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Quantum correlations as precursors of entanglement
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We show that for two initially excited qubits, interacting via dipole forces and with a common reservoir,
entanglement is preceded by the emergence of quantum and classical correlations. After a time lag, entanglement
finally starts building up, giving rise to a peculiar entangled state, with very small classical correlations. Different
measures of quantum correlations are discussed, and their dynamics are compared and shown to lead to coincident
values of these quantifiers for several ranges of time.
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I. INTRODUCTION

The characterization of entanglement and the elucidation of
its role in quantum computation remain formidable challenges,
in spite of the conspicuous presence of this concept in
quantum physics, since the fundamental and instigating papers
published by Einstein, Podolski, and Rosen [1], as well as
Schrödinger, in 1935 [2]. Motivation for the understanding of
this subtle concept is stimulated not only by its fundamental
character, but also by its applications in quantum information
[3] and, very specially, by the perspective that entanglement
could be the key ingredient in the increased efficiency of
quantum computing compared to classical computation for
certain quantum algorithms [3–5].

In an entangled state, classical and quantum correlations
may coexist. Indeed, for instance, in the singlet state |�−〉 =
(|10〉 − |01〉)/√2, there is a perfect classical correlation
between the first and the second qubit, namely, if the first
is in state |1〉, the second is in state |0〉, and vice versa. Several
measures of entanglement have been proposed, such as the
concurrence [6] and the negativity [7]. Also, different criteria
for the existence of classical correlations have been proposed
[8,9]. In Ref. [9], the existence of genuine classical correlations
was associated with the nonvanishing of n-party correlation
functions involving local observables of the system. Based on
this definition, it was shown that it is possible to have multi-
party entangled states with no genuine classical correlations,
as long as the number of parties is larger than two [9].

More recently, it has become clear that entanglement
does not exhaust the realm of quantum correlations. Indeed,
separable states can exhibit quantum correlations, which seem
to play a role in the explanation of the power of some schemes
of quantum computation [10–12]. Several quantifiers have
been proposed for these quantum correlations, starting with the
work by Ollivier and Zurek [13], who introduced the quantum
discord. Intuitively, this measure quantifies, in a bipartite
system, the minimum change in the state of the system and on
the information of one of its parts induced by a measurement
on the other part. For a state with zero quantum discord, it is
possible to measure any of its parts without changing the state
of the system. An example would be the state,

ρ1 = 1
2 (|0〉〈0| ⊗ |+〉〈+| + |1〉〈1| ⊗ |−〉〈−|), (1)
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for which there exist one-dimensional complete projective
measurements on both the first and second subsystems—
namely, measurements on the basis {|0〉,|1〉} for the first qubit
and {|+〉,|−〉} for the second qubit—that do not perturb the
overall quantum state, nor the state of each part. The quantum
discord of this state is zero: The state has only classical
correlations.

On the other hand, for the state,

ρ2 = 1
2 (|0〉〈0| ⊗ |+〉〈+| + |1〉〈1| ⊗ |0〉〈0|), (2)

it is clear that any projective measurement performed on the
second qubit disturbs the state of the first qubit. In this case,
quantum discord is different from zero. The same is true for
the maximally entangled singlet state, which is transformed
into a statistical mixture upon measurement of any of the two
qubits.

An interesting implication of this concept is the demonstra-
tion that vanishing quantum discord is necessary and sufficient
for completely positive maps [14], that is, it is not necessary
to assume, in the usual master equation description, that the
initial state of system + environment is a product state. It could
be a more general separable state, as long as the quantum
discord vanishes. Quantum discord has been calculated for
several families of quantum states and compared with the
entanglement [15]. Modified versions have been proposed,
with different physical meanings [16].

Other measures of quantum correlations, involving
nonorthogonal measurements [positive operator-valued mea-
surements (POVMs)] and measurements on both qubits, have
been introduced in the literature [17–19], and have been stud-
ied and compared with quantum discord in different situations:
the DQC1 model of mixed-state quantum computation [20],
and within the context of accelerated frames [21]. We present
in Sec. II these other quantifiers, as well as a precise definition
of quantum discord. The existence of quantum correlations in
the absence of entanglement is another subtle trait of quantum
mechanics, still to be fully understood.

In this paper, we show that when two qubits interact
with each other through a common environment and also
through dipole forces, there is a peculiar dynamical behav-
ior intertwining quantum correlations, classical correlations,
and entanglement. For two qubits initially excited, quantum
correlations show up as precursors of entanglement, growing
up and then shrinking as entanglement belatedly appears. At
this moment, classical correlations, even though nonvanishing,
become practically negligible. The dynamics of quantum
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correlations is studied in terms of two distinct quantifiers, the
above-mentioned quantum discord and the measured-induced
disturbance (MID), introduced by Luo [18]. In particular, we
show that the MID coincides with the quantum discord for part
of the evolution.

The dynamics of multiparty entangled systems interacting
with independent environments that act on each of its parts
is quite different from the time-dependent behavior of each
individual component of the system. Quite generally, the
decay of entanglement is nonexponential, and it may lead to
separability at finite times, before each part reaches its final
state [22–33]. The finite-time disappearance of entanglement,
sometimes called sudden death of entanglement [28,33] was
experimentally demonstrated by Almeida et al. [32]. The
dynamics of quantum correlations other than entanglement
has also been analyzed, both theoretically [34,35] and experi-
mentally [36].

As the two qubits get closer, at a distance comparable to
the radiated wavelength, a different physical situation arises.
The model of individual and independent environments does
not correspond anymore to the physical reality: One must
consider that the qubits interact with the same environment,
and furthermore the interaction between the qubits, which
depends on their physical characterization, must also be
taken into account. This has important consequences for the
dynamical behavior of the system. A common environment
may entangle initially separable systems, even in the absence
of direct interaction [37–47]. This can easily be understood
from the fact that the product state |0〉| ⊗ |1〉 may be expressed
as a sum of a singlet and a triplet component,

|01〉 = 1
2 [(|01〉 − |10〉) + (|01〉 + |10〉)], (3)

and, since the singlet component does not decay under a
common environment, a residual entanglement remains at
asymptotic times [48].

This is not valid anymore for two initially excited atoms,
since then the singlet component does not appear. In this case,
one can show that the system remains separable throughout its
evolution [48]. The situation changes dramatically, however,
when dipole interactions between the two initially excited
atoms are taken into account. In this case, it was shown that
entanglement does emerge, but only after a time lag [46,49].

Here we study the dynamic evolution of classical and
quantum correlations corresponding to this peculiar behavior
of entanglement. As mentioned before, three main results
emerge from our work: (i) The belated appearance of en-
tanglement is preceded by the buildup of strong classical
and quantum correlations, which so to speak prepare the
scenario for the emergence of entanglement; (ii) the interaction
between the two initially excited qubits, indirectly through the
environment and directly through dipole forces, leads to an
entangled state that has extremely small classical correlations;
and (iii) although stemming from very different definitions,
different quantifiers of quantum correlations coincide within
some ranges of time as the system evolves: This is the case for
the MID and the quantum discord.

This paper is organized as follows. In Sec. II, we review the
main quantifiers of quantum and classical correlations, with
special attention to quantum discord and the MID introduced

by Luo [18]. In Sec. III, we present the master equation
that describes the interaction of two qubits with a common
environment and the main results concerning the dynamical
behavior of several quantities that have been introduced to
characterize entanglement and quantum correlations: concur-
rence, quantum mutual information, quantum discord, and
MID. We also consider in the same section the evolution of
the classical correlations. The conclusions are presented in
Sec. IV, while the Appendix contains detailed demonstrations
of some of the assertions made in the paper.

II. QUANTUM AND CLASSICAL CORRELATIONS

A. Quantum discord

The total classical correlations between two random vari-
ables X,Y are given by the classical mutual information:

I (X:Y ) = H (X) + H (Y ) − H (X,Y ), (4)

where H (X) = −∑
x p(X=x) log p(X=x) is the Shannon en-

tropy, with the probability distributions calculated from
the joint one pX,Y :pX = ∑

y pX,Y=y , pY = ∑
x pX=x,Y , and

H (X:Y ) = −∑
x,y px,y log px,y is the joint entropy with px,y

the probability of both outcomes x and y happening.
Using the Bayes rule pX|Y=y = pX,Y=y/pY=y where pX|Y=y

is the conditional probability that the event X occurs once
the event Y = y has already occurred, the classical mutual
information can be expressed equivalently as

J (X:Y ) = H (X) − H (X|Y ), (5)

where H (X|Y ) = ∑
y pY=yH (X|Y = y) is the conditional en-

tropy of X given Y , with H (X|Y = y) = −∑
x px|y log px|y.

In this form, it becomes clear that the classical mutual
information describes the difference in the ignorance about
the subsystem X before and after performing a measurement
on subsystem Y .

Ollivier and Zurek generalized these two equivalent expres-
sions of the classical mutual information to quantum systems.
Equation (4) is easily generalized by replacing the probability
distributions with density matrices and the Shannon entropy
with the Von Neumann entropy S(ρ) = −Tr (ρ log2 ρ), thus
obtaining:

I (ρA,B) = S(ρA) + S(ρB ) − S(ρA,B). (6)

It is not straightforward to generalize Eq. (5), since the
definition of the conditional entropy S(ρA|ρB) involves spec-
ifying the state of the subsystem A, knowing the state of
the subsystem B. In quantum theory, this implies that a
measurement must be applied to subsystem B. The gener-
alization proposed by Ollivier and Zurek is done by assuming
a complete unidimensional projective measurement made
on system B, corresponding to the projectors {�B

j }, such
that

∑
j �B

j = 1. The state of A after this measurement
is implemented is ρA|�B

j
= �B

j ρA,B�B
j /Tr (�B

j ρA,B), with
probability pj = Tr (�B

j ρA,B). Then, the conditional entropy
is defined as S(ρA|{�B

j }) = ∑
j pjS(ρA|�B

j
), and the quantum

equation corresponding to Eq. (5) can be expressed as

J (ρA,B){�B
j } = S(ρA) − S

(
ρA|{�B

j

})
. (7)
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The quantum discord is the minimum of the difference between
Eqs. (6) and (7): D(ρA,B) = min{�B

j }[I (ρA,B) − J (ρA,B){�B
j }].

The quantity J (ρA,B){�B
j } is the information gained about

system A when measurements are performed on system
B. Through the process of minimization over all possible
measurements on system B, we search the measurement that
disturbs least the total quantum system and allows to obtain
as much information as possible from system A. Ollivier and
Zurek demonstrated that

D(ρA,B){�B
j } = 0 ⇔ ρA,B =

∑
j

�B
j ρA,B�B

j , (8)

that is, a zero quantum discord implies that the complete
quantum system is not disturbed by the measurement. Fur-
thermore, the information about system A is not perturbed by
the measurement of system B. However, a nonzero quantum
discord implies that the measurement disturbs the state, and
part of the information about system A that exists in the
correlations between subsystems A and B is lost. Equation (8)
shows that the concept of quantum discord admits a simple
physical explanation. However, this measure has an annoying
feature: It is asymmetric under exchange of systems A and B,
which should not be expected from a quantifier of quantum
correlations. This is made very clear by going back to the
example given by Eq. (2). For any complete one-dimensional
projective measurement performed on the second qubit, the
quantum state of the first one is disturbed, and therefore,
information about it is lost. The quantum discord for this case
is different from zero. But if we perform the measurements
on the first qubit, the quantum state is not perturbed, and
all the information on the second qubit, initially present in
the state, is recovered. In this case, the quantum discord
would be zero. This example also highlights the difference
between separability and classicality, and clearly associates
the existence of quantum correlations in a separable state with
the presence of nonorthogonal states in one of the subsystems,
as already mentioned in Ref. [11]. As shown in Ref. [13], the
quantum discord is always greater than or equal to zero, and
is zero if and only if the state has only classical correlations.

B. MID

Given any bipartite state ρ, one may associate with it, by
means of local measurements, another state, interpreted as
the classical part of the former. The quantum correlations
present in state ρ are then determined by quantifying the
difference between these two states. Consider any complete
set of one-dimensional orthogonal projections �a

i , �b
j acting

on each party a and b. The state after the measurement is:
�(ρ) = ∑

i,j (�a
i ⊗ �b

j )ρ(�a
i ⊗ �b

j ). If for some measure-
ment �(ρ) = ρ, then the state is called a classical state,
otherwise the state is truly quantum. Luo demonstrated in
Ref. [18] that, if ρ is classical, {�a

i }, {�b
j }, and {�a

i ⊗ �b
j }

are the eigenprojectors of ρa = Trb ρ,ρb = Tra ρ, and ρ,
respectively. This implies that the definition of classical states
is unambiguous, since there is a unique measurement that leads
to �(ρ) = ρ.

When a complete set of projective measurements {�i} is
performed on a system with a state described by the density
matrix ρ, the entropy of the final state �(ρ) = ∑

i �iρ�i is

greater than or equal to the entropy of the initial state S(ρ) �
S[�(ρ)], and equality is attained only when the projective
measurements are the eigenprojectors of the matrix ρ. In order
to quantify the quantum correlations in a quantum state ρ, Luo
[18] chose the measurement � induced by the eigenprojectors
of the reduced subsystems. With that choice, the reduced states
remain invariant, and then the corresponding entropies: The
information on each subsystem is not changed and, in that
sense, this measurement is the least disturbing.

The corresponding measure of quantum correlations,
named MID, is defined as DMI(ρ) = I (ρ) − I [�(ρ)], where
I is the quantum mutual information and � = �a

i ⊗ �b
j , with

�a
i and �b

j the eigenprojectors of the reduced subsystems
ρa = Tr b(ρ) and ρb = Tr a(ρ), respectively. In particular,
when ρ is a pure bipartite state,DMI(ρ) = D(ρ) = S(ρa): This
measure coincides with the quantum discord, and is equal
to the entropy of the reduced system, which is a measure
of entanglement. The MID presents a great advantage with
respect to the quantum discord: It is easily calculable, since
it does not involve any minimization, one has only to find
the eigenvectors of the density matrices corresponding to the
subsystems. However, it is not applicable in all cases as Wu
et al. [19] have remarked: When the local density matrices
have degenerate eigenvalues, the MID is not uniquely defined.

C. Classical correlations

A quantifier for classical correlations was proposed by
Henderson and Vedral [17]. The classical mutual information
given by Eq. (5) was generalized to quantum mechanics
by replacing the Shannon entropy with the Von Neumann
entropy and the classical probability distributions with density
matrices. The corresponding quantifier is given by

CA(ρAB) = max
Ai

[
S(ρB ) −

∑
i

piS
(
ρi

B

)]
, (9)

where ρi
B = Tra (AiρABA

†
i )/Tr (AiρABA

†
i ) is the state of sub-

system B after performing the POVM Ai on A.
Hamieh et al. showed in Ref. [50] that, for the case of

two qubits, the POVM that maximizes Eq. (9) is a complete
set of unidimensional orthogonal projectors. With this result,
it is easy to see that I (ρAB) = D(ρAB) + C(ρAB), thus the
total correlations of the system, quantified by the quantum
mutual information (6), are separated in quantum correlations
(measured by the quantum discord) and classical correlations.
One should note that this definition also presents the problem
of asymmetry: The quantification of classical correlations
depends on which subsystem is measured.

Wu et al. [19] proposed an alternative definition for a
quantifier of quantum correlations, which is symmetric and,
as opposed to MID, unique even when the states of the
subsystems have degenerate eigenvalues. They proposed to
quantify the classical correlations between two systems A and
B by performing a POVM locally on each subsystem. With
the detection records, they calculate then the classical mutual
information for the chosen POVM.

They define Icmax (ρAB) as the maximal classical mutual
information available over all choices of possible POVMs.
In order to quantify the quantum correlations in a bipartite
state, they define Q(ρAB) = I (ρAB) − Icmax (ρAB). When ρAB
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is a pure state, Q(ρAB) = S(ρA) = D(ρAB) = DMI(ρAB), and
in the case of a general mixed state, DMI(ρAB) � Q(ρAB) �
D(ρAB).

In this paper, we refrain from studying the dynamical
behavior of the quantity Q because it requires an optimization
over all possible measurements, and an analytical expression
for it is still unknown.

D. Entanglement

For the quantification of entanglement, we use the concur-
rence [51], defined as

C = max{0,�}, (10)

where

� =
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4, (11)

λi being the eigenvalues in decreasing order of the matrix

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), (12)

where ρ is the two-qubit density matrix, σy is the second Pauli
matrix, and the conjugation is performed in the computational
basis. Concurrence ranges from 0, which corresponds to a
separable state, to 1, which corresponds to a maximally
entangled state.

III. DYNAMICS OF CORRELATIONS
AND ENTANGLEMENT

A. Theoretical model

We consider a system of two identical qubits interacting
with all modes of the electromagnetic field, assumed in
the vacuum state. The state of each qubit is represented
in the basis {|e〉,|g〉} (e = excited, g = ground state). The
two qubits interact via dipole forces, associated with the
dipole transition moments µ. The total Hamiltonian of
the atoms plus the electromagnetic field, in the electric dipole
approximation, is

Ĥ =
2∑
i

h̄ωiS
z
i +

∑
�k

h̄ωkâ
†
�ks

â�ks

− ih̄
∑
�ks

2∑
i=1

[ �µ · �g�ks(�ri)(S
+
i + S−

i )â�ks − H.c.],

where S+
i = |ei〉〈gi | and S−

i = |gi〉〈ei | are the ladder oper-
ators, Sz

i = |ei〉〈ei | − |gi〉〈gi | is the energy operator of the
ith qubit, ωi are the transition frequencies (in what follows,
we will consider all frequencies equal ωi = ω0), â�ks and
â
†
�ks

are the annihilation and creation operators corresponding

to the field mode �ks, with wave vector �k, frequency ωk ,
and index of polarization s. �g�ks(�ri) = ( ωk

2ε0h̄V
)1/2ē�kse

i�k·�ri is the
coupling constant, �ri is the position of the ith qubit, V is
the normalization volume, and ē�ks is the unit polarization
vector of the field. When the length of the system is small
compared to the radiated wavelength (ω0/c), we may neglect

the spatial variation of �g�ks(�ri), so that, in the rotating-wave
approximation, the Hamiltonian reduces to [52]

Ĥ = h̄ω0S
z +

∑
�ks

ωka
†
�ks

a�ks − ih̄
∑
�ks

( �µ · �g�ksS
+â�ks − H.c.),

where S± and Sz are collective spin operators defined by S± =∑
i S

±
i and Sz = ∑

i S
z
i .

This Hamiltonian describes the Dicke model. The other
limit, when the length of the system is much greater than
the resonant wavelength, is easily obtained from the master
equation approach that we consider in the following.

The dynamical evolution of the qubit system is given by the
following master equation [46]:

∂ρ(τ )

∂t
= −iω0

2∑
i=1

[
Sz

i ,ρ
] − i�12

2∑
i �=j

[S+
i S−

j ,ρ]

− 1

2

2∑
i,j=1

�ij (ρS+
i S−

j + S+
i S−

j ρ − 2S−
j ρS+

i ), (13)

where �ii ≡ � are the spontaneous emission rates of the
qubits, assumed to be identical, and �12 = �21 and �12 are,
respectively, the collective damping and the dipole-dipole
interaction defined by

�12 = 3

2
�

{
[1 − (µ̂ · r̂12)2]

sin(k0r12)

k0r12

+ [1 − 3(µ̂ · r̂12)2]

[
cos(k0rij )

(k0r12)2
− sin(k0r12)

(k0r12)3

]}
, (14)

and

�12 = 3

4
�

{
− [1 − (µ̂ · r̂12)2]

cos(k0r12)

k0r12

+ [1 − 3(µ̂ · r̂12)2]

[
sin(k0r12)

(k0r12)2
+ cos(k0r12)

(k0r12)3

]}
, (15)

where k0 = ω0/c, r12 = |r1 − r2| is the distance between the
qubits, and µ as before is the dipole transition moment. It
follows from Eq. (14) that γ ≡ �12/� � 1.

When the distance between the qubits is much greater than
the resonant wavelength, it is easy to see that �ij → 0 and
�ij → 0, i �= j so that the master equation becomes

∂ρ(t)

∂t
= −iω0

2∑
i=1

[
Sz

i ,ρ
]

− 1

2
�

2∑
i

(ρS+
i S−

i + S+
i S−

i ρ − 2S−
i ρS+

i ),

which corresponds to the case of independent environments.

B. Results

In order to study the dynamical evolution of quantum and
classical correlations, the master equation (13) was solved
analytically; we refrain from showing the details of the solution
here, since our results coincide with those in Ref. [46]. From
the analytical solution, we calculated the relevant quantities
for our purposes: concurrence, quantum discord, MID, and
classical correlation, for several initial states.
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FIG. 1. (Color online) Evolution of quantum correlations: The
thick black line is the quantum mutual information, the thin blue line
is the quantum discord, the dashed yellow line is the MID, the green
dotted line is the classical correlation, and the red dotted-dashed line
is the concurrence. (r12 = λ/8, γ = 0.8806.)

The dynamical evolution of these quantities when both
qubits are initially excited, interacting with a common reser-
voir and with each other via dipole-dipole interaction, is
shown in Fig. 1.We see that initially all correlations, with
the exception of the concurrence that remains zero, rise to
a maximum value and then decrease. One should also note
that, for a finite period of time, the MID and the quantum
discord coincide. This can be understood by using the results
in Ref. [53]; for a subset of density matrices with structure X,

ρ =

⎛
⎜⎝

a 0 0 ω

0 b z 0
0 z b 0
ω 0 0 d

⎞
⎟⎠ ,

the quantum discord D(ρ) is given byD(ρ) = min{D1,D2},
where

D1 = S(ρA) − S(ρAB) − a log2

(
a

a + b

)
− b log2

(
b

a + b

)

− d log2

(
d

b + d

)
− b log2

(
b

b + d

)
, (16)

and

D2 = S(ρA) − S(ρAB) − 1
2 (1 + α) log2

[
1
2 (1 + α)

]
− 1

2 (1 − α) log2

[
1
2 (1 − α)

]
, (17)

with α2 = (a − d)2 + 4|z + ω|2.
The density matrix describing the dynamical evolution of

the two-qubit system here considered, when both qubits are
initially excited, has the same form as the one in Eq. (16).
Indeed, we get

ρ(τ ) =

⎡
⎢⎣

a(τ ) 0 0 0
0 b(τ ) c(τ ) 0
0 c(τ ) b(τ ) 0
0 0 0 1 − a(τ ) − 2b(τ )

⎤
⎥⎦ , (18)

where
a(τ ) = e−2τ ,

b(τ ) = [−e−2τ + e−(1−γ )τ ](1 − γ )

2(1 + γ )

+ [−e−2τ + e−(1+γ )τ ](1 + γ )

2(1 − γ )
,

c(τ ) = − [−e−2τ + e−(1−γ )τ ](1 − γ )

2(1 + γ )

+ [−e−2τ + e−(1+γ )τ ](1 + γ )

2(1 − γ )
, (19)

with

τ = �t, γ = �12/�. (20)

As a function of the renormalized time τ , these expressions
depend on a single parameter γ . It is easy to show from the
preceding equations that the analytic expression for the MID
coincides with the expression for D1 (see Appendix Sec. I),
so whenever D1 < D2, the MID coincides with the quantum
discord. This condition is fulfilled for a finite-time domain,
which depends on the parameter γ as shown in Fig. 4.

At a later time te, the system becomes entangled, and
the concurrence starts increasing. This feature was previously
found by Tanaś and Ficek in Ref. [46] and Ficek and Tanaś in
Ref. [49]. They showed that, for two qubits initially in their
excited states, under the conditions considered in this paper
(interacting with a common environment and through dipole
forces), and for small distance r12 between them (as compared
to the resonance wavelength), entanglement appears only after
some finite period of time. This feature is independent of the
values of the parameters, as shown in Appendix Sec. II. After
the time interval where MID and quantum discord match, the
numerical value of the quantum discord remains close to
the MID, but always a little lower. On the other hand, after
the emergence of entanglement, the difference between MID
and concurrence continuously decreases, going to zero when
both vanish at infinite times.

Classical correlations are smaller than quantum correlations
for most of the dynamic evolution of the state, a result that
was previously found in Ref. [54]. After they reach their
maximum value, they go to zero asymptotically. However,
for most of the time of the evolution, they have a very small
value, about 100 times smaller than the concurrence. This
behavior is quite general: We have demonstrated it for several
values of the parameter �12, as shown in Appendix Sec. III.
In Ref. [9], it was shown that only with three or more qubits
can one have states with genuine quantum correlations but no
classical correlations. Our example does not contradict that
general result, since for the two-qubit system considered here,
the classical correlations, as defined in Ref. [8], are indeed
different from zero, but it also shows that the same correlations,
even though not vanishing, may be much smaller than the
quantum correlations, even for a two-qubit system.

Ficek and Tanaś also showed in Ref. [49] that, for the Dicke
model (evolution of two two-level atoms in a common reser-
voir with no dipole-dipole interaction), two qubits initially
excited do not get entangled. A question naturally arises as to
whether that is the case for the other quantum correlations in
the Dicke model. This question is answered by taking the limit
r12 → 0 in the expressions for �12 and �12. In that case, �12 →
� so that γ → 1, and �12 → [3�/4(k0r12)3][1 − 3( �µ · �r12)2].
Although �12 diverges in this limit, Eq. (19) shows that
the evolution of the initial quantum state considered here is
independent of the dipole-dipole interaction. Therefore, in
this limit, we do recover, for the considered initial state, the
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FIG. 2. (Color online) Evolution of the quantum correlations
for the Dicke model: The thick black line is the quantum mutual
information, the thin blue line is the quantum discord, the dashed
yellow line is the MID, the green dotted line is the classical
correlation, and the red dotted-dashed line is the concurrence.

evolution predicted by the Dicke model. The density matrix
for this model is easily obtained from Eqs. (18) and (19) taking
the limit γ → 1,

ρ(τ ) =

⎡
⎢⎣

a(τ ) 0 0 0
0 b(τ ) b(τ ) 0
0 b(τ ) b(τ ) 0
0 0 0 1 − a(τ ) − 2b(τ )

⎤
⎥⎦ , (21)

where

a(τ ) = e−2τ ,
(22)

b(τ ) = e−2τ τ.

Figure 2 displays the evolution of all the above-mentioned
correlations, within the framework of the Dicke model,
when the two qubits are initially excited. In this case, the
initial behavior of classical and quantum correlations (except
entanglement) is the same as in the model that includes
dipole-dipole interaction: an initial period of growth to a
maximum and then a decay. However, one does not have,
as in the former situation, a revival of these correlations.

The lack of entanglement for an initially doubly excited
two-qubit state |ee〉 in the absence of dipole-dipole interaction
stems from the fact that the singlet state 1√

2
(|eg〉 − |ge〉)

does not show up in the evolution, as discussed by Tanaś
and Ficek [46]: This is a decoherence-free state in the Dicke
model, and its constant contribution leads to asymptotic en-
tanglement when the initial state is |eg〉, since this state can be
written as a sum of the antisymmetric singlet 1√

2
(|eg〉 − |ge〉)

and the symmetric state 1√
2
(|eg〉 + |ge〉). The dipole-dipole

interaction, on the other hand, leads to the emergence of the
singlet state for the initial state |ee〉, to the survival of quantum
correlations, and to the belated appearance of entanglement.
Indeed, the analytical expressions for the MID and quantum
discord show that, for τ � 1, the decay time of the symmetric
state, both MID and quantum discord decay as e−(1−γ )τ , which
is the decay law for the population of the singlet state. This
is shown in Fig. 3, which makes clear the essential role of
the singlet state in explaining the remarkable behavior of the
entanglement and the quantum correlations in the presence of
dipole-dipole interactions.
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FIG. 3. (Color online) Evolution of the quantum correlations
when the dipole-dipole interaction is included: The green solid line
is the quantum discord, the blue dashed line is the MID, the red
thick dashed-dotted line is the concurrence, the brown dotted line is
the population of the symmetric state, and the orange thick line is
the population of the antisymmetric state. The inset shows the zone
inside the ellipse. (r12 = λ/4, γ = 0.9460.)

When the distance between the qubits r12 becomes much
larger than the resonant wavelength, we recover the expected
behavior for two initially excited qubits evolving in inde-
pendent environments: The state remains separable, and no
correlations are created between the qubits.

IV. CONCLUSIONS

In this paper, we have studied the subtle dynamics of
quantum and classical correlations for two qubits, initially
in a pure product state, coupled through dipole forces and
interacting with all modes of the electromagnetic reservoir.
When the two qubits are initially excited, entanglement has
a peculiar behavior [46,49]: It remains zero for a finite-
time interval, and then it builds up. Our work is aimed at
clarifying what happens during the dormant time, that is,
what kind of dynamic changes prepare the system for the
late appearance of entanglement. With this aim, we have
analyzed the dynamic behavior of quantifiers of quantum
and classical correlations. We show that, for two excited
qubits, the reservoir creates initially classical correlations and
quantum correlations between the qubits, which remain in
a separable state. These correlations evolve from zero to a
maximum value, and then decay. This overall behavior does not
depend on the presence of dipole-dipole interactions. However,
this interaction is fundamental for keeping up the quantum
correlations and building up entanglement after a time lag. It
delays the decay of quantum correlations, thus allowing for
the buildup of entanglement.

Therefore, in the presence of dipole-dipole interactions,
quantum correlations can be considered as precursors of
entanglement. In the absence of these interactions, they build
up and decay to zero, the state remaining separable for all
times. The dipole-dipole interaction helps preserve quantum
correlations, and this seems to fire up entanglement in this case.
While entanglement is still zero, there is a time span for which
MID and quantum discord coincide. Even before entanglement
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appears, classical correlations become negligible, and remain
so throughout the evolution. Therefore, the very evolution of
the system generates a peculiar entangled state, with very small
classical correlations. Even though there is still considerable
controversy over the proper definition of quantum correlations
and their role in quantum computation, their dynamics under
the action of the environment seems to be, in the present
context, intimately related to the generation of entanglement.
Further studies in this direction might help to elucidate this
subtle dynamic connection between quantum correlations and
entanglement.
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APPENDIX

1. MID equals quantum discord

The density matrix corresponding to the initial state is
given by Eq. (18). To calculate the MID, we apply projective
measurements on the density matrix, corresponding to the
eigenvectors of the reduced density matrices. After these
measurements, which amount to keeping only the diagonal
elements in Eq. (18), the density matrix is

ρmeas(τ ) =

⎡
⎢⎣

a(τ ) 0 0 0
0 b(τ ) 0 0
0 0 b(τ ) 0
0 0 0 1 − a(τ ) − 2b(τ )

⎤
⎥⎦ .

Then,

DMI(ρ) = −S(ρ) + S(ρmeas) = −2b(τ ) log2[b(τ )]

+ [b(τ ) − c(τ )] log2[b(τ ) − c(τ )]

+ [b(τ ) + c(τ )] log2[b(τ ) + c(τ )], (A1)

is the expression that coincides with D1, Eq. (16), throughout
the evolution. According to Ref. [53], the quantum discord
is the minimum of {D1,D2}. Therefore, whenever D1 < D2,
the MID coincides with the quantum discord. The expressions
for D1 and D2 do not allow getting an analytical solution for
the interval of time where D1 < D2. Figure 4 exhibits the
results of numerical calculations made for several values of γ ,
displaying time intervals (reduced to a single point for small
γ ) where D1 < D2.

As mentioned earlier, in the calculation of the MID, there
is an ambiguity when the reduced matrices have degenerate
eigenvalues, or equivalently, are multiples of the identity ma-
trix. In this case, any two orthogonal vectors are eigenvectors
of the reduced matrices, so there are infinite ways to choose
the local projective measurements, which give rise to different
values of the MID. Here, the reduced density matrices are

ρa(τ ) = ρb(τ ) =
[

a(τ ) + b(τ ) 0
0 1 − a(τ ) − b(τ )

]
,

and the mathematical condition for the reduced matrices to
become proportional to the identity is

a(τ ) + b(τ ) = 1
2 , (A2)
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FIG. 4. (Color online) Evolution of the expressions D1 (blue solid
line) and D2 (red dashed line) for different values of the parameter γ .

with

a(τ ) + b(τ ) = e−2τ + e−τ

(1 − γ 2)
{[cosh(γ τ ) − e−τ ]

× (1 + γ 2) − γ sinh(γ τ )}.

This expression decreases monotonically from its initial
unitary value to zero, as τ → ∞—see Fig. 5. Therefore, there
can only be a single instant of time for which Eq. (A2) holds.
At this point, the MID is not uniquely defined and depends on
the eigenvectors chosen to make the measurements. However,
since, for all other times, the eigenvectors are uniquely defined
and coincide with the computational basis, it is natural to
choose the same basis for the degeneracy points, in which
case, the MID does not present discontinuities.

2. Concurrence

The concurrence C is expressed in terms of the square roots
of the eigenvalues of the matrix in Eq. (12):

{√a(τ )[1 − a(τ ) − 2b(τ )],
√

a(τ )[1 − a(τ ) − 2b(τ )],

|b(τ ) − c(τ )|,|b(τ ) + c(τ )|}. (A3)
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FIG. 5. (Color online) Plots of a(t) + b(t) for γ = 0.1 (blue
dashed line), 0.4 (red full line), 0.7 (green dashed-dotted line), and
0.9 (black dotted line).
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FIG. 6. (Color online) Evolu-
tion of concurrence (red dashed
line) and classical correlations
(green solid line) for several values
of the parameter γ .

First, we will show that b(τ ) > c(τ ). This is immediate since,
from Eq. (19),

b(τ ) − c(τ ) = e−τ

1 + γ
(1 − γ )(eγ τ − e−τ ).

We distinguish three different cases: (1)√
a(τ )[1 − a(τ ) − 2b(τ )] is the largest value in Eq. (A3),

in which case C = max{0,−2b(τ )}, (2) |b(τ ) + c(τ )| is
the largest value, in which case C = max(0,2{c(τ ) −√

a(τ )[1 − a(τ ) − 2b(τ )]}), and (3) |b(τ ) − c(τ )| is
the largest value, in which case C = max(0,−2{c(τ ) +√

a(τ )[1 − a(τ ) − 2b(τ )]}).
In the first case, it follows from the expression for b(τ ) in

Eq. (19) and from the inequality cosh(γ τ ) − e−τ > sinh(γ τ )
that b(τ ) > 0 for all τ . Therefore, the concurrence is zero in
this case.

In the second case, we must investigate the behavior of
c(τ ) − √

a(τ )[1 − a(τ ) − 2b(τ )]. First, we note that this case
is realized only in the interval where c(τ ) > 0 so that c(τ )2 <

b(τ )c(τ ). We show now that b(τ )c(τ ) � a(τ )[1 − a(τ ) −
2b(τ )], which implies that c(τ ) <

√
a(τ )[1 − a(τ ) − 2b(τ )].

This is equivalent to proving that f (τ ) ≡ a(τ ) + 2b(τ ) +
b(τ )c(τ )

a(τ ) � 1. Since f (0) = 1, the equality is verified at τ =
0. Furthermore, it is easy to show that f ′(τ ) < 0 for all
τ , independent of the value of the parameter. Therefore,
f (τ ) is a monotonically decreasing function of τ with
f (0) = 1, so f (τ ) � 1 for all τ , implying that c(τ ) <√

a(τ )[1 − a(τ ) − 2b(τ )]. Thus, we conclude that for this
second case, the concurrence is also zero.

In the third case, we must investigate the behavior of
g(τ ) ≡ c(τ ) + √

a(τ )[1 − a(τ ) − 2b(τ )]. Because the equa-
tion g(τ ) = 0 contains the time in a nonalgebraic expression,
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it is not possible to determine analytically the time when the
state becomes entangled; however, we can show, through some
simple mathematical arguments, that, whatever the value of the
parameter, this time always exists. This requires to show that
there is a time interval for which two conditions are satisfied:
(i) g(τ ) < 0; and (ii) |b(τ ) − c(τ )| is the largest value in
Eq. (A3).

Condition (i) is demonstrated by noting that

limτ→0 g(τ ) = limτ→0

√
τ

1+γ 2

1−γ 2 = 0+, and limτ→+∞ g(τ ) =
limτ→+∞ − (1−γ )

2(1+γ )e
−(1−γ )τ = 0−. Then, between zero and

infinity, there exists an instant of time τe for which g(τ ) = 0.
This implies the existence of a time interval from τe to infinity
where g(τ ) is negative, which would imply entanglement, as
long as condition (ii) is satisfied within at least part of this
time interval.

We show now that condition (ii) holds for suf-
ficiently large τ . This follows from limτ→+∞ c(τ ) =
limτ→+∞ − (1−γ )

2(1+γ )e
−(1−γ )τ = 0−, which implies that c(τ ) < 0

for sufficiently large times. Therefore, for times sufficiently
large, one has g(τ ) < 0 and |b(τ ) − c(τ )| > |b(τ ) + c(τ )|. It
remains to show that, for sufficiently large times, |b(τ ) −
c(τ )| >

√
a(τ )[1 − a(τ ) − 2b(τ )]. This is shown by noting

that there is a time τ ′
e such that, for all τ > τ ′

e, eγ τ − e−τ >
(1+γ )
(1−γ ) , which is immediate. Therefore, for sufficiently large
times, both previous conditions (i) and (ii) are fulfilled, and
the state becomes entangled.

3. Classical correlations

As mentioned earlier, classical correlations are much
smaller than the concurrence for most of the evolution.
Depending on the analytical expression of the quantum
discord (D1 or D2), we have two expressions for the classical
correlations, each valid in a different time interval,

CC1(τ ) = −2[a(τ ) + b(τ )] log2[a(τ ) + b(τ )]

− 2[1 − a(τ ) − b(τ )] log2[1 − a(τ ) − b(τ )]

+ [1 − a(τ ) − 2b(τ )] log2[1 − a(τ ) − 2b(τ )]

+ a(τ ) log2 a(τ ) + 2b(τ ) log2 b(τ ), (A4)

and
CC2(τ ) = −[a(τ ) + b(τ )] log2[a(τ ) + b(τ )]

+ a(τ ) log2 a(τ ) + [b(τ ) − c(τ )] log2[b(τ ) − c(τ )]

+ [b(τ ) + c(τ )] log2[b(τ ) + c(τ )]

+ [1 − a(τ ) − 2b(τ )] log2[1 − a(τ ) − 2b(τ )]

+ [a(τ ) + b(τ )] log2[1 − a(τ ) − b(τ )]

+ 1
2 (1 + α) log2

[
1
2 (1 + α)

]
+ 1

2 (1 − α) log2

[
1
2 (1 − α)

]
, (A5)

where a(τ ), b(τ ), and c(τ ) are given in Eq. (19) and
α = {2[a(τ ) + b(τ )] − 1}2 + 4|c(τ )|2. Figure 6 displays the
classical correlations and the concurrence for several values
of the parameter γ . Typically, classical correlations are of the
order of 1% of the concurrence.
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[7] K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein,

Phys. Rev. A 58, 883 (1998).
[8] L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2002).
[9] D. Kaszlikowski, A. Sen(De), U. Sen, V. Vedral, and A. Winter,

Phys. Rev. Lett. 101, 070502 (2008).
[10] E. Knill and R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998).
[11] A. Datta, A. Shaji, and C. M. Caves, Phys. Rev. Lett. 100, 050502

(2008).
[12] B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White,

Phys. Rev. Lett. 101, 200501 (2008).
[13] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).
[14] A. Shabani and D. A. Lidar, Phys. Rev. Lett. 102, 100402 (2009).
[15] M. Ali, A. R. P. Rau, and G. Alber, Phys. Rev. A 81, 042105

(2010).
[16] A. Brodutch and D. R. Terno, Phys. Rev. A 81, 062103 (2010).
[17] L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001).
[18] S. Luo, Phys. Rev. A 77, 022301 (2008).

[19] S. Wu, U. V. Poulsen, and K. Molmer, Phys. Rev. A 80, 032319
(2009).

[20] A. Datta and S. Gharibian, Phys. Rev. A 79, 042325 (2009).
[21] A. Datta, Phys. Rev. A 80, 052304 (2009).
[22] C. Simon and J. Kempe, Phys. Rev. A 65, 052327 (2002).
[23] P. J. Dood and J. J. Halliwell, Phys. Rev. A 69, 052105 (2004).
[24] T. Yu and J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004).
[25] A. R. R. Carvalho, F. Mintert, and A. Buchleitner, Phys. Rev.

Lett. 93, 230501 (2004).
[26] F. Mintert, A. R. R. Carvalho, M. Kuś, and A. Buchleitner, Phys.
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