression for Fisher information!
For small N, more robust states can be numerically calculated



Parameter estimation with decoherence

Loss of a single photon transforms NOON state into a separable statel

N, 0 0, N
o) = O ON iy 10) or 0.8 - 1)
No simple analytical expression for Fisher information!
For small N, more robust states can be numerically calculated

Experimental test with more robust states (for N=2):
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Parameter estimation with losses - experiments
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- Losses simulated by a beam splitter
- in the upper arm. These states are
prepared by two beam splitters.
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Parameter estimation with losses - experiments

~ States leading to minimum uncertaint
y 7’?/ ¢ N I:_) ’ Y

in the presence of noise:

D W) =x,|20) +x [11) - /x, [02)

T, Loss o .
| ) manitor Coefficients are determined
B (Detection ' numerically for each value of 7).
' T

Losses simulated by a beam splitter
in the upper arm. These states are
prepared by two beam splitters.
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0.8 Figure 5 | Uncertainty of phase estimates. Uncertainties obtained using
two-photon optimal (circles) and NOON (sguares) states, as well as
0.6 attenuated laser pulses in the SIL regime (diamonds), rescaled by the square
root of the number of coincidences. For each transmission ), data are shown
0.0 for five phases ¢ =0, +0.2, +0.4 rad. Horizontal lines represent the

theoretical Cramér-Rao bounds for given classes of input states, taking into
account imperfections of the interferometer.
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Open-system evolution and quantum channels

The evolution of an open system can be described by the Hamiltonian
H=Hs®1g+1s® Hgp + Vsg
Hsand Hy ——> free-evolution Hamiltonians of system and environment
Vsg ———> interaction between the two parties. Effective time evolution of S:
ps(t) = Trg [pse(l)]
Assuming tThat initially S and E are not correlated, and that the initial state of the
environment is |0) g, then pse(0) = pg ® 10)E(0|and
psp(t) = Use (p§ ® [0)5(0]) Ulp
where Usg is the evolution operator corresponding to Hamiltonian H.
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where{‘m}ﬂis a basis of E,and K, = g (1|Usg|0)r are the Kraus operators (this
is the Kraus decomposition of a quantum channel).

Differential form of this evolution ———> master equation for the reduced
density matrix of the system
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Purification of an evolution

Given the Kraus decomposition of a quantum channel, it is possible to find
a correspondent unitary evolution of the system plus an environment.

This unitary evolution is not necessarily the same as the one derived from
the original Hamiltonian: the "effective” environment may be different
than the real environment E, but it leads however to the same dynamics
for all the states in S.

We shall use this purification strategy in order to develop a general
framework for the estimation of parameters in noisy quantum-enhanced
metrology.



Parameter estimation in open systems:

Extended space approach

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics 7, 406 (2011);
Braz. J. Phys. 41, 229 (2011)

Given initial state and non-unitary evolution, define in S+E

Va\

| D, (x))=Us . (x)1p);10), (Purification)

Then

_ (S &1 (S,E)

%

since measurements on S+E should yield more
information than measurements on S alone.
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Quantum limits for lossy optical interferometry

1n =1— no absorption

n =0 — complete absorption
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Environment

n =1— no absorption

n =0 — complete absorption
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Remarks on beam splitters

out
Ey Relation between positive-frequency parts of the fields:
t out / * o1 \ in
E" E" | cos(0/2) —isin(0/2) | E:
E™ \ —-isin(6/2) cos(6/2) / E"
. out 2 out 2 in 2 in 2
in Conservation of energy: |E“| +|E,"| =|E'| +|E,

TE

b

(

| -isin(6/2)  cos(0/2) J{ b

Quantum beam splitter:
cos(0/2) -isin(6/2) |( &, |

(Heisenberg operators)

where the operator & annihilates photons in mode a: a|N) = vV N|N — 1)

and | N) is the Fock state with N photons, with a'a|N) = N|N), where
a'a is the number operator.



Remarks on beam splitters

TbOMt
Do (& \_/ cos(0/2) —isin(6/2) |( &, |
'y K—isin(8/2) cos(6/2) N\ by |
in
Exercises:
1. Energy conservation: Show that @4, +b. b =a'a, +b'b,

2. Beam-splitter operator: Show that, if U, (6 )—exp[ zH(abT+&Tb)/2] then
U} (0)aU,(8)=acos(0/2)-ibsin(8/2)=a,,
(7;(0)13(?3(9)=-i&cos(¢9/2)+bsm(0/2)=b

out

In terms of the transmissivity 1 =cos(6/2):

&out \ / \/; _1\11_77 \/ &in
Eout / \ _i‘\ll_n \/E /\ Ein




Quantum limits for lossy optical interferometry

Environment 1N =1— no absorption
(mode b)

n =0 — complete absorption

o A <

Possible state for environment E (mode b) and system S (mode a):

iOhgT 3
9(6)),, =" Us(\n)lw),]0),
This is one of many possible purifications. To get a purification that leads
to a final state of E with less information on @, one possibility is to apply

to E the operator exp(—iadn, ), with 1, being the number of photons in
the environment mode:

y(6)),, =" e U, (V) w,)|0),
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Quantum limits for lossy optical interferometry

Environment 1N =1— no absorption
(mode b) |9’ = 0B

n =0 — complete absorption
e )

Possible state for environment E (mode b) and system S (mode a):

iOhgT 3
9(6)),, =" Us(\n)lw),]0),
This is one of many possible purifications. To get a purification that leads
to a final state of E with less information on @, one possibility is to apply

to E the operator exp(—iadn, ), with 1, being the number of photons in
the environment mode:

Reduced evolution is not

‘ I/J(H)>SE = ¢ eieﬁSﬁB (\/ﬁ)‘ Y, >S ‘ O>E changed by the extra

unitary tfransformation




Quantum limits for lossy optical interferometry

n =1— no absorption

9 | 1n =0 — complete absorption

The quantum Fisher information corresponding to this evolution is

FQ0,1¥(0,))sk] = 4 5(tol e (0| AH?|0) 5[th0) 5
3 . d Tt —ifn, iabhg | —iabhy 07 1
where H(a,@)-zE[UBe e ]e e U,



Quantum limits for lossy optical interferometry

n =1— no absorption

H | n =0 — complete absorption

o A <)

The quantum Fisher information corresponding to this evolution is

Fo [0, 14(0,0))s5] = 4.5(tbo| (0] AH?|0) 5[10) s

~ d - o Coa s A
where H (OC,H) — l_I:Uge—zﬁnsezaHnE :Ie—laﬁnEeansUB
do

Minimization of the quantum Fisher information of system + environment
yields an upper bound for the Fisher information of the system:

oy — (oA where (), = (il
N A
Q (1 —n)A%hy +n()o Azno =S<1/J0‘(Aﬁ5)2‘wo>5
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Quantum limits for lossy optical interferometry

n =1— no absorption

9 | 1n =0 — complete absorption

v X - >€j—1.
oy An(n)eA’ig \ (1-n)An, +n(n),
Q) = A% +alite 0= an(a), A%

Low-dissipation limit: (1 —1)A%hg < n(i)o=>Cq — 4A%A0
(noiseless limit)

High-dissipation limit: (1 — n)A%hg > n(i)o = 60 > /(1 — 1) /4n{i)o

(shot-noise scalling)
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n =1— no absorption

9 | 1n =0 — complete absorption

- >€j-1.
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n =1— no absorption

9 ' n =0 — complete absorption

4 _ _ )
200=1+ [1+ N |/N

- 8 B J

For N sufficiently large, 1/v/N behavior is always reached!



Quantum limits for lossy optical interferometry

o

-

200 =

1+

/| N

~

J

n =1— no absorption

n =0 — complete absorption

,N—TL)

N K " n”l = Vo0 = 1/ N —>Heisenberg scaling

N> —~50> il >Standard scaling

-1 2. JvnN

For N sufficiently large, 1/+/N behavior is always reached!



How good is this bound?
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Phase diffusion in optical intferferometer
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Quantum Metrological Limits via a Variational Approach
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Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21.94!1-572, Rioc dz Janeiro (RJ) Brazil
(Received 29 Junc 2012; published 9 November 2012)
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Wy Zni(zmlnz #247)

/ Phase diffusion

Intrinsic quantum feature

Very close to numerical value obtained
by Genoni, Olivares, and Paris for
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For Gaussian states:
An? <2N(N +1)
(N is the average photon number)

Then:

1
N(N + 1)

ngpt S Cégnax _ 262 + -
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L +2°

v 4An’ \

5¢pd2

/ Phase diffusion 30

Intrinsic quantum feature

Very close to numerical value obtained
by Genoni, Olivares, and Paris for
Gaussian state - PRL 106, 153603 (2011)

For Gaussian states:
An? <2N(N +1)

(N is the average photon number)

Then:
1 —1
COpt < Cmax — |9 2
@ =7eQ B+ SN(N +1)

Comparison with numerical results

25/

]
I
]
]
!
1.
2
/'I
/, '
]
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!
!
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1

. .
'O = N W R N

0 50 100 150 200
FIG. 1 (color online). Comparison between upper bound Cj**
and the maximum quantum Fisher information F ‘(‘2‘“ in Ref. [14]

as a function of the average number of photons N. The dots
stand for the values obtained in Ref. [14], the dashed line
corresponds to the noiseless case (8% = 0), and the full lines
correspond to Cj)**. The inset displays the two quantities up to

N = 30, which was the range considered in Ref. [14]. From
bottom to top, B =5 X 107 4;5 X 107°;5 X 10°°,
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Energy-time uncertainty

THE UNCERTAINTY RELATION BETWEEN ENERGY
AND TIME IN NON-RELATIVISTIC QUANTUM MECHANICS

By L. MANDELSTAM * and Ig. TAMM
Lebedev Physical Institute, Academy of Sciences of the USSR

(Received February 22, 1945)

A uncertainty relation between energy and time having a simple physical meaning is
rigox‘-ﬁusly dgduced from the principles of quantum mechanics. Some examples of its application
are discussed.

1. Along with the uncertainty relation An entirely different situation is met
between coordinate ¢ and momentum p one with in the case of the relation

considers in quantum mechanics also the

uncertainty relation between energy and time. AH - AT ~h, (2)
The former relation in the form of the

inequality where AH is the standard of energy, AT —

h a certain time interval, and the sign ~ denotes

Ag - Ap= 3, (1) that the left-hand side is at least of the

order of the riﬁht-hand one.

lgor Tamm
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Energy-time uncertainty

Derivation of Mandelstam and Tamm is based on the relations:
AFEAA > L[([H, A, and n&2 = i([H, A]) ,where A is an observable

of the system ("clock observable”), not explicitly dependent on time,
and H is the Hamiltonian that rules the evolution. From these two

equations, we get:
AEAA > g |d<A> |

dt
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Energy-time uncertainty

Derivation of Mandelstam and Tamm is based on the relations:
AFEAA > L[([H, A, and n&2 = i([H, A]) ,where A is an observable

of the system ("clock observable”), not explicitly dependent on time,
and H is the Hamiltonian that rules the evolution. From these two

equations, we get:
AEAA > g |OZ<A> '

dt

Integrating this equation with respect to time, and using that
[ 1ft)dt > ‘ff f(t)dt‘, one gets
' h (1A rar— <A>t\>

AEAt > — < —
2 AA
where AA = (1/At) [[T2" AAdt is the time average of AA over the

t
integration region. We define the time interval AT as the shortest

time for which the average value of A changes by an amount equal to

Its averaged standard deviation. Then|AEAT > h/2|.
22




Energy-time uncertainty

Mandelstam and Tamm also presented a more accurate derivation, which
is directly related to more modern treatments.

One starts again from

AEAA > f M .

2| dt
Let us choose now A to be the projection operator onto the initial
state: A = Py = |o) (¢, so that P; = Py and

APy = \/(P2) — (Po)? = \/{Py) — (Fo)?, which implies that
d(Py)/dt
VI(Po) = (Po)?|

AE >

N | SF
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Energy-time uncertainty

Mandelstam and Tamm also presented a more accurate derivation, which
is directly related to more modern treatments.

One starts again from
AEAA > h @ .
2| dt

Let us choose now A to be the projection operator onto the initial
state: A = Py = |1 (4|, so that P; = Py and
APy = \/(P2) — (Po)? = \/{Py) — (Fo)?, which implies that

h| d(Py)/di
A — .
e V(Po) — (Po)?

Integrating this expression from O to 7, and using that
[ 1£(®)ldt > |[? f(t)dt|, one gets| AL - 7 = harccos \/(Py), | where

(Po)r = |tho|p; [7is the fidelity between the initial and the final states.

Throughout this lecture, the image of arcos is defined in [0, 7. If

the final state is orthogonal to the initial one, (P)), =0 and |AE -7 > h/4.
23




Energy-time uncertainty

d{Po)/dt
V (Po)—(Po)?
depends on time. Therefore, from this equation one may extract a

Note that the steps leading to AE > 2 also hold if H

more general expression:

/ AE(t)dt > harccos VF
0

which is an implicit bound for the time needed to reach a fidelity
F = [{101+)]° between the initial and final state.
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Energy-time uncertainty

VOLUME 65, NUMBER 14 PHYSICAL REVIEW LETTERS 1 OCTOBER 1990

Geometry of Quantum Evolution

J. Anandan "
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, United Kingdom

Y. Aharonov "’

Department of Physics and Astronomy, 'Universf'ly of South Carolina, Columbia, South Carolina 29208
Geometric derivation. Inequality derived from the condition

that actual path followed by the states should be larger than
geodesic connecting the two states.
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Energy-time uncertainty

VOLUME 65, NUMBER 14 PHYSICAL REVIEW LETTERS 1 OCTOBER 1990

Geometry of Quantum Evolution

J. Anandan "’
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, United Kingdom

Y. Aharonov "’

Department of Physics and Astronomy, ’Universfly of South Carolina, Columbia, South Carolina 29208
Geometric derivation. Inequality derived from the condition

that actual path followed by the states should be larger than
geodesic connecting the two states.

Generalization to non-unitary processes? Life-time for decay

processes? Hamiltonian should not show up!




Motivation
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Motivation

1. Foundations of quantum mechanics: How to interpret this
relation? (Heisenberg, Einstein, Bohr, Mandelstam and
Tamm, Landau and Peierls, Fock and Krylov, Aharonov and

Bohm, Bhattacharyya)
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Motivation

. Foundations of quantum mechanics: How to interpret this
relation? (Heisenberg, Einstein, Bohr, Mandelstam and
Tamm, Landau and Peierls, Fock and Krylov, Aharonov and
Bohm, Bhattacharyya)

. Quantum-classical transition: Decoherence time

. Control of the dynamics of a quantum system: find the
fastest evolution given initial and final states and some
restriction on the resources (e.g. the energy) or the general
structure of the Hamiltonian.

. Relation with quantum metrology




Geometrical interpretation of the quantum Fisher information

Remember ThaT for classical probability distributions, one had

12

(I)H(aj7 ZE/)

2 Vh@

,  Py(x,x’)=1-—

F(x)
4

dz?

Using the expressuons of the probabllmes in terms of Ex, the Bures fidelity
between two densuTy operators p and 7 is defined as

This can be shown to be equal to: @, (p,,p,) (Tr\/

k

S VT (BT (6 By

2

= min

{Er}

Zm

A2 A A1/2

P P20 )

2

Minimization of ®leads to maximization of F(x), thus yielding the quantum

Fisher information.



Geometrical interpretation of the quantum Fisher information

Remember ’rha’r for classical probability distributions, one had

12

(I)H(J},xl) Z\/Pk )

(I)H(ZIZ ZIZ/) =1-—

F(x)
4

dz?

Using the expressuons of the probabllmes in terms of Ex, the Bures fidelity

between two density operators p and 6 is defined as

1 2

b5(p,0) = min Z \/Tr(ﬁEk)Tr(&
k

This can be shown to be equal to: @, (p,,p,) (Tr\/

Ey)

= min

{Ek}

Z V Pi(p) Py ()

P P20

~1/2 A A1/2)

1 2

Minimization of ®leads to maximization of F(x), thus yielding the quantum

Fisher information.

12 A A1/2

Bures' Fidelity: (I) pl,p2 (Tr\/ 0, PP,
= 0, [p(X).p(X+5X)]=1-(6X) L

)

X)]/4+0[(6x)"|
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Remember ’rha’r for classical probability distributions, one had
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Using the expressuons of the probabllmes in terms of Ex, the Bures fidelity

between two density operators p and 6 is defined as

12

b5(p,0) = min Z \/Tr(ﬁEk)Tr(&
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Geometrical interpretation of the quantum Fisher information

Remember ThaT for classical probability distributions, one had
12

Cp(z,2") = Z\/Pk ,  Py(x,2)=1-

F(x)
4

Using the expressuons of the probabllmes in terms of Ex, the Bures fidelity

between two densuTy operators p and 7 is defined as
1 2 1 2

¢ 5(p,0) = min Z \/Tr (pEy)Tr(6EL)| = min Z / Pi(p) Py (6)

dz?

Minimization of ®leads to maximization of F(x), thus yielding the quantum
. h . T. .
Fisher information @/2 ~, speed

Bures' Fidelity: @ ,(p,,p,) (Tr\/ 0.”p,p, 2) ‘<1//1‘1//2>‘2 (pure states)

= ®,[p(X).p(X+6X)]=1-(8X)" [ p(X)]/4+0| (6x)"|




What about the distance between two states?

As seen before, the Hellinger distance between two probability distributions
obeys the equation D% (v, x + dr) = ds%, = [F(x)/8]dz*, with x a parameter.

Extension of this expression to quantum states is tricky, since the distance
between|¢) and exp(if)|1)) or (1 4 0)|v)) should be zero.
Let [dy) be the infinitesimal variation of a state|v), e.g.|dy)=(dy)/06)d6 .

The simple metric ds§ = (dy|dy)would not do, since it would yield a distance
different from zero between|y)and (1 + df)|x): ds§ = (d|dy) = (P|y)(db)?
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What about the distance between two states?

As seen before, the Hellinger distance between two probability distributions
obeys the equation D% (v, x + dr) = ds%, = [F(x)/8]dz*, with x a parameter.

Extension of this expression to quantum states is tricky, since the distance
between |[¢) and exp(if)|1) or (1 + 6)|¢)) should be zero.
Let [dy) be the infinitesimal variation of a state|v), e.g.|dy)=(dy)/06)d6 .

The simple metric ds§ = (dy|dy)would not do, since it would yield a distance
dif ferent from zero between|y)and (1 + df)|y): dsg = (dyp|dy) = (P|)(db)=

Let then [dy, ) := |dy) — lfz‘izm dy{ be the component of |di)orthogonal to|¥)
di)) Define the angular distance — or
’CWU projective distance — as
) T gy e ) 1) (wldy)

V@Y W) Wiy

and the norm of this angular distance as the differential form of this

distance: (dp|dyp) | (b|dap)|? Fubini-Stud
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Relation between distance and quantum Fisher information

, T(dvld) |l
R ey S

Assuming that the change in |¢)is due to the change in a single parameter
X, one has |dy) = dX (d]y))/dX), so that, for normalized |¢),

e | @O d0) | (X))
SFS X

-
dX?

e Y ()

Comparing this with the expression for the quantum Fisher information
derived before in the first lecture:

d(y(X)| d[(X)) |d<¢(X)|

Fo(X) =4 (X))

dX dX dX

one finds that|ds7q = (1/4)]-‘Q(X)dX2‘, that is, the Fubini-Study meftric is
proportional to the quantum Fisher information! The largerFo(X), the more
distinguishable are the states|y) and |¢) + |dy), for a given change dX of
the parameter X, and therefore the better is the precision in the
estimation of X.




Distance between arbitrary states
See Marcio Taddei, Ph. D. thesis, arxiv.org/pdf/1407.4343

2
Integrating ds%.g = (dang|dipang) = (doldy) _ [(9]de) , one gets the

(W) (W[)?

distance between arbitrary pure states:

DFS(‘¢O>7 Wf>) = arccos \/@B(Wo}, |¢f>) (enc;ﬁ:lir}rw;?/gis;s:ce

orthogonal states)

where

D (|1ho), [f)) = |(Woltos)|?

is the Bures fidelity for pure states.

On a Bloch sphere, this distance would correspond to the shortest path
along a great circle connecting two vectors with tips on the sphere.

For mixed states, one can show that

D, (py.p,) = arccos [, (p,.p,)

with

2
(I)B(,E)l,,bz)E(Tr\/ﬁlﬂzﬁz@m) =‘<l//1‘l//2>‘2 (pure states)



http://arxiv.org/pdf/1407.4343

Quantum speed limit for physical processes

M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho, PRL 110, 050402 (2013)

arccos \/®g[p(0), p(7)] < /OT \/.FQ (t)/2dt
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Special case: Unitary evolution, time-independent Hamiltonian,
orthogonal states
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Quantum speed limit for physical processes

M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho, PRL 110, 050402 (2013)

Lower bound for time
:>needed to reach fidelity

®,|p(0),p(0)] between

initial and final states

arccos \/ ®g[p(0), p(1)] < /

0

Bures length

. Bures length of actual
of geodesic

path followed by state of
the system

Special case: Unitary evolution, time-independent Hamiltonian,
orthogonal states Mandelstam-Tamm

@5 [p(0), p(T)] = 0,  Fo(t) = 4{(AH)*)/1° =|rV/((AH)?) > h/4




Quantum speed limit for open systems:
Purification procedure

D := arccos /@ [p(0), p(7)] < /OT \/]:Q(t)/él dt
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Quantum speed limit for open systems:
Purification procedure

D := arccos /@5 [p(0 \/]:Q (1)/4 dt

Problem: No analy’rlcal — Pur'lflca’rlon|
‘ I expression for 7,
p</ JColt)/4 dt = / V(O (1) /it

B AU 5 (t)
1 dt

ﬁS,E(t) (= USE( )

US,E(t)z Evolution of purified state corresponding to 05



Quantum speed limit for physical processes:
amplitude damping channel

The amplitude-damping channel may be described by the following equations
(states without indices refer to the system — e.g. a two-level atom with|1)

and |0) being the excited and ground states):
0)[0)r — \0>\0>E,
D0y — /P E+V1—PO0)1)g P(t) =exp(—nt)
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Quantum speed limit for physical processes:
amplitude damping channel

The amplitude-damping channel may be described by the following equations
(states without indices refer to the system — e.g. a two-level atom with|1)

and |0) being the excited and ground states):
0)[0)r — \0>\0>E,
D0y — /P E+V1—PO0)1)g P(t) =exp(—nt)

This is a quite natural, physically motivated purification of the evolution of
two-level atom. The unitary evolution corresponding to this map is

G_|1)=10), &1=0

Us,i(t) = exp[—iO(t) (6,67 + 5_61)] 6.(0) = 1)

610 = 1)1
with O(t) = arccos v/ P(t).
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Quantum speed limit for physical processes:
amplitude damping channel

The amplitude-damping channel may be described by the following equations
(states without indices refer to the system — e.g. a two-level atom with|1)
and |0) being the excited and ground states):

0|0 e — \0>\0>E,
D0y — /P E+V1—PO0)1)g P(t) =exp(—nt)

This is a quite natural, physically motivated purification of the evolution of
two-level atom. The unitary evolution corresponding to this map is

Us,i(t) = exp[—iO(t) (6,67 + 5_61)] 6.(0) = 1)

o0 = |1)(1
with O(t) = arccos \/
From thisand D < (t)/4 dt = / \/ A?—[ t))/hdt.

one gets: < /{64 arccos[exp( Vt/2))

-1y =10), 6% =0
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Quantum speed limit for physical processes:
amplitude damping channel

The amplitude-damping channel may be described by the following equations
(states without indices refer to the system — e.g. a two-level atom with|1)

and |0) being the excited and ground states):
0)[0)r — \0>\0>E,
D0y — /P E+V1—PO0)1)g P(t) =exp(—nt)

This is a quite natural, physically motivated purification of the evolution of
two-level atom. The unitary evolution corresponding to this map is

Us,p(t) = exp[—iO(t) (546" + 661" 6410) =[1), 6_-]1)=10), 63 =0
oo = |1)(1]

with O(t) = arccos \/

From thisand D < (t)/4 dt = / \/ A?—[ t))/hdt.

one gets: p < /(o4 arccos[exp( vt/2)]

Initial population of excited state 33



Quantum speed limit for physical processes:
amplitude damping channel (2)

This implies a lower bound for the distance-dependent decay time:

v > 21lnsec(D/+\/ (646 ))

Initial population of

D < +/(6,.6_) arccoslexp(—7/2)] =

excited state
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Quantum speed limit for physical processes:
amplitude damping channel (2)
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