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We present protocols for creating entangled states of two modes of the electromagnetic field by using a beam of
atoms crossing microwave resonators. The atoms are driven by a transverse, classical field and pump correlated
photons into (i) two modes of a cavity and (ii) the modes of two distant cavities. The protocols are based on
a stochastic dynamics, characterized by random arrival times of the atoms and by random interaction times
between atoms and cavity modes. The resulting effective model yields a master equation, whose steady state
is an entangled state of the cavity modes. In this respect, the atoms act like a quantum reservoir, pulling the
cavity modes into an entangled, Einstein-Podolski-Rosen state, whose degree of entanglement is controlled by
the intensity and the frequency of the transverse field. This scheme is robust against stochastic fluctuations in the
atomic beam, and it does not require atomic detection nor velocity selection.

DOI: 10.1103/PhysRevA.81.043802 PACS number(s): 42.50.Dv, 03.67.Bg, 03.65.Ud, 42.50.Pq

I. INTRODUCTION

The quest for quantum control of mesoscopic systems
imposes the development of novel strategies, which go beyond
the implementation of fully coherent Hamiltonian dynamics.
The main objective is to combat the effects of noise, which
give rise to dissipation and decoherence. Protocols based
on quantum error correction [1,2], quantum feedback [3,4],
dynamical decoupling [5,6], and decoherence-free subspaces
[7–9] aim at minimizing the detrimental effects of coupling
to an external environment. In this context, quantum reservoir
engineering makes use of noise statistics as a resource for
implementing robust quantum dynamics. The basic idea is
to implement a stochastic dynamics whose stationary state
is a nonclassical state. This is achieved by manipulating
the coupling to the reservoir, whose properties are known
only through the statistical averages [10]. A prominent
example of quantum reservoir engineering is laser cooling,
which achieves low temperatures of single atoms or ions by
tailoring the scattering cross section, such that in average
the scattered photon carries away mechanical energy of the
atomic center of mass [11,12]. More recently, this concept
has been generalized in various directions, for the generation
of nontrivial many-body states and nonequilibrium quantum
phases [13], and for the implementation of dissipation-driven
quantum computation [14].

The idea of using an atomic beam as a reservoir for a field
in a cavity actually goes back to quantum laser theory, see for
instance Ref. [15], where a thermal atomic beam crossing the
laser cavity acts as a thermal bath for the laser field. Actual
implementations of this idea have been made in experiments
on cavity quantum electrodynamics, where a beam of atoms
in the lower state of a two-level space is used to generate a
vacuum state of the field in a microwave cavity, by absorbing
thermal photons initially present in the cavity [16–19].

Recently, we proposed a method for preparing quantum
states of the electromagnetic field based on quantum reservoir
engineering [20]. This method is implemented in a typical

setup of microwave cavity quantum electrodynamics (CQED)
as in Fig. 1(a), where the resonator is pumped by a beam
of atoms with random arrival times and needs neither atomic
detection nor detailed control of the sequence of atoms. We
showed that, by suitably preparing the initial state of the incom-
ing atoms, two-mode squeezing, i.e., Einstein-Podolski-Rosen
(EPR) correlations [21], is created between the cavity modes at
steady state. In this article we provide a detailed discussion of
the proposal and analyze its robustness. We show, moreover,
that further nonclassical states of the electromagnetic field
can be realized by tuning different parameters of the setup in
Fig. 1(a) and which are stationary states of the interaction with
the atomic beam.

We also propose a scheme for entangling two distant
resonators in a setup like the one sketched in Fig. 1(b). Our
procedure extends to the preparation of nonlocal EPR states
previous ideas regarding the production of macroscopically
separated fields [24–27].

This article is organized as follows. In Sec. II we review the
basic concepts at the basis of quantum reservoir engineering
in microwave cavity QED. In Sec. III we discuss the specific
scheme for creating EPR states of the modes of a resonator.
In Sec. IV a method for entangling the modes of two distant
cavities is proposed. The conclusions are presented in Sec. V.

II. AN ATOMIC RESERVOIR FOR MICROWAVE PHOTONS

A typical setup of microwave cavity QED is sketched in
Fig. 1(a). Preparation and monitoring of the cavity field is
achieved by interaction with atomic beams, whose internal
state is prepared in a circular Rydberg state with large principal
number, and possessing a dipolar transition which couples
resonantly with the cavity mode. While the internal state
of the atoms and their velocity can be prepared with high
precision, the atomic arrival time is a stochastic variable which
is known only probabilistically, according to a Poissonian
distribution. The interaction of the cavity field with individual

1050-2947/2010/81(4)/043802(11) 043802-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.043802


PIELAWA, DAVIDOVICH, VITALI, AND MORIGI PHYSICAL REVIEW A 81, 043802 (2010)

High-Q

cavity

(a)

Microwave
Generator

Cavity 1 Cavity 2

Excitation

Excitation

(b)

Atoms
Oven

Driving
Microwave
Field

Microwave
Generator

Driving
Microwave
Field

Excitation

FIG. 1. (Color online) Setup of the system for creation of EPR
state of (a) two modes of the same cavity and (b) two spatially
separated cavities. In both cases atoms from a beam are first prepared
in a coherent superposition of two Rydberg states |g〉 and |e〉 by a
combination of laser and microwave fields. The atoms have random
arrival times, and a low pumping rate warrants that at most one atom
is inside the resonator at a time [22,23]. While in the cavities, the
dipole transition |g〉 → |e〉 is saturated by a transverse microwave
field, thereby pumping on resonance two nondegenerate modes of
either one or two cavites, which are led asymptotically to a two-mode
squeezed state.

atoms is hence warranted by setting very low rates, such
that the probability that two atoms are found inside the
resonator is negligible [22,23]. The interaction between atoms
and cavity mode is coherent to a large extent: The atomic
circular Rydberg states are typically stable over the interaction
time, and high-finesse resonators in microwave cavity QED
can reach very long photon-storage times, which in state-
of-the-art experiments can reach the order of fractions of
seconds [23,28]. These properties allowed for the realization
of milestone experiments. Some paradigmatic ones are the
preparation and measurement of nonclassical states of the
microwave field [22,23], the experimental characterization of
loss of coherence of the quantum field [29] and of the transition
from quantum to classical dynamics [30], and the quantum
nondemolition measurement of the number of photons of the
cavity field [18,31].

Most of these formidable results were obtained implement-
ing Hamiltonian dynamics, where the interaction between
atoms and cavity photons is essentially dispersive. On the
contrary, the realization of nonclassical states of the cavity field
in the dissipative regime, where atoms and photons exchange
energy, is based on properly tailored dissipative dynamics,
where the atoms act as reservoir of the photonic field. As
mentioned before, a simple example is the preparation of
the cavity mode in the vacuum state [16–19]. Creation of
other Fock states of the cavity field has been achieved in
milestones experiments made in the strong-coupling regime,
when the resonator field saturates the atomic transition [32,33].
In this case, by accurately selecting the atomic velocity so
that the interaction time of each atom is fixed, the nonlinear

dynamics of atom and cavity field possesses several fixed
points, so-called trapping states [34], which approach Fock
states of the cavity field in the limit of negligible dissipation.

Several theoretical proposals have been discussed in the
literature, which provide schemes for the preparation of an
arbitrary single-mode quantum state of the electromagnetic
field in a resonator, involving resonant interaction with a
well-controlled sequence of atoms, without the need of atomic
detection [35–37]. This latter requirement is indeed important,
since present experiments lack high-efficiency detectors.

In this section we briefly review the basic properties of
atom-photon interactions in microwave CQED from the point
of view of quantum reservoir engineering, hence setting the
ground for the proposals for establishing EPR-correlations
presented in Sec. III and Sec. IV of this article. For a compre-
hensive review the reader is referred to Refs. [16,22,23,38]

A. Jaynes-Cummings Hamiltonian

The stability of the atomic states and of the resonator mode
during the interaction time justifies the use of Hamiltonian
dynamics for the interaction between a single atom and the
cavity mode. The Hamiltonian governing the dynamics of a
single dipole and the cavity mode is well described by the
Jaynes-Cummings Hamiltonian, Ĥ = Ĥ0 + ĤJC. Here Ĥ0 =
h̄ω0σ̂

†σ̂ + h̄ωcâ
†â gives the unperturbed evolution of a dipole

at frequency ω0 and a harmonic oscillator, the cavity mode, at
frequency ωc, while the interaction between the dipole and the
electric field of the cavity reads

ĤJC = h̄gâ†σ̂ + H.c., (1)

with g the coupling strength. Here, â and â† are the annihilation
and creation operators, respectively, of a cavity photon, while
σ̂ = |g〉〈e|, σ̂ † = |e〉〈g| describe the dipole lowering and
rising operators, with |g〉 and |e〉 the ground and excited states,
respectively, of the dipolar transition.

For ω0 = ωc, then [Ĥ0, ĤJC] = 0 and the evolution operator
can be written as

Û (t) = exp(−iĤ t/h̄) = exp(−iĤ0t/h̄) exp(−iĤJCt/h̄) (2)

whereby

e−iĤJCt/h̄|g〉 = cos(φ
√

â†â)|g〉 + i
sin(φ

√
ââ†)√

ââ†
â|e〉 (3)

e−iĤJCt/h̄|e〉 = cos(φ
√

ââ†)|e〉 + iâ† sin(φ
√

ââ†)√
ââ†

|g〉 (4)

and φ = gt is the Rabi angle. These equations show explicitly
the periodic exchange of energy between dipole and field when
they are resonantly coupled.

In the rest of this section we will assume that cavity mode
and atomic dipole are resonant, ωc = ω0.

B. Interaction with a beam of atoms

The interaction of the cavity mode with an atomic beam
gives rise to a stochastic evolution, which is mainly due to
the statistical knowledge of the number of atoms which have
interacted with the cavity mode. It is then appropriate to use a
density-matrix formalism for the cavity-mode state. We denote
by ρ̂ the cavity-mode density matrix. The time evolution of the
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cavity field is characterized by (i) the typical time scale which
separates the arrival of two atoms, which is here given by the
arrival rates r and re for the atoms prepared in state |g〉 and
|e〉, respectively., and (ii) the interaction time τ between atom
and resonator, which is determined by the atomic velocity and
which follows a normal distribution P(τ ) (which we do not
specify for the moment). Typically, rτ, reτ � 1 and one can
study the field evolution on a coarse-grained time scale �t ,
such that �t � τ̄ , with τ̄ the average interaction time. For
r�t, re�t � 1 such that we can assume that there is at most
one atom inside of the cavity, we can determine the density
operator at the time t + �t given ρ̂(t), according to the formula

ρ̂(t + �t) = ρ̂(t)(1 − r�t − rR�t)

+ r�t

∫ ∞

0
dφp(φ)

×
[

cos(φ
√

â†â)ρ̂(t) cos(φ
√

â†â)

+ sin(φ
√

ââ†)√
ââ†

âρ̂(t)â† sin(φ
√

ââ†)√
ââ†

+R cos(φ
√

ââ†)ρ̂(t) cos(φ
√

ââ†)

+Râ† sin(φ
√

ââ†)√
ââ†

ρ̂(t)
sin(φ

√
ââ†)√

ââ†
â

]

≡ ρ̂(t) + �ρ̂, (5)

where we used re = Rr and we wrote the distribution P (τ )
in terms of the distribution p(φ) of the Rabi angle φ = gτ .
Operator �ρ̂ in Eq. (5) is the differential change of the
field state. The master equation is given by the differential
equation ∂ρ̂t /∂t which is found from equation �ρ̂/�t . This
equation has the Lindblad form [39], as one can verify,
but it has no trivial solution. Since the atoms are initially
uncorrelated with the cavity mode, the inhomogeneous term
of the Zwanzig-Nakajima master equation disappears [40].
Moreover, the Markov approximation is valid in presence of a
single cavity: the atoms exiting the resonators do not interact
with it any longer, leading to no memory effects. Indeed, in
Eq. (5) the density matrix at time t + �t depends only on ρ̂(t).
We remark that, if the atoms exiting one resonator then interact
with a second physical system, then correlations mediated by
the atoms must be taken into account.

Below we discuss the master equation for the cavity mode
in two specific limits: the weak-coupling regime, when the
coupling of a single atom with the cavity mode is a small
perturbation of the cavity state, i.e., φ � 1, and the strong-
coupling regime, when a single atom perturbs significantly the
cavity state, and φ � 1. From now on we denote by ρ̂t the
density matrix of the cavity field at time t after the coarse-
grained time averaging.

C. The weak-coupling limit

The weak-coupling limit corresponds here to the regime
in which the mean interaction time τ̄ fulfills the relation
gτ̄

√
n � 1, where n is any relevant photon number (such

that the corresponding populations and coherences are not
negligibly small) and the width of the distribution for τ is

assumed to be small compared to the average value τ̄ . In this
limit the field operators in Eq. (5) can be expanded in powers of
φ, and the dynamics of the cavity density matrix ρ̂t is governed
by the master equation [17]

∂ ρ̂t

∂ t
= −iωc[â†â, ρ̂] − γ

2
(â†âρ̂t − 2âρ̂t â

† + ρ̂t â
†â)

− γe

2
(ââ†ρ̂t − 2â†ρ̂t â + ρ̂t ââ†), (6)

where γ = rg2τ̄ 2 and γe = Rγ [41]. This equation describes
the incoherent energy exchange between the cavity field and
an external reservoir, with loss and pump rates γ and γe,
respectively. If R < 1, the resonator thermalizes with an
effective reservoir at temperature

T = 1

κB

h̄ωc

| lnR| .

The steady state of the resonator is hence a thermal state, whose
temperature can be controlled by adjusting the parameter R,
giving the average rate of atoms prepared in the excited states
over the ones prepared in the ground state.

The steady state can be a pure state, the vacuum state, by
preparing the atoms exclusively in the ground state |g〉 [which
corresponds to setting R = 0 in Eq. (6)]: In this case the atoms
absorb in average energy from the cavity mode until it reaches
the vacuum state |0〉. This identifies a simple strategy which
allows one to prepare the cavity in the vacuum state as a
result of the interaction with a beam of atoms, of which one
controls only the initial internal state and the arrival rate. This
procedure does not require atomic detection nor control of
the atomic velocity but only the mean value and the variance
of the velocity distribution, so to warrant the weak-coupling
regime. Following the line of reasoning presented in Ref. [13],
this strategy could have also been identified on the basis of the
observation that the state |g, 0〉 is an eigenstate of Hamiltonian
Ĥ such that ĤJC|g, 0〉 = 0, and it is the unique dark state of this
dynamics. On this basis, one can construct a master equation
which has as steady state |g, 0〉 and which has the form given
in Eq. (6) for R = 0.

A useful benchmark for the quantum state preparation is
given by the fidelity F(t) for preparing the system in the
vacuum state at time t since the beginning of the experiment.
The fidelity F(t) = 〈0|ρ̂(t)|0〉 corresponds to the population
of the vacuum state at time t . The solution ρ̂(t) can be exactly
evaluated using the damping basis [42] and reads

ρ̂(t) =
∞∑

n=0

e−nγ t ρ̂(0)
n α(0)

n , (7)

where ρ̂(0)
n are the right eigenvector of the Liouvillean defined

in Eq. (6) corresponding to the eigenvalue nγ , and α(0)
n is the

n-th moment of the expansion in the number operator, taken
over the initial state of the cavity field. Using the explicit form
one finds [17]

F(t) = 1 − 〈n〉0e
−γ t + 〈n(n − 1)〉0

2
e−2γ t + · · · , (8)

where 〈f (â†â)〉0 = Tr{f (â†â)ρ̂(0)}. When the initial state is
thermal, with average photon number n̄ = 〈â†âρ̂(0)〉, then
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expression (8) takes the compact form

FWC(t) = 1

1 + n̄e−γ t
= 1

1 + n̄e−φ̄2rt
(9)

and in this case one sees that the time scale for reaching the
ground state is determined by the damping rate γ and by
the initial occupation number n̄. In other words, the achieved
fidelity is given by initial occupation number n̄, the average
Rabi angle φ̄, and the average number of atoms N = rt which
have crossed the cavity.

D. The strong-coupling limit

The strong-coupling limit is characterized by gτ̄ � 1. In
this regime, one can see from Eqs. (3) and (4) that, for a given
interaction time τ0 = π/g

√
m0 (and any integer multiple of

τ0), with m0 > 0 integer number, there is no net exchange of
energy between cavity field and dipole when the initial state
of the system is a coherent (or incoherent) superposition of
the states |g,m0〉 and |e,m0 − 1〉. In other words, these states
are fixed points of the resonator dynamics, in the absence
of dissipation. They are, however, not unique: Indeed, the
subspace of the fixed points of the evolution operator for a
fixed interaction time τ0 has infinite dimension, being at least
composed by all states |g,m〉, |e,m − 1〉, with m = �2m0 and
� = 1, 2, . . .. These states have been denoted in the literature
as trapping states [32,34].

The theory of trapping states has been reported in Ref. [34].
These properties have been used in milestone experiments [32]
in order to generate photon number states of the cavity field.
The effect of noise on this dynamics have been theoretically
analyzed in Refs. [43,44]. Using simple considerations we
now discuss how the vacuum state of the electromagnetic
field can be the unique asymptotic state of the dynamics
and determine the corresponding preparation fidelity. For this
purpose, we assume that all atoms are initially prepared in
their ground state (R = 0) and that their velocity (interaction
time) is distributed according to a function p(φ) with finite
width. The time evolution of the diagonal elements of the
field density matrix, 〈n|ρ̂(t)|n〉 ≡ cn(t) [with

∑
n cn(t) = 1 as

Tr{ρ̂} = 1] is found from Eq. (5) and is given by the set of
coupled differential equations

ċn(t) = −rBncn(t) + rBn+1cn+1(t) (10)

with B0 = 0 and

Bn =
∫ ∞

0
dφ sin2(φ

√
n)p(φ). (11)

Their solution reads

c0(t) = c0(0) + rB1

∫ t

0
dτc1(τ )

(12)

cn(t) = e−Bnrt cn(0) + rBn+1

∫ t

0
dτe−Bnr(t−τ )cn+1(τ ),

showing that the vacuum state is always a trivial stationary
solution. Other stationary solutions can be found if there exist
n > 0 for which the coefficients Bn = 0.

In order to study the behavior of the coefficients Bn, let us
assume that the velocities follow a Gaussian distribution, such
that p(φ) = exp[−(φ − φ0)2/2σ 2]/

√
2πσ 2, where φ0 is the

center and σ the width. The coefficients Bn then read

Bn = 1
2 [1 − e−2nσ 2

cos(2φ0
√

n)], (13)

such that for σ > 0 only B0 vanishes. In this limit, hence,
the only stationary state is the ground state. Nevertheless, for
sufficiently small values of the width σ there exist coefficients
Bn, with n > 0, whose value can be very small, so that the
occupation of the oscillator ground state may converge very
slowly toward unity as a function of time. A limiting case
is found when σ → 0, such that p(φ) = δ(φ − φ0). This is
the situation in which trapping states may exist. For instance,
if we choose φ0 = π/2, then the coefficients B0 and B4n2 (for
n = 1, 2, . . .) vanish, indicating that the Fock states |0〉 and the
states of the subset {|4n2〉} are fixed points of the dynamics,
i.e., trapping states. The initial state of the cavity determines
in which of these trapping states the cavity will be found. In
general the final state is a statistical mixture of these states.

The other limiting case is found for large σ , i.e., a broad
distribution for the atom’s velocity. For σ >∼ π , each of the
coefficients samples approximately equally over the period of
the sinusoidal function in Eq. (11), avoiding trapping states,
and we can therefore set Bn = 1

2 . For the fidelity in this
approximation we find

FSC(t) = 1 − e−ratt/2
∞∑
n=0

cn(0)
n−1∑
m=0

(rt/2)m

m!
, (14)

where we used the relation
∫ t

0 τne−Dτ dτ = n!
Dn+1 [1 −

e−Dt
∑n

m=0
(Dt)m

m! ]. For an initial thermal state with cn(0) =
(1 − µ2)µ2n, where µ is given by the initial average number
of thermal photons via 〈â†â〉 = µ2

1−µ2 , this simplifies to

FSC(t) = 1 − µ2e−rt(1−µ2)/2, (15)

and one sees that in this limit the fidelity of the ground
state is determined only by the initial occupation number n̄

(parametrized by µ) and by the number of atoms rt which
have crossed the cavity.

III. GENERATING EPR ENTANGLED RADIATION
WITH AN ATOMIC RESERVOIR

In the following we discuss in detail and extend a proposal
for generating EPR-entangled states of two cavity modes by
resonant interaction with a beam of atoms, which was first
presented in Ref. [20]. The setup is sketched in Fig. 1(a) and
is composed by a resonator, with two modes in which a single
atom can emit photons. The atoms are part of a beam crossing
the resonator and are driven by a classical microwave field
while they interact with the cavity modes. The interaction is
shaped in such a way that the atoms emit correlated photons
into the cavity modes. The underlying mechanism is four-wave
mixing, where emission into the cavity modes is enhanced
by resonant coupling with the Rabi sidebands induced by a
classical field that saturates the atomic transition [45], with
the creation of EPR correlations being enforced by the initial
quantum state of the injected atoms. Contrary to typical setups
based on optical parametric amplifiers, the atoms pump the
resonator through resonant single-photon processes.

Before discussing details of the mechanism, let us make
some general remarks on the main ideas regarding the
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generation of EPR states through reservoir engineering. We
first label by 1 and 2 the two cavity modes, such that ωj

is the frequency and âj , â
†
j are the annihilation and creation

operators of an energy quantum h̄ωj of the corresponding
mode (j = 1, 2). Our goal is to generate a dynamics described
by a master equation whose steady state is a two-mode
squeezed state, ρ̂St = |ψ〉〈ψ |, with

|ψ〉 = Ŝ†(ξ )|0, 0〉. (16)

Here, |0, 0〉 is the vacuum state of both cavity modes and

Ŝ(ξ ) = exp(ξ ∗â1â2 − ξ â
†
1â

†
2) (17)

is the two-mode squeezing operator, with ξ a complex
parameter. It can be verified that state |ψ〉 is the vacuum state
of harmonic oscillators, whose annihilation operators b̂1 and
b̂2 are related to the cavity modes operators by the relation

b̂1 = Ŝ†(ξ )â1Ŝ(ξ ), (18a)

b̂2 = Ŝ†(ξ )â2Ŝ(ξ ), (18b)

and analogously for the creation operators. We refer to modes
b̂1 and b̂2 as Bogoliubov modes, in analogy with the Bogoli-
ubov transformation used in solid-state physics [46]. State ρ̂St

can be hence the dark state of an interaction Hamiltonian Ĥ1,
which has, say, the form of the Jaynes-Cummings Hamiltonian
ĤJC in Eq. (1) but with the operator â (â†) replaced by the
operator b̂1 (b̂†1). We note that it is also the dark state of the
interaction Hamiltonian Ĥ2, which has the same form as Ĥ1

but now with b̂2 and b̂
†
2 in place of b̂1 and b̂

†
1. In particular, ρ̂St is

simultaneously dark state of both interactions, and it is unique.
Hence, a dynamics can be constructed, which has as unique
steady state ρ̂St, by implementing sequentially two interactions
which effectively damp oscillators b̂1 and b̂2, respectively. In
the following we will show how to engineer such dynamics.

A. Engineering the coupling to the reservoir

The Hamiltonian of driving field, atom, and cavity modes,
in the reference frame rotating at the frequency ωL of the
classical field, has the form

ĤRF = Ĥ0 −
∑
j=1,2

h̄δj â
†
j âj +

∑
j=1,2

h̄gj (σ̂ †âj + σ̂ â
†
j ), (19)

where gj are the coupling constants between the two-level
atom and each cavity mode, detunings δj = ωL − ωj , � =
ωL − ω0, and

Ĥ0 = −h̄�σ̂ †σ̂ + h̄�(σ̂ † + σ̂ ) (20)

describes the coupling between dipole and classical field, with
strength �, see Fig. 2.

Let the coupling to the classical field be much stronger
than the coupling to the cavity modes, |�| � |gλ|, it is
then convenient to express Hamiltonian (19) in the basis of
eigenstates |±〉 of Ĥ0, with

Ĥ0|±〉 = −h̄(� ∓ d)/2|±〉, (21)

and

d =
√

�2 + 4�2. (22)

∆

|+

|+

|+

ωL

ωL

d

ω2
ω1

|g, N-1>

|g, N>

|g, N+1>

|e, N>

|e, N-1>

|e, N-2>

FIG. 2. (Color online) (Left ladder) Energy of photon states
|N〉 (with N � 1) of the semiclassical field at frequency ωL.
(Middle ladder) Corresponding energies of the doublets of states
{|g, N〉, |e, N − 1〉}, where � = ωL − ω0 is the corresponding split-
ting in energy. (Right ladder) Energy of the semiclassical dressed
states |±〉, Eq. (23), with energy splitting d , Eq. (22). A transition
|+〉 → |−〉 is accompanied by absorption (emission) of a photon of
frequency ω1 (ω2) from (into) the corresponding cavity mode.

The states |±〉 are the semiclassical dressed states, and read

|+〉 = sin θ |g〉 + cos θ |e〉, (23a)

|−〉 = cos θ |g〉 − sin θ |e〉, (23b)
with

tan θ = 2|�|
d − �

. (24)

The corresponding energy levels are shown in Fig. 2. We
introduce the raising and lowering operators for the dressed
states basis,

π̂+ = |+〉〈−|, π̂− = |−〉〈+|, (25)

with π̂z = |+〉〈+| − |−〉〈−|. Using the semiclassical dressed-
state basis and operator notation we rewrite Eq. (19) as ĤRF =
Ĥ0 + Ĥint, with

Ĥ0 = h̄dπ̂z/2 − h̄
∑

λ

δλâ
†
λâλ,

and
Ĥint =

∑
λ

h̄gλ[π̂z(âλ + â
†
λ) cos θ sin θ

+ (π̂+âλ + â
†
λπ̂

−) cos2 θ − (π̂−âλ + π̂+â
†
λ) sin2 θ ].

(26)

If |gλ| � d we can choose which processes are resonant, and
thus relevant for the dynamics, by changing the values of δ1, δ2,
and d. One is thus able to generate a diversity of dynamical
processes, some of which are discussed in Refs. [20,47].
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Let us set δ1 = d and δ2 = −d, as shown in Fig. 2. If
|gλ| � d we obtain from Eq. (26) the effective Hamiltonian
ĤRF ≈ Ĥeff = Ĥ0 + Ĥint, with

Ĥint = h̄g(â†
2 cos2 θ − â1 sin2 θ )π̂− + H.c., (27)

and Ĥ0 = h̄d(π̂z/2 − â
†
1â1 + â

†
2â2). We have assumed g :=

g1 = g2. The processes described by Eq. (27) are indicated by
the arrows in Fig. 2. In the basis of the b operators, we have
Ĥ0 = h̄d(π̂z/2 − b̂

†
1b̂1 + b̂

†
2b̂2) and

Ĥ 1
int = −h̄�b(b̂1π̂

− + b̂
†
1π̂

+), if � > 0 (28a)

Ĥ 2
int = h̄�b(b̂†2π̂

− + b̂2π̂
+), if � < 0. (28b)

Here,

�b = g
√

(1 − µ)/(1 + µ)

with rµ = arctanhµ, while the value of µ is determined by the
classical field parameters,

µ = tan2 θ if |tan θ | < 1
(29)

µ = (tan θ )−2 if |tan θ | > 1.

We now can see that the interaction of the cavity modes with
a beam of atoms, each initially prepared in the state |+〉 (|−〉)
and undergoing the dynamics governed by Hamiltonian Ĥ1 =
Ĥ0 + Ĥ 1

int (Ĥ2 = Ĥ0 + Ĥ 2
int), will give rise to an effective

dynamics, whose steady state is the pure state |ψ〉 of the cavity
modes. The Hamiltonian governing the dynamics will be Ĥ1

or Ĥ2 depending on the sign of the detuning �, which can
be controlled by appropriately shifting the atomic transition
frequency.

B. Effective dynamics: reaching the EPR state

We discuss now how the cavity modes can be prepared in the
two-mode squeezed state asymptotically. This is achieved by
an effective “dissipation” process in the b-basis, implemented
in a two-step procedure sketched in Fig. 3. The first step
consists in letting the atomic beam interact with the resonator
with each atom prepared in the state |+〉 and the detuning
of the classical field set to the value � = �0 > 0. Inside the
cavity each atom undergoes the dynamics of Eq. (28a), such
that at the end of the interaction, on average, excitations have
been removed from mode b̂1. In the second step, the atoms
are prepared in state |−〉 and the detuning of the classical
field is set to the value � = −�0. Inside the resonator each
atom undergoes the dynamics given by Eq. (28b), such that at
the end of the interaction, on average, excitations have been
removed from mode b̂2.

In the weak-coupling regime, the equation of motion of
the cavity field modes is given by the master equation for the
density matrix ρ̂t , which during each step j (j = 1, 2) reads

∂ ρ̂t

∂ t

∣∣∣∣
step j

= −γ

2
(b̂†j b̂j ρ̂t − 2b̂j ρ̂t b̂

†
j + ρ̂t b̂

†
j b̂j ), (30)

where
γ = rat�b

2τ 2, (31)

τ is the interaction time, and rat is the atomic arrival rate.
Correspondingly, during each step the average number of
Bogoliubov excitations is exponentially damped according

Step 1:

e

Step 2:

e

ω0,2ω0,1

FIG. 3. (Color online) Schematic representation of the interaction
processes needed in order to prepare the cavity modes in a EPR state.
In step 1, the atoms are prepared in the state |+〉 before crossing the
resonator. Inside the resonator they are driven by a classical field, and
the atomic frequency is shifted with respect to ωL according to the
energy level scheme displayed at the bottom of the figure. In step 2,
the initial state is |−〉 and the atomic transition frequency is shifted,
such that the detuning with the field has opposite sign.

to the equation 〈b̂†j b̂j 〉t = 〈b̂†j b̂j 〉0 exp(−γ t), and vanishes at
times t � 1/γ (see also Sec. II C). In terms of the original field
modes, this procedure implies that the atoms pump in phase
only the two-mode squeezed state. Asymptotically, after the
implementation of the two steps for a sufficiently long time
(such that the cavity field is still stable over this time) the field
state approaches the state

ρ̂∞ = |0, 0〉b 〈0, 0| = Ŝ†(rµ) |0, 0〉a 〈0, 0| Ŝ(rµ), (32)

which is a two-mode squeezed state, and whose degree of
squeezing rµ is solely determined by the ratio |�/�|. This
state is reached independently of the initial state of the
cavity modes, provided that each step is implemented for a
sufficiently long time T .

An analogous dynamics can be implemented in the strong-
coupling regime, i.e., when τ�b >∼ 1. Here, one aims at
creating a trapping state in the Bogoliubov basis for each
Bogoliubov oscillator in a two-step procedure, where the initial
state of the atomic beam and the atomic parameter are changed
as in the procedure outlined for the weak-coupling case. In
this case, the creation of trapping states in the Bogoliubov
basis, with numbers n1 and n2 for each Bogoliubov mode,
corresponds to entangled states of the cavity modes of the
form Ŝ(ξ )|n1, n2〉. Choosing a broad velocity distribution, one
finds that the steady state is a vacuum two-mode squeezed
state, Ŝ(ξ )|0, 0〉.

C. Experimental parameters

The proposal we discussed so far is based on a stochastic
dynamics, where the average action of each atom leads the
cavity modes to a stationary, EPR-entangled state. The scheme
does not require atomic detection, nor control of the number
of atoms, nor of the interaction times (atomic velocities). A
possible experimental setup of this scheme is sketched in
Fig. 1(a). Prior to the interaction region, the atoms are prepared
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in a coherent superposition of two Rydberg states |g〉 and
|e〉 connected by a dipole transition. Inside the resonator a
classical field saturates the dipole transition, thereby pumping
on resonance the two nondegenerate modes of the resonator,
as shown in Fig. 2.

While the interaction time between cavity and each atom
needs not to be controlled, on the other hand, the dynamics
between atom and cavity is here assumed to be Hamiltonian,
and characterized by a two-level transition which can be tuned
on resonance with the cavity modes by means of an external
field. Let us now discuss these assumptions individually.
Selecting a two-level transition, here denoted by the electronic
states |g〉 → |e〉 imposes constrains on the field polarizations,
such that they all couple with the dipole transition, while
coupling to other states is avoided. In an open-cavity geometry
[22], this can be achieved by means of an electric potential
between the two mirrors, which removes through Stark shifting
the degeneracy of circular Rydberg states, and using circular
polarizations for both the cavity modes and the pump field. The
two-step procedure needs a change in the transition frequency
of the two-level atom, which can be achieved by an external
static field.

The assumption of Hamiltonian dynamics between individ-
ual atoms and resonator relies on the fact that the atom must
not decay during the interaction with the cavity modes, and
dissipation of the cavity field should be negligible during the
experiment. Experiments with microwave resonators [22,23]
are characterized by interaction times of the order of tens of µs,
which warrant negligible spontaneous decay, typically of the
order of tens of ms. The requirement that the cavity does not
decay over the duration of the experiment Ttot = 2T is instead
more delicate, as it requires that the resonator is stable over
the total interaction time with the atomic beam. Moreover, the
time T must be sufficiently smaller than the coherence time of
the driving fields so the amplitude � remains constant.

Being the dynamics stochastic, the desired EPR state is
reached asymptotically. For this purpose, we estimate the time
needed for reaching a given fidelity in the preparation of the
desired state. We first focus on the weak-coupling limit. Using
Eq. (9) we find that the fidelity of the protocol has the form

FWC(Ttot) =
∏

j=1,2

1

1 + 〈b†j b̂j 〉0e−γ T
, (33)

where we have assumed that each step is performed on the
time interval T , such that the total duration of the protocol
Ttot = 2T . Clearly, the initial state affects the time scale
required for reaching the desired fidelity. In particular, when
the cavity modes are initially in the vacuum state one has
〈b̂†j b̂j 〉0 = µ2

1−µ2 =: n̄0. When they are in a thermal state with

nth thermal photons in each mode, instead, thus 〈b̂†j b̂j 〉0 =
nth

0 = n̄0 + nth + 2nthn̄0. Figure 4 displays the estimated total
experimental times and corresponding average number of
photons per mode at steady state as a function of µ, where n̄0 =
µ2/(1 − µ2) when the cavity modes are in the vacuum state
at t = 0. For the degree of squeezing rµ ≈ 2.1 (µ = 0.97),
leading to an average number of 16 photons per mode at steady
state, and n̄∞ = 0.01, corresponding to a fidelity F ≈ 0.98,
then one has Ttot ∼ 36 ms in case of an initially empty cavity
(Ttot ∼ 43 ms for 0.7 thermal photons). Resonators stable
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FIG. 4. (Color online) (i) Solid line: total experimetal time Ttot =
2T (in seconds) and (ii) dashed line: average photon number per
mode at the end of the protocol as a function of µ [which is controlled
by the intensity of the classical field and the detuning according to
Eq. (29) and (24)]. The parameters we used are effective coupling
g = 125 kHz, interaction time τ̄ = 12.5 µs, atomic arrival rate 11200
atoms/s.

over this time are available in present experiments [28]. From
these results we also see that fluctuations in the coupling with
the driving field, δ�, are negligible with current microwave
sources.

We now consider the implementation of the protocol in the
strong-coupling limit. In this case the fidelity for preparing the
cavity modes in the two-mode squeezed state takes the form

FSC(Ttot) = (
1 − µ2e−ratT (1−µ2)/2

)2
, (34)

where we have used Eq. (15), assuming a broad distribution of
atomic velocity and an initially empty cavity.

In order to compare the efficiency of the two procedures, we
now evaluate the time required to reach a desired fidelity in the
weak and in the strong-coupling limit. We first observe that
the system accesses the strong-coupling regime by increasing
the Rabi angle φ. In the case here considered, φ can be changed
by changing the interaction time while keeping g and thus
�b fixed. Note that increasing the interaction time implies
that the atomic arrival rate rat needs to be adjusted to avoid
simultaneous presence of more than one atom in the cavity. Let
us therefore take the average number of atoms in the interval
of time τ so that ε = ratτ̄ � 1. In the weak-coupling limit the
fidelity in Eq. (33), shows that it is favorable to increase τ̄ even
at the expense of a slower rate rat [see Eq. (31)]. In the strong-
coupling limit, from Eq. (34) we find that increasing τ̄ further
gives slower convergence to the desired fidelity, hence slower
protocols. Figure 5 displays the time required for reaching
a desired fidelity F = 0.99 as a function of τ̄ . One finds an
optimal τ̄ , for which the protocol is fastest, in between the two
regimes.

IV. ENTANGLING TWO DISTANT CAVITIES
WITH AN ATOMIC RESERVOIR

Thus far we have considered two modes of the same
microwave cavity. However, as EPR entangled radiation
is a possible resource for quantum communication with
continuous variables, e.g., for quantum teleportation [48], it
would be desirable to create two entangled modes belonging
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FIG. 5. (Color online) Logarithmic plot of time T required in each
step to reach the EPR state as a function of average interaction time
τ̄ (in units of �−1

b ). The EPR state here chosen is characterized by
µ = .95 (n̄0 = 9.3), and we require that the corresponding fidelity at
Ttot = 2T isF = 0.99. The blue lines represent analytical expressions
for fidelities FWC, Eq. (9), and FSC, Eq. (15). The red line has been
obtained from numerical solution of Eq. (10), where coefficients
Bn were calculated taking σ = 0.05φ0 in the Gaussian distribution
function of Rabi angles φ0 = τ̄�b. The most efficient regime, in
terms of fastest protocols for a given fidelity, lies between weak and
strong coupling. The plot shows slower convergence at Rabi angles
corresponding to φ0 = π/

√
j (j positive integer) due to trapping

states.

to two different, spatially separated cavities. In this section we
extend the concepts discussed in Sec. III and present a scheme
for entangling the modes of two spatially separated resonators
using an atomic beam.

We assume two open resonators, which are crossed by a
beam of atoms propagating along the z axis and whose relevant
modes are at frequency ω1 and ω2, with annihilation and cre-
ation operators a1, a

†
1 and a2, a

†
2, respectively. The resonators

spatial mode functions along the z axis are Gaussians centered
at z1 and z2, respectively, such that the distance |z1 − z2| = D

is much larger than the modes waist w, namely D � w, and
the fields mode functions have no spatial overlap. The atomic
transition is quasiresonant with a mode at frequency ω1 in the
first resonator and at frequency ω2 with the second resonator.
In addition, the atoms are driven by a maser which propagates
almost parallel to the z axis and which has wave vector k,
frequency ωL, and intensity � (we neglect any spatial gradient
and assume that the maser intensity is uniform along z).

The Hamiltonian describing the coherent interaction of one
individual atom of the beam with both cavities reads

Ĥ (t) = h̄ω0σ̂
†σ̂ + h̄�(e−i[ωLt−kz(t)]σ̂ † + ei[ωLt−kz(t)]σ̂ )

+
∑

λ

[h̄ωλâ
†
λâλ + h̄gλfλ(z(t))(âλσ̂

† + â
†
λσ̂ )], (35)

where gλ is the strength of the coupling between cavity mode
and dipolar transition, while the spatial mode function takes
the form

fλ(z) = exp[−(z − zλ)2/2w2]/
√

2πw2,

with w the mode waist. The atomic center of mass is
located at the time-changing position z(t) = z(0) + vt , where
v is the velocity of the atom. The assumption of classical

center-of-mass motion is justified by the parameters of the
typical experimental situation, where the atoms exit an oven
and the velocity selection brings to distributions still within
the classical regime. In addition, the assumption of uniform
motion is not necessary but convenient for the theoretical
treatment. Indeed, as we will show, the atomic velocity can
change without affecting the efficiency of the protocol.

For the following treatment we assume that the mode waist
is much smaller than the wavelength, as it is often the case, so
the maser field has a well-defined phase over the interaction
region. In particular, we denote by ψ1 = kz1 and ψ2 = kz2 the
phases at each resonator. The atom is continuously driven
by the maser field, and the phase of the dressed states is
here assumed to follow adiabatically the phase of the field
as the atom moves. For simplicity, in what follows we assume
the phases ψ1 = ψ2 = 0. Within these approximations, we
write the effective dynamics of the individual atom interacting
sequentially with the cavity modes in terms of semiclassical
dressed states of the maser field, given in Eqs. (23). Setting the
detuning between maser and cavity modes ωL − ω1 = d and
ωL − ω2 = −d, with d the frequency splitting between the
dressed states given in Eq. (22), we obtain the corresponding
effective Hamiltonian, which reads Ĥeff,j = Ĥ0 + Ĥj with

Ĥ0 = h̄d

[
π̂z

2
− â

†
1â1 + â

†
2â2

]
, (36a)

Ĥ1 = −h̄g1(sin2 θ )f1(z)(â†
1π̂

+ + â1π̂
−), (36b)

Ĥ2 = h̄g2(cos2 θ )f2(z)(â†
2π̂

− + â2π̂
+), (36c)

where the angle θ is given in Eq. (24). The space dependence
of the cavity spatial mode functions can be substituted by the
mean value of the function over the interaction region, which
is constant over an interval of time, such that the total pulse
area is preserved [16].

Hamiltonian Eq. (36) has the same form as Eq. (27) in
Sec. III, with the only difference that the atom interacts with
each mode in well-separated time intervals, due to the distant
location of the cavities. We will now show that the combined
state of the two distant cavity modes can be pulled into a
two-mode squeezed state as a result of the interaction with an
atomic beam, of which the number of atoms and the individual
interaction times are known only statistically.

The line of reasoning extends the protocol presented in
Sec. III. In this case, however, one must consider that the
interaction of the atom with each mode is sequential. For this
purpose we introduce the evolution operator Ûj (τ ) for the
dynamics of the atom interacting with the resonator j over the
interval of time τ [here taken in interaction picture with respect
to Hamiltonian Ĥ0 in Eq. (36a)] and we evaluate the total
density matrix ρ̂→

t of atom and resonator after the atom has
interacted with both cavities in interaction picture, assuming
that the atom interacts sequentially first with mode 1 and then
with mode 2. Denoting by �t the interval of time in which this
occurs, the density matrix after the interaction reads

ρ̂→(t + �t) = Û2(τ )Û1(τ )ρ̂(t)Û †
1 (τ )Û †

2 (τ ). (37)

In order to obtain the two-mode squeezing correlations, we
need also processes in which the temporal sequence of photon
absorption and emission is reversed, namely processes of the
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cavity 1
ω1

ω1
ω2

cavity 2
ω2

FIG. 6. (Color online) (Top) Sketch of the setup for entangling
the modes of two distant resonators. Two atomic beams propagate in
both directions and cross the resonators, interacting sequentially with
each of them. Here one of the two required steps of the procedure
is shown, where the atoms are prepared in the state |+〉. (Bottom)
Energy levels which are coupled inside each resonator. The “ball”
represents the atomic occupation. An atom traveling from right to
left first emits a photon ω2 into the second resonator and then emits
a photon ω1 into the first one, only if it has previously emitted into
resonator 2, otherwise it may absorb a photon ω1. An atoms traveling
from left to right absorbs or emits photons in the reversed sequence.

sort

ρ̂←(t + �t) = Û1(τ )Û2(τ )ρ̂(t)Û †
2 (τ )Û †

1 (τ ), (38)

and which require the presence of a second current of atoms
propagating in the opposite direction, such that each atom
first interacts with resonator 2 and then with resonator 1; see
Fig. 6. After imposing this condition, one derives an effective
dissipative dynamics for the Bogoliubov modes b̂1 and b̂2,
defined as in Eq. (18), and which is valid over a time step
�t such that there is at most one atom inside the resonator
at a time. Provided that the atoms are initially prepared in
the state |+〉 (|−〉) and the detuning is such that � = �0

(� = −�0), the master equation for the field density matrix
in the coarse-grained time scale is

∂ ρ̂t

∂ t
= rat�ρ̂→(t) + rat�ρ̂←(t)

= −γ [b̂†j b̂j ρ̂ − 2b̂j ρ̂b̂
†
j + ρ̂b̂

†
j b̂j ], (39)

where �ρ̂→
t = ρ̂→(t + �t) − ρ̂(t) (same for ←), and rat is

the atom pump rate, which is assumed to be the same in
both directions. Hence, mode b̂1 (b̂2) is exponentially damped
according to an equation of the form given in Eq. (30).
Preparation of the two resonators in a two-mode squeezed
state then is achieved, provided that both dynamics take place,
by changing detuning and state preparation after the first step
has been implemented after a sufficiently long time.

As in the protocol for entangling two modes of the same
resonator, this scheme does not require detection of final
atomic states, nor control of the atomic velocities. Moreover,
the velocity of the atoms can change during propagation,
without affecting the efficiency of the protocol. This result
has been derived considering Hamiltonian dynamics between
cavity and individual atoms.

Let us now discuss the limitations to this proposal. First,
only one atom at a time must be present inside the cavities.

Moreover, the atoms must not decay before they have inter-
acted with both resonators. Atomic lifetime of the order of
tens of milliseconds and atomic velocities of about 400 m/s
require that the distance between the cavities is no larger than
a few meters. Moreover, the resonators must be stable over the
whole run of the experiment.

Experimental implementation of this proposal is quite
challenging, since one must have a geometry with two
counterpropagating atomic beams, thereby avoiding collisions
between the atoms. As an alternative, one could think of a ring,
as realized for instance in ion-storage setups [49] in which the
atomic beam is confined and which crosses two resonators
placed at two different points of the ring. Another possibility
is to implement an atomic fountain, where atoms traveling
upward and downward interact with two vertically arranged
cavities above the fountain [50], or a optical conveyor belt [51],
where the atoms are transported back and forth between the
resonators. These mechanisms have been employed so far
in the optical regime, where the lifetime of the resonator
modes is limited to tens of microseconds, in which case the
implementation of this protocol is not straightforward.

V. CONCLUSIONS AND OUTLOOK

In this article we have extensively characterized the prop-
erties of an atomic beam as a reservoir for the modes of
the electromagnetic field inside a resonator, for the purpose
of creating entangled states of the cavity modes. The atoms
can mediate the interaction between the modes of the same
resonator or of distant cavities, establishing a dynamics whose
steady state is an Einstein-Poldosky-Rosen entangled state. As
opposed to previous proposals, see for instance Refs. [36,37],
the atoms do not need to be initially correlated nor their number
has to be controlled. Control on atomic velocity (interaction
time) and atomic detection are not required. The degree of
entanglement is controlled by an external maser field, which
drives the atoms and tailors their interaction with the cavity
modes. In this respect, the proposals discussed in this article
are instances of quantum reservoir engineering. Statistical
properties of the cavity field can be evaluated by measuring the
internal states of the emerging atoms [52]. Its state can also
be determined by reconstructing the corresponding Wigner
function by suitably generalizing the schemes proposed in
Ref. [53].

The experimental setup, where these protocols could
be implemented, is typical of microwave cavity quantum
electrodynamics. Our proposal extends to cavity QED the
technique of quantum reservoir engineering, originally applied
to trapped ions. It offers a convenient way of implementing
quantum-mechanical dynamics and state preparation. Besides
constituting a robust procedure for generating nonclassical
states of the electromagnetic field in cavities in a steady-state
regime, it might be useful for quantum networking with
continuous variables in the microwave regime.
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