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But de cette lecon

In this lecture, the methods developed in the previous lectures are
applied to the problem of giving a precise meaning to the energy-
time uncertainty relation. These methods allow the establishment of
tight bounds for the speed of evolution of systems, which can be
applied both to closed and open systems, thus achieving a unified
treatment of the quantum speed limit. The main results are based
on geometrical properties of the space of quantum states, which are
infroduced in this lecture, and allow a geometrical interpretation of
the quantum Fisher information. Applications to atomic decay and
dephasing are discussed.



Rappel sur I'Information de Fisher Quantique

In the first Iec’[ure, we defined, for a given measurement corresponding
to the POVM {E (&)}, the Fisher information,

FIX (B = /dfp(ﬁ!X) {6lng§\X)r ) /dﬁp(;’X) {%{(;\(X)r

and we have also defined the "Quantum Fisher information,” which is
obtained by maximizing the above expression with respect to all quantum
measurements:

Fo(X) = MaX e pe)) FIX;{E()}]

The lower bound for the precision in the measurement of the parameter
X is then /((AXcst)?) > 1/4/NFg(X), where N is the number of
repetitions of the experiment.




Quantum Fisher information for pure states

We showed that the quantum Fisher information for pure states that
evolve according to|y(X)) = U(X)|¥(0)), where X is the parameter to be
estimated and U(X)is a unitary operator, is

Fo(X) = 4(AH))e,  (AH)2)0 = (0)] [H(X) — (H(X))o| [1(0)

where

3 . dUT ~ 7 dU
A(X) = 00(X) = —iUf(x) LX)

From the definition of H(X) and from the above expression, it follows
that the quantum Fisher information can also be written as

dyp(X)| dlyp(X)) |d<¢(X)

dX dX




Parameter estimation in open systems:

Extended space approach

B. M. Escher, R. L. Matos Filho, and L. D., Nature Physics 7, 406 (2011);
Braz. J. Phys. 41, 229 (2011)

Given initial state and non-unitary evolution, define in S+E
|, (x))=U, () lw)10),  (Purification)
Then
F, = max F(lA?(.S) ® i) < max ., F(l:?(.S’E)) =
E

0] Ej.” ®1

Physical meaning of this bound: information
obtained about parameter when S+E is monitored

Least upper bound: Minimization over all
unitary evolutions in S+E - difficult problem

Bound is attainable - there is always a en, monitoring elds sa
purification such that ¢ =5, ormation as monitoring




Minimization procedure

There is always an unitary operator acting only on E
that connects two different purifications of ps(z)

Given | (DS,E (x)) = 0S,E(x) | l//>S | O>E'

d|®s p(x))
7
dx

then any other purification can be written as:

(W (X)) =1, (x) 1Dy (X))

= Hg p(2)|®s,5(x)),

di (x)
dx

A

Define hp(z) =i

Minimize now C¢ over all Hermitian operators iLE(Q?) that act on E.



o

mechanik besteht vielmehr darin: Klssisch kinses wir uss durch vor.
auspehondn l’ﬁ["“"n?- immer die Fhase bestimmt denker In Witk
lichkedt st dies aber unmoslich, weil poden Experiment sur Bestimmung
der Phase das Atom zenetint low verfindert In cinem bestimmten
slaticnirem  Zastand* des Atoms sind die Phasen prascipiel]l wsbestimmt,

was man o) . der bekanstea Gleichumpen

o« Jw—w] -

wvariatde, w == Winkelvariable )
Das Wort ,Gesshwindigkeit* sines Gegenstandes 100t sich dureh

Messunpen leachit defliniecen, wenn e »sich um kriltelreie e wereagen

handelt Man kasn 2 B. den Gegertand mit redem Liche telvuchten
wd dureh dem Dopplerelfokt dew gostreaten Lichtes die Geschwindigheit
des Teilchens ermitteln.  Die Be stimmung der Geschwindigheit wird um

% genaner, o langwelliger das benulzte Licht sk ds dann die Ge-

schwindigheitstaderung des Teilchens o Lichbquant dereh (s on pd oneTekt

um 0o geringer wird e Ortabestinmune wisd ratsprechessd sagenas,
wie e der Glelehusg (1) eotsprichl. Wemn die Geschwindieheit dow
Elektrons im Atom in cinem bestimmies \upenMick petieows werden
soll, o winl man otwn in dicses Augeahlack die Kemladang und die
Kralte von den tlvigen Elektronen plotzlich verschwinden lassen, so dab
die Bewegung vom da ab keifbelsei erfolgt, wad wird dann die obes an-
pegebene Bestimmang durchfibren Wieder kann man sich, wie oben,
leicht Obwrzeugen, dad cine Punktice PN fur cinen pegebenen Zustand
vines Atoms, = B 1 S, séebt defindert werden kann.  Dagegen gile o
wieder vine Waknecheinlichkeitsfunktica voo P in diesers Zustand, die
pach Dirae wnd Jordan dea West S8 p» 80 Sp hat Sq1 L)
bedeutet wicder diejenige Kolosse der Transformationssmatrix 8 (X, y)
ven £ nach p, dio su K E,x pebtat.

Schliellich wei noch wef die Experimente hingewiesen, welche ge
siatten, die Energle oder die Werte der Wirkusgsvariablen J s Messen
molche Experimesto sind bescaders wichtig, da wir war mit iheer Hilte
delisieren ktanen, was wir seises. wean wir ven der diskontivaiesdicken
Asderung deg Esergie und der J sprechen. Die Franck-Hertzsches
Robversuche gratattes, die Exergiememuag der Atome wogva der Galtig.
keit des Esergiosatzes in der Quastentheorie mrckmufibren sl die
Esergiersonsing gesadlinig sich bewegeader Elektroass, Diess Neseag
RBt sich im Prinzip belichip penan durchiubhres, wean man nur auf die
gleickeeitige Bestimmung des Elektronenories, 4. b der Fhase verzichiet

hergy-time uncertainty

AEAT > h




Energy-time uncertainty

THE UNCERTAINTY RELATION BETWEEN ENERGY
AND TIME IN NON-RELATIVISTIC QUANTUM MECHANICS

By L. MANDELSTAM * and Ig. TAMM
Lebedev Physical Institute, Academy of Sciences of the USSR

(Received February 22, 1945)

A uncertainty relation between energy and time having a simple physical meaning is
rigoi-ﬁusly dgduced from the principles of quantum mechanics. S8ome examples of its application
are discussed.

1. Along with the uncertainty relation An entirely different situation is met
between coordinate ¢ and momentum p one with in the case of the relation

considers in quantum mechanics also the

uncertainty relation between energy and time. AH . AT ~ h, 2)
The former relation in the form of the

inequality where AH is the standard of energy, AT —

h a certain time interval, and the sign ~ denotes

Ag-Ap= 5, (1) that the left-hand side is at least of the

order of the riﬁht-hand one.

lgor Tamm



Energy-time uncertainty

Derivation of Mandelstam and Tamm is based on the relations:
AFEAA > L[([H, A, and n&2 = i([H, A]) ,where A is an observable

of the system ("clock observable”), not explicitly dependent on time,
and H is the Hamiltonian that rules the evolution. From these two

equations, we get:
AEAA > g |OZ<A> '

dt

Integrating this equation with respect to time, and using that
[ 1ft)dt > ‘ff f(t)dt‘, one gets
' h (1A rar— <A>t\>

AEAt > — < —
2 AA
where AA = (1/At) [[T2" AAdt is the time average of AA over the

t
integration region. We define the time interval AT as the shortest

time for which the average value of A changes by an amount equal to
Its averaged standard deviation. Then|AEAT > h/2|.

9




Energy-time uncertainty

Mandelstam and Tamm also presented a more accurate derivation, which
is directly related to more modern treatments.

One starts again from

AEAA > f @ .
2| dt
Let us choose now A to be the projection operator onto the initial
state: A = Py = |1 (4|, so that P; = Py and
APy = \/(P2) — (Po)? = \/{Py) — (Fo)?, which implies that

h| d(Py)/di
A — .
e V(Po) — (Po)?

Integrating this expression from O to 7, and using that
7 1£(t)ldt > |[? f(t)dt|, one gets| AL -~ = harccos \/(Py), | where

(Po)~ = |vol1+|? is the fidelity between the initial and the final states.
Throughout this lecture, the image of arcos is defined in [0, 7. If

the final state is orthogonal to the initial one, (P)), =0 and |AE -7 > h/4.

10



Energy-time uncertainty

d{Po)/dt
V (Po)—(Po)?
depends on time. Therefore, from this equation one may extract a

Note that the steps leading to AE > 2 also hold if H

more general expression:

/ AE(t)dt > harccos VF
0

which is an implicit bound for the time needed to reach a fidelity
F = [{101+)]° between the initial and final state.



Energy-time uncertainty

VOLUME 65, NUMBER 14 PHYSICAL REVIEW LETTERS 1 OCTOBER 1990

Geometry of Quantum Evolution

J. Anandan "
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, United Kingdom

Y. Aharonov "’

Department of Physics and Astronomy, lUniversfly of South Carolina, Columbia, South Carolina 29208
Geometric derivation. Inequality derived from the condition

that actual path followed by the states should be larger than
geodesic connecting the two states.

Generalization to non-unitary processes? Life-time for decay

processes? Hamiltonian should not show up!




Motivation

. Foundations of quantum mechanics: How to interpret this
relation? (Heisenberg, Einstein, Bohr, Mandelstam and
Tamm, Landau and Peierls, Fock and Krylov, Aharonov and
Bohm, Bhattacharyya)

. Quantum-classical transition: Decoherence time

. Control of the dynamics of a quantum system: find the
fastest evolution given initial and final states and some
restriction on the resources (e.g. the energy) or the general
structure of the Hamiltonian.

. Relation with quantum metrology




Some hotions on the geometry of quantum states

Definition of distance between pure states

A distance is a real number that is a function of two elements of a seft,
say X and y. The three defining properties of a distance are:

(i) D(z,y) >0 and D(z,y)=0x=y
(i) D(x,y) = D(y, =)
(ili) D(z, 2) < D(z,y) + D(y, ) (triangle inequality)

How to define a distance between quantum states? Since two vectors of
Hilbert space that differ by a constant actually correspond to the same
quantum state, one would like to have a definition of distance that should
be zero between states that differ by a constant, like |¢)) and \|y). This
means that the distance will be defined in a projective Hilbert space. A
projective space is obtained from a vector space by identifying vectors
that differ by a nonzero factor.



Some hotions on the geometry of quantum states

In order to define a distance, one needs a metric, in analogy to the
Riemannian metric in Euclidian space:

ds? = dx? + dy® + dz*

Let|dy) be an infinitesimal variation of 1), due to the variation of some
parameter X on which the state depends, so that |dy) = dX (d|¢)/dX).
Then, one possibility would be to define the metric ds§ = (diy)|dvy). But this
definition would lead to a distance different from zero between |¢) and
exp(iX)|¥) or(1 + X)|v), which correspond in fact to the same state.



Distance between pure states (1)

We need therefore a differential form that does not distinguish parallel
vectors ( this means that we are looking for a metric in projective space,
which includes non-normalized states). In order to do this, one starts with

P (O
L) 1= 1) = gy 190) d‘%dzm
(Note that|dy) = dz|y)) = |dipL) = 0). ) dy)

which defines the component of |dv) orthogonal to|y). From this
expression, one defines the "angular distance" (or "projective distance")
o) = dy ) |dy) (| di)) ) (Measure of changes in
ang

= \/W — \/W B <¢‘¢>3/2 pPOJZCTiVZ SPGCC)

The norm of this angular distance yields the differential form of the

distance: dip|d N
= @) = D100

which is the Fubini-Study metric (invariant under any unitary U applied to
both |¢) and |¢) + |dvy) ), which does not have the inconvenient features

mentioned before. From this expression, the finite distance between
two states can be obtained. 6




Distance between pure states (2)
See Marcio Taddei, Ph. D. thesis, arxiv.org/pdf/1407.4343

The finite distance between two states is obtained by integrating

, (deldy) |l
AT = \Dangldang) = 7™ = =1

along the shortest path (geodesic) in state space.

It can be shown that this geodesic lies entirely in a two-dimensional subspace of
the vector space, spanned by the initial and final states. This can be motivated
by the analogy with a unit sphere, for which the geodesics — the great circles —
lie in a plane containing the origin. This implies that the geodesic can be
expressed as a parametrized superposition of the initial and final states.

Let |%0)and |¢¢) be the initial and final states, and let |¢1)be a state orthogonal
to |¥0) and belonging to the two-dimensional space spanned by|¢o) and|¢). The
state along the geodesics can be written as |y (s)) = f(s)|vo) + g(s)|1), where

s is a real parameter, f(s) and g(s) are complex functions of s, and the states are
not necessarily normalized (rays in Hilbert space). Inserting this into ds%.q,
integrating, and finding the path [that is, the functions f(s) and g(s)] that

minimizes the length, one finds the finite distance Drs between|vo)and |9 ¢).
|7


http://arxiv.org/pdf/1407.4343

Distance between pure states (3)
See Marcio Taddei, Ph. D. thesis, arxiv.org/pdf/1407.4343

(4ol ) )

Drs(|to), [to5) = arccos (¢<worwo>¢<wf¢f>

The maximum value of this distance is 7/2, corresponding to orthogonal
states.

The argument of the arc cosine above is the square root of the fidelity
between the two states, so we can also write

Drs([to), [ibs)) = arccos \/F([o), [15))

On a Bloch sphere, this distance would correspond to the shortest path
along a great circle connecting two vectors with tips on the sphere.

With these geometrical notions, one is able now to derive the Mandelstam-
Tamm bound geometrically, in a very simple way. Before doing that, we
compare the above distance with an alternative expression. '8


http://arxiv.org/pdf/1407.4343

Another possible distance
See Marcio Taddei, Ph. D. thesis, arxiv.org/pdf/1407.4343

A distance in quantum state space that also satisfies all the three
properties above is (This was also defined by Bures):

D(Wo% Wf>) — \/5\/1 _ \/F(Wo% |¢f>)

where, as before,

F(‘¢O>7 Wf>) —

[(1o|tbg)]?
(Yo l|to)(Vrliby)

This is analogous to the distance between two unit vectors, as shown in the
figure below.

(9/2.d dZQSin(g/Q):Q\/l_gose:\@\/1—6089:\@\/1—&-13



http://arxiv.org/pdf/1407.4343

Another possible distance (2)

See Marcio Taddei, Ph. D. thesis, arxiv.org/pdf/1407.4343

A distance in quantum state space that also satisfies all the three
properties above is (This was also defined by Bures):

D(Wo% ‘wf» — \/5\/1 _ \/F(|¢O>7 |¢f>)

where, as before,

F(‘¢O>7 \¢f>) —

[(1o|tbg)]?
(Yo l|to)(Vrliby)

This distance cannot be obtained
however as the shortest path along
elements of the projective space,
since it involves a path that contains
necessarily unnormalized states,
like |¥.,) . It cannot be obtained
fromdss., which is independent of
normalization.

o)

20
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Geometric derivation of the Mandelstam-Tamm bound
See Marcio Taddei, Ph. D. thesis, arxiv.org/pdf/1407.4343

Let us calculate the differential form of the Fubini-Study metric when the

variation of |¥) is due to an evolution operator corresponding to the
Hamiltonian H. Then [dy(t)) = [ (t + dt)) — |[¢(t)) = (H/ih)[1(1))dt, where
the parameter s is now the time. Replacing this into the expression for dst.q:

L[ (@WIH ) <<wﬂw>>2‘ (AE)? df?

2| (o) Why ) /2
Integrating dsgg along the path followed by the state, one obtains the

length of this path:
ength of this pa T AE(t) Length of actual path followed
lps = /dSFs = / ; dt. by the state, dictated by H.
0

The Mandelstam-Tamm bound is obtained by remarking that this distance
cannot be smaller than the length of the geodesic connecting the two states:

2 2
dSFS: dt —

dt

Drs([o), [7)) = arccos \/F (o), [¢4)) < / =

21
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Geometric derivation of the Mandelstam-Tamm bound (2)
See Marcio Taddei, Ph. D. thesis, arxiv.org/pdf/1407.4343

Dirs (o), li5)) = axceos /(1) fogh) < [ 25

0 h

This expression can be interpreted in the following way: it yields the
minimal time necessary for the distance between states|y) and |¢¢) to

reach a chosen value (or, equivalently, for the fidelity between these
states to reach a chosen value).

AEW®) T
7

| The bound on time for a |
| certain distance D1 to be |
| reached is given by the value |
’, t = 7 such that the area
. under the graph equals D1. |

il o
e e & )
3 & - 2 -+
. v - 4 x 2
% o . . B 49
4 4
4
4

22
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Geometric interpretation of the quantum Fisher information

(depldyp) [ (ldep)|®
(W[¥) (W[)?

dS%S — <dwang‘dwang> —

Assuming that the change in |¢)is due to the change in a single parameter
X, one has |dy) = dX (d]y))/dX), so that, for normalized |¢),

d(p(X)] dp (X))  |d{y(X) g
dX  dX _| dX i

¥(X))

dSFS —

Comparing this with the expression for the quantum Fisher information
derived in the second lecture:

d{(X)| d|p(X)) |d<¢(X)\
dX dX dX

Fo(X) =4

(X))

one finds thatldstg = (1/4)Fo(X dXQ"rha’r is, the Fubini-Study metric is
proportional to the quantum Fisher information! The largerFo(X), the more
distinguishable are the states|y) and |¢) + |dy), for a given change dX of
the parameter X, and therefore the better is the precision in the
estimation of X. 23




Distance for mixed states

As shown before, the distance between two pure states |¢1) and |1)5) is
Drs(t), [5)) = arccos / F(i), [¥5)), where, for normalized states, the

fidelity is F(|11), [12)) = [(¥1]wa)|?

The corresponding expression for mixed states is obtained from the Bures
metric, which is a generalization of the Fubini-Study metric:

D, (:61’/32):: arccos\/CI)B (:619/32)

where ®5(p1, p2) is the Bures fidelity, given by

>‘ (pure states)

5 (01:0,) (Tr\/ﬁf%zﬁf/z) =|(y,

Uhimann demonstrated that the Bures fidelity can be defined in terms of
purifications. Let|¥;) and |¥2) be purifications of p1and p2, respectively.
Then ®p(p1, p2) = i [(¥1]T2)|?, where the maximum is taken over all
possible purifications of p2. It is sufficient to consider “environments"
with the same dimension as the system S. This motivates the definition of

Bures fidelity. We demonstrate now the above expression for Dg(p1, p2).
24



Distance for mixed states (2)

The differential form of the distance between two neighboring states »
and p + dp is defined as the minimal Fubini-Study differential of the
respective purifications |V)and |¥) + |d¥):

ds* — min dshq (Bures)

Blp,p+dp " Suvif

[©),[ W) +|dW)
The corresponding length is

path path purif purif path purif
where the minimization is performed over all purifications of each state in
the path.

The distance between p1 and p2 is now defined as the length of the
shortest path between these states:

Dg(p1,p2) = minfp = min {minﬁps}

path path | purif

The order of the minimizations can be inverted.
25



Distance for mixed states (3)

Therefore:

Dp(p1,p2) = min {minépg} — min Dpg(|U1), |[¥s)) = min arccos /F(|¥1), [¥s))

purif | path purif purif
Since Drs is a decreasing function of the fidelity F, one has

Dp(p1, p2) = arccos | fmax F(|¥y), [¥3)) = arccos Vegs(p1,p2).

which demonstrates the generalization of Drs for mixed states — the
Bures angle.

Let now p; = p(X), p2 = p(X + dX), where X is a parameter, and let us

expand Dg as function of dX. It follows then that
Pplp(X),p(X +dX)] =1-— ]:QiX)dXQ +O(>dX*?)
and, using that arccos V1 — x = /x + (9(1153/2),

Dalp(X), p(X +dX)] = dsp = (1/2)y/ Fo(X)dX

implying that (1/2),/F(X) is the speed of change of the distance
between the two states.

26



Quantum speed limit for physical processes

M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho, PRL 110, 050402 (2013)

The previous results imply an extension to open systems of the

Mandelstam-Tamm relation:
Lower bound for time

arccos /B [5(0 / \/]:Q (t)/2dt | — heeded to reach fidelity
®,[5(0).5(r)] between

initial and final states

Bures length
of geodesic

Bures length of actual
path followed by state of
the system

Special case: Unitary evolution, time-independent Hamiltonian,
orthogonal states Mandelstam-Tamm

@5 [p(0), p(T)] = 0,  Fo(t) = 4{(AH)*)/1° =|rV/((AH)?) > h/4




Quantum speed limit for open systems:
Purification procedure

D := arccos /@5 [p(0 \/]:Q (1)/4 dt

Problem: No analy’rlcal — PUr'IfICGTIOI‘\'
‘ I expression for &,
D</ V/Colt)/4 dt = / VAR o(8) /Rt

B AU 5 (t)
1 dt

ﬁS,E(t) = US E( )

US,E(t)z Evolution of purified state corresponding to 05
28



Quantum speed limit for physical processes:
amplitude damping channel

As seen in Lecture 3, the amplitude-damping channel may be described by
the following equations (states without indices refer to the system — e.g. a
two-level atom with|1)and |0) being the excited and ground states):

0|0 e — \0>\0>E,
D0y — /P E+V1—PO0)1)g P(t) =exp(—nt)

This is a quite natural, physically motivated purification of the evolution of
two-level atom. The unitary evolution corresponding to this map is

Us,p(t) = exp[—iO(t) (646 + 6_6)] 64]0) =[1), 6-[1)=10), 631 =0
oyro- = [1)(1

with O(t) = arccos \/

From thisand D < (t)/4 dt = / \/ A?—[ t))/hdt.

one gets: p < /(o4 arccos[exp( vt/2)]

Initial population of excited state 29



Quantum speed limit for physical processes:
amplitude damping channel (2)

This implies a lower bound for the distance-dependent decay time:

v > 2lnsec(D/\/ (646 ))

Bound is saturated if (646_) =0 or 1 Initial population of
(0+0-) =1= [1){1] = P@)[1)(A] + [1 = P(#)]|0){0 excited state

= & = /P(17) = D = arccos|exp(—7/2)]
Interpretation:

If initial state is the excited state, then evolution is along a geodesic
Time for getting at the origin:
® =1/2, D=arccos(®)=n/3, y7=2In2 ~ 1.39

Time for getting deexcited:

D < +/(6,.6_) arccoslexp(—7/2)] =

D=mn/2= 7 =00

30



Quantum speed limit for physical processes:
amplitude dampina channel (3)

For pure states, the geodesics
according to the Fubini-Study
metric are segments of great
circles of the sphere. The
extension to mixed states, given
by the Bures angle, adds other
paths of the same length. The
geometry of the Bures angle is
therefore quite different from
the usual Euclidean geometry on

the Bloch sphere, since a

diameter and a great half-circle The picture shows the geodesics

have here the same leng‘rh between an initial vector pointing up and

a final vector pointing down.
31




Quantum speed limit for physical processes:
Dephasing channel

The dephasing channel may be defined
by the following set of equations:

0)[0) — e~ | /P(£)]0)[0) s + /1= P(1)|0)[1)
1[0} — e [ VPBI1)[0)s — /T POID[1)5]

P(t):=(1+e /2  ~v(t) = Dephasing rate
Note that the states|0)and|1)of the system do not change. However, a
superposition like (|0) + e*?|1))/v/2 gets maximally entangled with two orthogonal
states of the environment when ¢t — oo, so phase information is lost on the system
(even though the phase can still be recovered by joint measurements on S+E):

(1/v2) (|0) + (1)) [0) g — (1/2) [|0) (10)E + [1) ) +€[1) (10)E — 1) )]
The unitary evolution corresponding to the map is:

A~ ) ~ . ~ E

US,E(t) _ e—zwotaze—ze(t)azagg ) with Q(t)  ATCCOS P(t) .

0; — Pauli matrices for system S

A E . . "
0'§ ) — Pauli matrices for environment E 32



Quantum speed limit for physical processes:

Dephasing channel
0)[0)5 — =0 | /P(£)]0)[0) s + /1= P(1)|0)[1) 5
10 E%ewot[\/ H1)0) 5 — /1 — PO)[1)[1) }

Pt):=1+e)/2 () — Dephasing rate
Unitary evolution corresponding to the map:
ﬁS E(t> _ e—iwotﬁze—ie(t)ﬁch@gm 0(t) = arccos / P(t)

This is already a possible purification of the evolution. It is possible
however to do better than this, by looking for a parametrization of the
most general purification.

More general unitary evolution: Ug 5 (t) = g (t)Us. 5(t)

Minimize C(, (t) over all possible evolutions iz (t). Cq(t) depends only on

B di (t) Set hp(t) = a(t)el”) + B(t)6l) +~(t)6")
() = i dt (0 a(t), B(t), v(t) — Vama’rlonal parameters

This is the most general transformation, in this casel 33



Quantum speed limit for physical processes:
Dephasing channel

For simplicity, we consider here the special case wy = 0. One has then:
1 : .
D < 5\/<AZ2> arccos|exp(—v7/2)] = v7 > Insec <2D/\/<AZQ>>

Note that (AZ?) = 0 = Eigenstate of Z: no evolution

Maximum distance between states: \/ (AZ2)7 /4

Pure states with (AZ?) = 1 = Bound is saturated
Interpretation: These states are represented by
vectors in the equatorial plane of the Bloch sphere.

Since wy = 0, evolution is along geodesic of
Bloch sphere:

(10) +[1))/v2 = (|0){0] + [1){1])/2
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Quantum speed limit for physical processes:
Dephasing channel

N-qubit system, each interacting with its own dephasing reservoir

A

Tryhp(t) = la®) X + 8V +4(1) 2], where X =0, V = 0,, Z = 0..
Lower bound scales as 7 ~ 1/N. Attained for
i vt T ~1/VN
GHZ states (1/2)(]0...0) +¢e'?|1...1))
0.17 3T LN =y /y
1 —NoT 2N | S
D [5(0), p(t)] = — R0 S p = 1%
2 0.001 |

r=400 N
Separable states: 107 ¢
Lower bound scales as 7 ~ 1/v'N for / \

' N

vV N < woand as 7 ~ 1/N for vV N >>w/100
Product state, qubits initially in state

(10 + 1)) /V2 = &5 = QLN (1 + e 77 cos QwOT)

Lower bound: full lines

Exact solution: dashed lines

35



Quantum speed limit and quantum control

PHYSICAL REVIEW A 84, 012312 (2011)

Speeding up critical system dynamics through optimized evolution

Tommaso Caneva,'” Tommaso Calarco,” Rosario Fazio,” Giuseppe E. Santoro,"** and Simone Montangero®

Goal: Maximize fidelity |(¥(T)|va) * for fixed T starting with ground state

of Hamiltonian and having as target the ground state of modified Hamiltonian
(as in adiabatic quantum computation).

Control function optimized
numerically (Krotov algorithm)

+E IT)
Landau-Zener:

H(t)= E[F(t)GZ +®,6, |
Initial state: GS with I'(=T1"/2) =
Target state: 6S withI'(1/2)

\\
/ )

Fast change in beginning and

end: I = 0 in between . Better than adiabatic changel!



Quantum speed limit and unbounded T'(¢)

H(t)= g[r(t)é'z + 0,6 | fl—’;(t) =I'x7(t), T(t)=T(t)Z + w %

From arCCOS\/F(‘l//0>, l//f>) ngl;(f)dt < AE;;\I/[AX .
0

> arCCOS‘<¢0’¢f>‘ . 0 if AE — oo

ABnax Going from initial to
final state in the
shortest possible time:
try to reach a geodesic
as fast as possiblel

Bound is tight!
X

This is the result of
Caneva et all
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Conclusions

In this series of lectures, we introduced basic notions of quantum
metrology, and showed that quantum mechanics helps to improve the
precision in the estimation of parameters. New developments regarding
parameter estimation in open systems have been discussed. We have
illustrated these ideas by considering the precision limits in the estimation
of phases in a noisy optical interferometer, or yet of a small force acting on
a damped harmonic oscillator. We have also shown that the methods of
quantum metrology allow a very general approach to the quantum speed limit,
allowing the extension of the energy-time uncertainty relation to open
systems. As a matter of fact, quantum metrology is a very active field
nowadays. Experiments involving the detection of tiny magnetic or electric
fields have already been implemented. A possible application of these ideas
is related to the recent detection of gravitational waves. This involved
comparing the relative lengths of the two arms of an interferometer to
within 1/10,000 the diameter of a proton. An even better precision could be
obtained through the use of squeezed states, already demonstrated in the
gravitational antennas of the LIGO project, as discussed in the first

lecture.
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