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Classical parameter estimation

H. Cramér                 C. R. Rao                         R. A. Fisher    

Cramér-Rao bound for unbiased estimators:

N →  Number of repetitions of the experiment
Pj X( )→   probability of getting an experimental result j

or yet, for continuous measurements: 
where     are the measurement results
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Quantum Fisher Information

p ξ | X( ) = Tr ρ̂ X( ) Êξ⎡⎣ ⎤⎦F X;{Êξ}( ) ≡ dξ  p∫ ξ | X( ) d  ln p ξ | X( )⎡⎣ ⎤⎦
dX
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dξÊξ∫ = 1̂ POVM

(Helstrom, Holevo, Braunstein and Caves)



This corresponds to a given quantum measurement. Ultimate lower 
bound for                  : optimize over all quantum measurements        
so that                                             

Quantum Fisher Information

h(�Xest)
2i
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FQ (X) = max Eξ{ }F X; Eξ{ }( )
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Quantum Fisher information for pure states

Initial state of the probe:             
Final X-dependent state:                                     ,           unitary operator.  

| (0)�
|�(X)� = Û(X)|�(0)� Û(X)
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Then (Helstrom 1976):

where

Û(X)

) Should maximize the variance to 
get better precision!

δx ≥ 1 / 2 ν ΔĤ 2



Parameter estimation with decoherence

Loss of a single photon transforms NOON state into a separable state!

η

ʹη

|�(N)⇤ = |N, 0⇤+ |0, N⇤⌅
2

⇥ |N � 1, 0⇤ or |0, N � 1⇤
No simple analytical expression for Fisher information!  
For small N, more robust states can be numerically calculated



Parameter estimation with decoherence

Loss of a single photon transforms NOON state into a separable state!

η

ʹη

Experimental test with more robust states (for N=2):

|�(N)⇤ = |N, 0⇤+ |0, N⇤⌅
2

⇥ |N � 1, 0⇤ or |0, N � 1⇤
No simple analytical expression for Fisher information!  
For small N, more robust states can be numerically calculated



Parameter estimation with losses - experiments

ψ = x2 20 + x1 11 − x0 02

States leading to minimum uncertainty 
in the presence of noise:
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Parameter estimation with losses - experiments

ψ = x2 20 + x1 11 − x0 02

NOON

ψ SQL

What happens 
when N increases?

η = 1→  no losses
η = 0→  complete loss

States leading to minimum uncertainty 
in the presence of noise:

Coefficients are determined 
numerically for each value of   . 
Losses simulated by a beam splitter 
in the upper arm. These states are 
prepared by two beam splitters.

⌘



The evolution of an open system can be described by the Hamiltonian 

      and       ———> free-evolution Hamiltonians of system and environment      
         ———> interaction between the two parties. Effective time evolution of S: 

Assuming that initially S and E are not correlated, and that the initial state of the 
environment is       , then                                     and 

where        is the evolution operator corresponding to Hamiltonian H.              

Open-system evolution and quantum channels

HS HE

VSE

⇢S(t) = TrE [⇢SE(t)] = $ [⇢S(0)]

|0iE ⇢SE(0) = ⇢inS ⌦ |0iEh0|
⇢SE(t) = USE
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H = HS ⌦ 1E + 1S ⌦HE + VSE
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Given the Kraus decomposition of a quantum channel, it is possible to find 
a correspondent unitary evolution of the system plus an environment. 

This unitary evolution is not necessarily the same as the one derived from 
the original Hamiltonian: the “effective” environment may be different 
than the real environment E, but it leads however to the same dynamics 
for all the states in S.   

We shall use this purification strategy in order to develop a general 
framework for the estimation of parameters in noisy quantum-enhanced 
metrology. 

Purification of an evolution



Parameter estimation in open systems: 
Extended space approach

S

E |ΦS ,E (x)〉 = ÛS ,E (x) |ψ 〉S | 0〉E

Given initial state and non-unitary evolution, define in S+E

  FQ ≡ max Ê j
(S )⊗1̂

F Êj
(S ) ⊗ 1̂( ) ≤ max Ê j

(S ,E ) F Êj
(S ,E )( ) ≡CQ

Then

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics 7, 406 (2011); 
Braz. J. Phys. 41, 229 (2011)

(Purification)

since measurements on S+E should yield more 
information than measurements on S alone.
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Extended space approach

S

E |ΦS ,E (x)〉 = ÛS ,E (x) |ψ 〉S | 0〉E

Given initial state and non-unitary evolution, define in S+E

  FQ ≡ max Ê j
(S )⊗1̂

F Êj
(S ) ⊗ 1̂( ) ≤ max Ê j

(S ,E ) F Êj
(S ,E )( ) ≡CQ

Then

Bound is attainable - there is always a 
purification such that

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics 7, 406 (2011); 
Braz. J. Phys. 41, 229 (2011)

Physical meaning of this bound: 
information obtained about 
p a r a m e t e r w h e n S + E i s 
monitored

  CQ = FQ

Least upper bound: Minimization over all 
unitary evolutions in S+E - difficult problem

Then, monitoring S+E yields same 
information  as monitoring S

(Purification)

since measurements on S+E should yield more 
information than measurements on S alone.
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Remarks on beam splitters
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Relation between positive-frequency parts of the fields:

Quantum beam splitter:

Conservation of energy: Ea
out 2 + Eb

out 2 = Ea
in 2 + Eb

in 2

where the operator â annihilates photons in mode a: â|Ni =
p
N |N � 1i

and       is the Fock state with N photons, with                          , where |Ni â†â|Ni = N |Ni
â†â is the number operator.
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Exercises:
1. Energy conservation: Show that âout

† âout + b̂out
† b̂out = âin

† âin + b̂in
† b̂in

2. Beam-splitter operator: Show that, if                                           , then ÛB θ( ) = exp −iθ âb̂† + â†b̂( ) / 2⎡
⎣
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Quantum limits for lossy optical interferometry
Environment 

(mode b)

Possible state for environment E (mode b) and system S (mode a):

ψ θ( ) SE
= eiθ n̂SÛB η( ) ψ0 S

0
E

This is one of many possible purifications. To get a purification that leads 
to a final state of E with less information on   , one possibility is to apply 
to E the operator                    , with      being the number of photons in 
the environment mode:

ψ θ( ) SE
= e−iαθ n̂E eiθ n̂SÛB η( ) ψ0 S

0
E

θ
exp −iαθ n̂E( ) n̂E

η

Quantum limits for lossy optical interferometry
η = 1→  no absorption
η = 0→  complete absorption
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This is one of many possible purifications. To get a purification that leads 
to a final state of E with less information on   , one possibility is to apply 
to E the operator                    , with      being the number of photons in 
the environment mode:

ψ θ( ) SE
= e−iαθ n̂E eiθ n̂SÛB η( ) ψ0 S

0
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θ
exp −iαθ n̂E( ) n̂E

ʹθ =αθ

η

Quantum limits for lossy optical interferometry
η = 1→  no absorption
η = 0→  complete absorption

Reduced evolution is not 
changed by the extra 
unitary transformation  
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Quantum limits for lossy optical interferometry
η = 1→  no absorption
η = 0→  complete absorption

The quantum Fisher information corresponding to this evolution is
FQ [✓, | (✓,↵)iSE ] = 4 Sh 0|Eh0|�Ĥ2|0iE | 0iS

where Ĥ α,θ( ) = i d
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Quantum limits for lossy optical interferometry
η = 1→  no absorption
η = 0→  complete absorption

The quantum Fisher information corresponding to this evolution is
FQ [✓, | (✓,↵)iSE ] = 4 Sh 0|Eh0|�Ĥ2|0iE | 0iS

where Ĥ α,θ( ) = i d
dθ
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Minimization of the quantum Fisher information of system + environment 
yields an upper bound for the Fisher information of the system:
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Quantum limits for lossy optical interferometry
η = 1→  no absorption
η = 0→  complete absorption

CQ(⇢̂0) =
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(1� ⌘)�2n̂0 ⌧ ⌘hn̂i0 CQ ! 4�2n̂0Low-dissipation limit: 

High-dissipation limit: 

⇒

⇒

(noiseless limit)

(shot-noise scalling)
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States with well-defined total photon number:

η = 1→  no absorption
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For N sufficiently large,           behavior is always reached!



ʹθ

η

Quantum limits for lossy optical interferometry
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 N ≪ η
1−η

⇒ νδθ ≥1/ N→   Heisenberg limit

N ≫ η
1−η

⇒δθ ≥
1−η

2 νηN
 —>Standard scaling

—>Heisenberg scaling



How good is this bound?
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Comparison between the numerical
maximum value of FQ  and the upper
bound CQ  as a function of η, for 
N = 10 (blue), N = 20 (red), N = 30
(green), and N = 40 (black).

Behavior of the minimum for all 
values of η, as a function of N



Phase diffusion in optical interferometer
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Phase diffusion in optical interferometer

⇢̇ = �L[a†a]⇢, L[O]⇢ = 2O⇢O† �O†O⇢� ⇢O†O

) ⇢(t) =
X

m.n

e��2(n�m)2⇢n,m(0)|nihm|, � = �t

|�
S,E

(�)i = e�i�n̂Sei(2�)n̂S x̂E | 
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and                            where A is an observable 

Energy-time uncertainty
Derivation of Mandelstam and Tamm is based on the relations:
�E�A � 1

2 |h[H,A]i| , ~dhAi
dt = ih[H,A]i ,

of the system (“clock observable”), not explicitly dependent on time, 
and H is the                     Hamiltonian that rules the evolution. From these two 
equations, we get:

�E�A � ~
2

����
dhAi
dt
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and H is the                     Hamiltonian that rules the evolution. From these two 
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Integrating this equation with respect to time, and using that 
R b
a |f(t)|dt �

���
R b
a f(t)dt

���, one gets

�E�t � ~
2

✓
|hAit+�t � hAit|

�A

◆
,

where                                       is the time average of       over the                                                                                                 �A ⌘ (1/�t)
R t+�t
t �Adt

integration region. We define the time interval      as the shortest �T

time for which the average value of A changes by an amount equal to
its averaged standard deviation. Then                      . �E�T � ~/2

�E�A � ~
2

����
dhAi
dt

���� .

�A
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Energy-time uncertainty
Mandelstam and Tamm also presented a more accurate derivation, which 
is directly related to more modern treatments. 

Let us choose now A to be the projection operator onto the initial 
state:                          , so that              and   A = P0 = | 0ih 0| P 2

0 = P0

�P0 =
q

hP 2
0 i � hP0i2 =

p
hP0i � hP0i2 , which implies that

�E � ~
2

�����
dhP0i/dtp
hP

o

i � hP0i2

����� .

One starts again from 

�E�A � ~
2

����
dhAi
dt

���� .
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���
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p
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hP0i⌧ = | 0| ⌧ |2 is the fidelity between the initial and the final states.

One starts again from 

Throughout this lecture, the image of arcos is defined in        .  If 
the final state is orthogonal to the initial one,               andhP0i⌧ = 0 �E · ⌧ � h/4.

�E�A � ~
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����
dhAi
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Energy-time uncertainty

Note that the steps leading to                                 also hold if H                  �E � ~
2

����
dhP0i/dtp
hP

o

i�hP0i2

����
depends on time. Therefore, from this equation one may extract a 
more general expression:

Z ⌧

0
�E(t) dt � ~ arccos

p
F

which is an implicit bound for the time needed to reach a fidelity 
F = |h 0| ⌧ i|2 between the initial and final state.
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Energy-time uncertainty

Geometric derivation.  Inequality derived from the condition 
that actual path followed by the states should be larger than 
geodesic connecting the two states.
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Energy-time uncertainty

Geometric derivation.  Inequality derived from the condition 
that actual path followed by the states should be larger than 
geodesic connecting the two states.

Generalization to non-unitary processes? Life-time for decay 
processes? Hamiltonian should not show up!
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Geometrical interpretation of the quantum Fisher information

Remember that, for classical probability distributions, one had

Using the expressions of the probabilities in terms of Êk, the Bures fidelity 
between two density operators    and    is defined as      ⇢̂ �̂

�B(⇢̂, �̂) = min
{Êk}

"
X

k

q
Tr(⇢̂Êk)Tr(�̂Êk)

#2

= min
{Êk}

"
X

k

p
Pk(⇢̂)Pk(�̂)

#2

This can be shown to be equal to: ΦB ρ̂1, ρ̂2( ) ≡ Tr ρ̂1
1/2ρ̂2ρ̂1

1/2( )
2

�H(x, x0) =

"
X

k

p
Pk(x)Pk(x0)

#2

, �H(x, x0) = 1� F (x)

4
dx

2

Minimization of      leads to maximization of F(x), thus yielding the quantum 
Fisher information.

�H
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What about the distance between two states?

Extension of this expression to quantum states is tricky, since the distance 
between      and                 or                 should be zero.   

As seen before, the Hellinger distance between two probability distributions 
obeys the equation                                                      , with x a parameter.

| i

Let        be the infinitesimal variation of a state     , e.g.                            .  |d i | i dψ = ∂ψ /∂θ( )dθ
The simple metric                      would not do, since it would yield a distance 
different from zero between     and                 :                                         . 

ds20 = hd |d i

D

2
H(x, x+ dx) = ds

2
H = [F (x)/8]dx2

exp(i✓)| i (1 + ✓)| i| i

(1 + d✓)| i ds20 = hd |d i = h | i(d✓)2
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one finds that                                      , that is, the Fubini-Study metric is 
proportional to the quantum Fisher information! The larger          , the more 
distinguishable are the states      and                , for a given change dX of  
the parameter X, and therefore the better is the precision in the 
estimation of X.   

Relation between distance and quantum Fisher information

ds2FS = hd ang|d angi =
hd |d i
h | i � |h |d i|2

h | i2

Assuming that the change in      is due to the change in a single parameter 
 X, one has                                , so that, for normalized     ,  

| i
|d i = dX(d| i/dX) | i

Comparing this with the expression for the quantum Fisher information 
derived before in the first lecture:

FQ(X) = 4

"
dh (X)|

dX

d| (X)i
dX

�
����
dh (X)|

dX
| (X)i

����
2
#

ds2FS = (1/4)FQ(X)dX2

| i | i+ |d i
FQ(X)

ds2FS =

"
dh (X)|

dX

d| (X)i
dX

�
����
dh (X)|

dX
| (X)i

����
2
#
dX2



Integrating                                                                     , one gets the

Distance between arbitrary states

ds2FS = hd ang|d angi =
hd |d i
h | i � |h |d i|2

h | i2

See Marcio Taddei, Ph. D. thesis, arxiv.org/pdf/1407.4343

where

DFS(| 0i, | f i) = arccos

q
�B(| 0i, | f i)

�B(| 0i, | f i) = |h 0| f i|2

is the Bures fidelity for pure states.

For mixed states, one can show that 

On a Bloch sphere, this distance would correspond to the shortest path 
along a great circle connecting two vectors with tips on the sphere.

DB ρ̂1, ρ̂2( ) == arccos ΦB ρ̂1, ρ̂2( )
with

= ψ 1 ψ 2
2

 (pure states) ΦB ρ̂1, ρ̂2( ) ≡ Tr ρ̂1
1/2ρ̂2ρ̂1

1/2( )
2

Bures angle

distance between arbitrary pure states:
(maximum distance 
equal to      , for 
orthogonal states)

⇡/2

http://arxiv.org/pdf/1407.4343
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arccos

p
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Z ⌧

0

q
FQ(t)/2dt
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Quantum speed limit for physical processes

Lower bound for time 
needed to reach fidelity                         
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initial and final states

Bures length 
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h�Ĥ2

S,E(t)i/~ dt.
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ÛS,E(t): Evolution of purified state corresponding to ⇢̂S

Problem: No analytical 
expression for FQ

⇓ Purification!



Quantum speed limit for physical processes: 
amplitude damping channel

|0i|0iE ! |0i|0iE ,

|1i|0iE !
p

P (t)|1i|0iE +
p

1� P (t)|0i|1iE

The amplitude-damping channel may be described by the following equations 
(states without indices refer to the system — e.g. a two-level atom with     
and      being the excited and ground states):

P (t) = exp(��t)

|1i
|0i

33



with                                  .

Quantum speed limit for physical processes: 
amplitude damping channel

|0i|0iE ! |0i|0iE ,

|1i|0iE !
p

P (t)|1i|0iE +
p

1� P (t)|0i|1iE

ˆUS,E(t) = exp[�i⇥(t)(�̂+�̂
(E)
� + �̂��̂

(E)
+ )]

⇥(t) = arccos

p
P (t)

The amplitude-damping channel may be described by the following equations 
(states without indices refer to the system — e.g. a two-level atom with     
and      being the excited and ground states):

P (t) = exp(��t)

This is a quite natural, physically motivated purification of the evolution of 
two-level atom. The unitary evolution corresponding to this map is

|1i
|0i

�̂+|0i = |1i , �̂�|1i = |0i , �̂2
± = 0

33

�̂+�̂� = |1ih1|



with                                  .

Quantum speed limit for physical processes: 
amplitude damping channel

|0i|0iE ! |0i|0iE ,

|1i|0iE !
p

P (t)|1i|0iE +
p

1� P (t)|0i|1iE

ˆUS,E(t) = exp[�i⇥(t)(�̂+�̂
(E)
� + �̂��̂

(E)
+ )]

⇥(t) = arccos

p
P (t)

D 
Z ⌧

0

q
CQ(t)/4 dt =

Z ⌧

0

q
h�Ĥ2
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