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In Ramsey atomic interferometry, a superposition of atomic states is produced by a mechanism com-
pletely equivalent (for experimental purposes) to interaction with a classical field. Since this property
holds, in the case of Rydberg atoms, for temperatures close to absolute zero and field intensities of the
order of a single photon, the question arises as to why the quantum nature of the field can be neglected.
We model the passage of an atom through a Ramsey zone and show that, in order to explain the phe-
nomenon, correlation properties between three subsystems and strong cavity dissipation turn out to be
the essential physical ingredients leading to classical behavior. [S0031-9007(99)09302-3]

PACS numbers: 03.65.—w, 32.80.—t, 39.20.+q, 42.50.Lc

Microwave cavities are extensively used in experimentde considered as a damped system. Open quantum sys-
designed to access fundamental issues concerning thems have been the subject of renewed interest in many
interaction of atoms and electromagnetic field modes irareas including quantum optics [3]. The interaction with a
the context of cavity quantum electrodynamics [1]. Inlarge external reservoir provides, within the standard quan-
Ramsey atomic interferometry [2], in particular, theytum mechanical framework, one way of accounting for ef-
are known to generate quantum superpositions of atomifective nonunitary dissipative subsystem dynamics [4], a
states as if the field inside them were of a classical naturecharacteristic of which is to act on the coherence proper-
Two cavities separated by an intermediate region arées of the subsystem states. Quantum coherence can be
filled with fields oscillating with phase coherence so thatthereby destroyed [5], as is observed in most of the macro-
atomic transition probability amplitudes undergo quantunscopic world and theoretically expected also in a meso-
superpositions observed as interference (Ramsey) fringescopic scale. Such decoherence processes often take place
When this situation holds for temperatures close taat very short time scales, so that they can be studied, in
absolute zero and field intensities of the order of asome models at least, by means of a perturbative short-time
single photon, one may ask to what extent the quanturexpansion for the coherence loss, which can be measured,
nature of the field can be neglected and how can this be.g., by the so-called linear entropy (or idempotency de-
theoretically modeled from basic quantum theory. fect) [6]. The progressive decoherence (due to the rela-

In contrast to high-quality-factor cavities, in which pho- tively small dissipation in the high-quality-factor cavity)
tons dissipate at sufficiently low rates, the cavities used imf mesoscopic quantum superspositions of field coherent
such interferometric devices must be continuously pumpedtates (“Schrédinger cat states”) has recently been experi-
by an external source in order to make up for the relamentally observed [7], after producing the field superposi-
tively short photon lifetimes, if a stationary state is to betion states by interaction with atoms. In this experiment,
maintained in them. In this respect the cavity mode musatomic states are steered, both before and after interacting
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with the high-quality cavity, by fields in low-quality cavi- by a master equation in the Born-Markov approximation
ties (Ramsey zones) which, as mentioned above, behay&,9], whereby the relaxation of the field follows a
classically as interferometric tools. standard exponential decay law. By including the external
In order to model the behavior of the field in such l@wv- source and using more refined estimates for the dissipative
cavities, we consider three subsystems, namely, the atordynamics [10], one may expect to obtain qualitatively
described as a two level system (a pair of nearly resonarmgquivalent final results, since the classical-field effect we
Rydberg states), the relevant cavity mode, pumped by aseek is contained in the stationary dynamics of (3).
external classical source, and a reservoir (heat bath) re- The atom-field coupling will be treated in the dipole
sponsible for the dissipative properties of the cavity modeand rotating wave approximations (RWAs) as
It is not intended here to discuss general aspects of the
dynamics of three interacting subsystems, but these turn
out to be the minimum essential ingredients required t

model the functioning of a weakly excited, lo@-cavity 5 the ahove interaction has proved adequate in many
in the interferometric device. When an incoming atom'applications of the Jaynes-Cummings model in quantum
in the upper or lower relevant state, with velocity of theoptics [11]. Later, we will comment on effects arising

order ofv = 400 m/s, moves through the cavity for an ¢ antiresonant terms. The state of the complete system
effective path length of about= 0.5 cm, it takes a time g fully described by the density operator

of T = 1/v = 10 us to induce ar/2 pulse in its state
space (both states being finally equally populated). This p(t) =U®pOUT(®), (5)

time is of the same order of magnitude as the atom-field . I

coupling constant (Rabi frequency) /27 = 10 kHz, WhereU(_t) is the_ propagator for the total Ham|lton|a_n @

as determined by cavity geometry and atomic structur@ndp (0) is the initial condition at = 0, taken as the time
(Rydberg circular states [7]). Atom-field entanglement,&t Which the atom enters the cavity. _

however, is suppressed. As shown in detail below from 1€ role of the field damping on atomic coherence
first principles, the field dissipatiop (of some MHz, i.e., Properties can be assessed, even in the absence of the
quality factorQ ~ 2 X 103 for resonant field and atomic external sourcé’, by examining perturbatively the atomic

transition frequencies, = w, of tens of GHz) accounts lInéar entropy

Hiy = EQ(U'Ta + a'af), 4)

Quhere o stands for the Pauli matri% (ox —ioy). In

for this observed coherent atomic evolution. 5,(0) =1 — tl’apa(t)z (6)
We consider the fully quantized time-dependent Hamil- ’
tonian where p,(t) = tryp(2) is the atomic reduced density.

_ _ o ' This quantity, which is initially zero for a pure, decor-
H = H(t) = Ha + Hr(t) + Hin = Ho(t) + Hini, (1) related atomic initial state, becomes positive @gt)
where the atom, treated as a two level system, is describddses its initial purity, as can be most conveniently cal-
by culated in an interaction picture defined as follows. The
H, = Y hwgo, @ _total Hamllltonlan () |sT split mto- a free part consist
ing of i(; w,0; + wra'a) to which we add a term
%wo Dk b,fbk with g = w; = w,; this renders the re-
maining interaction part time independent, containing the

and the field, coupled to the reservoir responsible for it
damping, is modeled as

Hp(t) = Hy, + h(F*e''a + Fe '“'a’) Hamiltonian (4), the field-bath interaction, and also a
+ + " counterterm/ >, (w; — a)o)b,:rbk. Following [6], the
= hosa'a + Z higi(a'by + aby) power series expansion af,(¢r) for short times, with
k the initial condition p(0) = p,(0) ® p;(0) ® p,(0) =
+ Z Fwibl by + F(F*ei®'a + Fe i'qt), [+)(+| ® |0){0] ® [{0}x)({0}x| which describes an atom
X initially in the excited state while the field and the reser-

(3)  voir are in their respective ground states [12], yields up to

which includes, in addition, the pumping by an externaifourth order in time
source of amplitudé’ tuned at near resonance (last term). 1 8
As usual,a’ and a are the field (boson) creation and 9a(f) = [1 BRT) (Z 813>f2}292f2 - §Q4f4~ (7)
e t . k
annihilation operatorsh, and b, are the corresponding
operators for the reservoir, taken as a large collection ofhe term2Q2¢> gives the usual short-time scale for atom-
harmonic oscillators, and, is the standard Pauli matrix. field decoherence [6]. It is eventually counterbalanced by
In the absence of the source, the dissipative dynamics dhe last term, and iguenchedy the relaxation due to the
a single mode of the electromagnetic field in a cavity iscoupling to the reservoir. This holds for times up to where
frequently modeled by the Hamiltoniakis, [8]. In the the leading terms of (7) have a maximumyat= J6/7,
long-time limit the dissipative dynamics can be describedvith 72 = 3, g7, and even at this time limit the atomic

4738



VOLUME 82, NUMBER 24 PHYSICAL REVIEW LETTERS 14 Jne 1999

decoherence as measured &y(t,,) = 6(2/%)? is small do not possess this second moment, we can use them
for ) < 7. for qualitative purposes, in the continuum limit and
Alternatively, one can exploit the smallness of thefor longer times, introducing a peak positiany, = w,
atom-field coupling constant and use a perturbation exand a widthy < w,. Extending then the integration
pansion in powers of) in order to study the atomic towards negative frequencies, Eq. (8) becomig§) =
decoherence. In this case, a straight interaction picturé(Q/y)*(yt + e " — 1), where the contributiony?
is used forH;, [EQ. (4)] still with no external source, arises from the pole on the real axis@}. This latter
so that restrictions related to its time dependence are rexpression remains small even for timgs= 1/Q for
moved. Here, in order to collect all powers 8f up to  which §,(T) = 4(Q2/y), if the field damping is suitably
fourth order, the field-reservoir sectéf;, is diagonal- large (2 < y). No substantial change comes from the
ized asal =Y, &,v} with X, |&,]> = 1, where the correction of highest order if) in Eq. (8), which is
v} is the vth field-bath eigenmode creation operator ofgiven in the continuum limit byf(x) = 2(6x* — 14x +
frequencyw,. For the same initial condition as above, 8xe™ — 16e™ + 5¢72* + 11) and reduces for short

the result ford,(¢) is times to that appearing in Eq. (7). It follows that the
N ) adopted initial atomic state+)(+| remains very nearly
5,(1) = 202 Z |€ou 2 sin; (0 — w,)t a pure state after a timg/(), which is the time scale for
“ — = %(wa - w,) this state to rotate a fourth of a cycle in the atomic state
0\ space (a 7 /2 pulse”) when the external source is turned
— <;> f(x), (8) on. As indicated by the smallness 8f(z), this rotation

is moreover nearly unitary, with little coherence loss.

wherex = yr. As regards the dominant term, expanding A qomplete summation of .the full series in powers of
the sine function for short times one recovers the Ieadin%l’ with the external source included, can be carried out

behavior of (7) withY, ¢> replaced by the mean-square PY means of the normal mOd?Sf’ in the sense that an
linewidth 3, |£0,|2(w, — ,)?. Although Lorentzians exact solution for the interaction picture operatair)
v e ’ | anda(r) can be obtained, leading eventually to the form

Hi (1) = th_i‘””t(T|:i ft ds P*(t — $)F*(s) + P*(t)a’ + Z r,f(t)b,:r:| + H.c. 9)
0 k

for the interaction Hamiltonian. In this expressid{s) =
> léoPe i and r(t) = 3, &0, Exve @' are effec- ' ever, indicate that this does not, in fact, occur. In order to
tive couplings of the atom to the cavity mode and toanalyze this result in terms of Eq. (9), note that, for times
the bath oscillators, respectively, being the amplitude |onger than the ones just considered, a new dynamic regime
of b,f in the basisv}. Taking into account the unitar- sets in, in which the evolution of the field and that of the
ity of the transformation to normal modes, for very shortatom are progressiveljecoupledas a result of a decrease
times P(r) ~ 1, ri(r) ~ 0 and the only significant term of P(z). This dynamic transition takes place on a scale
in the square brackets is the second one. In this timeet by the field relaxation time~'. In fact, closed, ap-
range the dynamics is therefore nearly of resonant Jayneproximate expressions for the effective couplings can be
Cummings-type, which tends to entangle the atom and thebtained within a single-pole Weisskopf-Wigner approxi-
field on a time scal€) ~! [6]. Equations (7) and (8), how-] mation toat(¢) [8] which reads

. e—iwkt
P(t) = e Gorv () ~ —8%

(o — w4y 7T, 4o

Using these expressions, the object in the square brac'k&llamping can be neglected whéh <« y for interaction

in Eq. (9) corresponds to the solution of the Heisenbergtimes which are not too long, in the sense that << 1 <«
Langevin equation for Markovian field dissipation, with v¢. The cavity dissipation thereby washes out the atomic
decay constany = 7D(w/) |g(ws)[?, which results in  decoherence which would otherwise take place in the scale
the limit of reservoir oscillators having a continuous fre- () ~! due to atom-field entanglement. As a result, if the
guency distribution with number densify(w). The last interaction time is limited to the range<x 1/v/, there is
term of this object couples the atom to the bath oscillatorsio time for appreciable coherence loss of the atomic state,
with effective constantg; = (wr — wr +iy)"'Qgr.  asits evolution is governed mainly by the first term in (9).
Within the Born-Markov approximation this corresponds, In the Schrodinger picture, the resulting evolution of
at resonancew, = wy, to an atomic damping con- the atomic reduced density,(r) is thus described by a
stanty’ = 7D (w,) |g'(w,)|> = (Q/y)Q. This atomic  unitary Hamiltonian of the familiar form
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Hg(1) = H, + H|Al (e "ot + He) = H, + KlA|[o, codwt — ¢) + o, sinwr — ¢)], (11)

whereA = OF /(o — w; + iy) = |Ale’?, describing a
classical field rotating around the quantization axis w\th We are grateful to P. Nussenzveig for fruitful discus-
the source frequencw and phasep [2]. Interference sions. This work has been partly supported by CNP,
fringes are obtained by varying acrossw, = w; overa FAPEMIG, and PRAXIS XXI BBC/4301/94.

range of a few kHz, where
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