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A general method for the study of the entanglement evolution of graph states under the action of Pauli maps
was recently proposed in Cavalcanti et al. [Phys. Rev. Lett. 103, 030502 (2009)]. This method is based on
lower and upper bounds to the entanglement of the entire state as a function only of the state of a (typically)
considerably smaller subsystem undergoing an effective noise process related to the original map. This provides
a huge decrease in the size of the matrices involved in the calculation of entanglement in these systems. In the
present paper we elaborate on this method in detail and generalize it to other natural situations not described
by Pauli maps. Specifically, for Pauli maps we introduce an explicit formula for the characterization of the
resulting effective noise. Beyond Pauli maps, we show that the same ideas can be applied to the case of thermal
reservoirs at arbitrary temperature. In the latter case, we discuss how to optimize the bounds as a function of the
noise strength. We illustrate our ideas with explicit exemplary results for several different graphs and particular
decoherence processes. The limitations of the method are also discussed.
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I. INTRODUCTION

Graph states [1] constitute an important family of genuine
multiparticle-entangled states with several applications in
quantum information. The most popular example of these are
arguably the cluster states, which have been identified as a
crucial resource for universal one-way measurement-based
quantum computation [2,3]. Other members of this family
were also proven to be potential resources for interesting
tasks, as code words for quantum error correction [4], to
implement secure quantum communication [5], or to simulate
some aspects of the entanglement distribution of random
states [6]. Moreover, graph states encompass the celebrated
Greenberger-Horne-Zeilinger (GHZ) states [7], whose impor-
tance ranges from fundamental to applied issues. GHZ states
can—for large-dimensional systems—be considered as simple
models of the gedanken Schrödinger-cat states, are crucial for
quantum communication protocols [8], and find applications in
quantum metrology [9] and high-precision spectroscopy [10].
All these reasons explain the great deal of effort made both to
theoretically understand [1] the properties of, and to generate
and coherently manipulate, graph states in the laboratory [11].

For the same reasons, it is crucial to unravel the dynamics
of graph states in realistic scenarios, where the system is
unavoidably exposed to interactions with its environment
and/or experimental imperfections. Previous studies on the
robustness of graph-state entanglement in the presence of
decoherence showed that the disentanglement times (i.e., the
time for which the state becomes separable) increases with the
system size [12,13]. However, the disentanglement time on its
own is known not to provide in general a faithful figure of merit
of the entanglement robustness; although the disentanglement
time can grow with the number N of particles, the amount
of entanglement in a given time can decay exponentially with
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N [14]. The full dynamical evolution must then be monitored
to draw any conclusions on the entanglement robustness.

A big obstacle must be overcome in the study of the
entanglement robustness in general mixed states; the di-
rect quantification of entanglement involves optimizations
requiring computational resources that increase exponentially
with N . The problem thus becomes in practice intractable
even for relatively small system sizes, not to mention the
direct assessment of entanglement during the entire noisy
dynamics. All in all, some progress has been achieved in the
latter direction for some very particular cases: For arbitrarily
large linear-cluster states under collective dephasing, it is
possible to calculate the exact value of the geometric measure
of entanglement throughout the evolution [15]. In addition,
bounds to the relative entropy and the global robustness of
entanglement for two-colorable graph states [1] of any size
under local dephasing were obtained in Ref. [16].

In a conceptually different approach, a framework to obtain
families of lower and upper bounds to the entanglement evolu-
tion of graph—and graph-diagonal—states under decoherence
was introduced in Ref. [17]. The bounds are obtained via a cal-
culation that involves only the boundary subsystem, composed
of the qubits lying at the boundary of the multipartition under
scrutiny. This, very often, reduces considerably the size of
the matrices involved in the calculation of entanglement. No
optimization on the full system’s parameter space is required
throughout. Another remarkable feature of the method is
that it is not limited to a particular entanglement quantifier
but applies to all convex (bi-or multipartite) entanglement
measures that do not increase under local operations and
classical communication (LOCC). The latter are indeed two
rather natural and general requirements [18,19].

In the case of open-dynamic processes described by Pauli
maps, the lower and upper bounds coincide and the method
thus allows one to calculate the exact entanglement of the
noisy evolving state. Pauli maps encompass popular models
of (independent or collective) noise, as depolarization, phase
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flip, bit flip, and bit-phase flip errors, and are defined below.
Moreover, one of the varieties of lower bounds is of extremely
simple calculation and—despite less tight—depends only on
the connectivity of the graph and not on its total size. The latter
is a very advantageous property in situations where one wishes
to assess the resistance of entanglement with growing system
size. For example, the versatility of the formalism has very
recently been demonstrated in Ref. [20], where it was applied
to demonstrate the robustness of thermal bound entanglement
in macroscopic many-body systems of spin-1/2 particles.

In the present paper, we elaborate on the details of the
formalism introduced in [17]. For Pauli maps, we give an
explicit formula for the characterization of the effective noise
involved in the calculation of the bounds. Furthermore, we
extend the method to the case where each qubit is subject to
the action of independent thermal baths at arbitrary tempera-
ture. This is a crucial, realistic type of dynamic process that
is not described by Pauli maps. In all cases, we exhaustively
compare the different bounds with several concrete examples.
Finally, we discuss the main advantages and limitations of our
method in comparison with other approaches.

The article is organized as follows:
(1) Sec. II: Here we define the notation, introduce defini-

tions, and review basic concepts required in the following
sections. In particular, graph and graph-diagonal states are
defined in Sec. II A and the noise models considered are
presented in Sec. II B.

(2) Sec. III: A detailed description of the proposed frame-
work is given in the context of fully general noises. Families
of lower and upper bounds for the entanglement evolution
in the particular multipartition of interest in terms of the
entanglement of the boundary subsystem alone under an
effective noise are provided.

(3) Sec. IV: The developed machinery is applied to the
case of noises described by arbitrary Pauli maps and by
diffusion and dissipation with independent thermal reservoirs
at any temperature. Exact results for the entanglement decay
are obtained for Pauli maps, whereas optimized bounds are
provided in the other cases.

(4) Sec. V: We first discuss how the method can be extended
to other initial states or decoherence processes. In particular,
how nontight lower bounds for the entanglement evolution of
any initial state subjected to any decoherence process can be
obtained. Then we comment on the limitations of the method.

(5) Sec. VI: We conclude the paper with a summary of the
results and their physical implications.

II. BASIC CONCEPTS

In this section, we define graph and graph-diagonal states,
and introduce the basics of open-system dynamics and the
particular noise models used later.

A. Graph and graph-diagonal states

Qubit graph states are multiqubit quantum states defined
from mathematical graphs through the rule described in the
following. First, a mathematical graph G(V,C) ≡ {V,C} is
defined by a set V of N vertices, or nodes, and a set C, of
connections, or edges, connecting each node i to some other j .

FIG. 1. (Color online) Mathematical graph associated with a
given physical graph state. An exemplary bipartition divides the
system into two subparts: the yellow and white regions. The edges
in black are the boundary-crossing edges X and the nodes (also in
black) connected by them are the boundary nodes Y . Together they
compose the boundary subgraph G(Y,X ). The remaining vertices,
painted in orange, constitute the nonboundary subsystem.

An example of such a graph is illustrated in Fig. 1. Each vertex
i ∈ V represents a qubit in the associated physical system,
and each edge {i,j} ∈ C represents a unitary maximally
entangling controlled-Z (CZ) gate, CZij = |0i0j 〉〈0i0j | +
|0i1j 〉〈0i1j | + |1i0j 〉〈1i0j | − |1i1j 〉〈1i1j |, between the qubits
i and j connected through the corresponding edge. The
N -qubit graph state |G(V,C)0〉 corresponding to graph G(V,C)

is then operationally defined as follows:
(i) Initialize every qubit i in the superposition |+i〉 =

1√
2
(|0i〉 + |1i〉), so that the joint state is in the product state

|g(V)0〉 ≡ ⊗
i∈V |+i〉.

(ii) Then, for every connection {i,j} ∈ C apply the gate
CZij to |g(V)0〉. That is,∣∣G(V,C)0

〉 =
⊗

{i,j}∈C
CZij

∣∣g(V)0

〉
. (1)

Graph state (1) can also be defined in an alternative,
nonoperational fashion. Associated to each node i ∈ V of a
given graph G(V,C) we define the operator,

Si ≡ Xi

⊗
j∈Ni

Zj , (2)

with Xi and Zj the usual Pauli operators acting, respectively,
on qubits i and j , and where Ni denotes the set of neighbors
of i, directly connected to it by an edge {i,j}. Operator (2)
possesses eigenvalues 1 and −1. It is the ith generator of the
stabilizer group and is often called for short the stabilizer
operator. All N stabilizer operators commute and share,
therefore, a common basis of eigenstates. Graph state |G(V,C)0〉
in turn has the peculiarity of being the unique common
eigenstate of eigenvalue +1 [1]. In other words,

Si

∣∣G(V,C)0

〉 = ∣∣G(V,C)0

〉 ∀ i ∈ V.

The other 2N − 1 common eigenstates |G(V,C)ν〉 are in turn
related to (1) by a local unitary operation:∣∣G(V,C)ν

〉 =
⊗
i∈V

Zi
νi
∣∣G(V,C)0

〉 ≡ Zν
∣∣G(V,C)0

〉
, (3)
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such that Si |G(V,C)ν〉 = (−1)νi |G(V,C)ν〉, where ν is a multi-
index representing the binary string ν ≡ ν1 · · · νN , with νi =
0 or 1 ∀ i ∈ V , and where the shorthand notation Zν ≡⊗

i∈V Zi
νi has been introduced. Therefore, states (3) possess

all exactly the same entanglement properties and, together with
|G(V,C)0〉, define a complete orthonormal basis of H, called the
graph-state basis of H (corresponding to the graph G(V,C)).
Any state ρ diagonal in such a basis is called a graph-diagonal
state:

ρGD =
∑

ν

Pν

∣∣G(V,C)ν

〉 〈
G(V,C)ν

∣∣, (4)

where Pν is any probability distribution. Interestingly, for any
graph, any arbitrary N -qubit state can always be depolarized
by some separable map (defined below) into the form (4)
without changing its diagonal elements in the considered graph
basis [21].

Two simple identities following from definition (2) will be
crucial for our purposes. For every eigenstate |G(V,C)ν〉 of Si ,
with eigenvalues siν = 1 or −1,

Xi

∣∣G(V,C)ν

〉 = Si ⊗
⊗
j∈Ni

Zj

∣∣G(V,C)ν

〉 = siν

⊗
j∈Ni

Zj

∣∣G(V,C)ν

〉
,

(5)

where definition (2) was used, and

Yi

∣∣G(V,C)ν

〉 = (−i)Zi.Si ⊗
⊗
j∈Ni

Zj

∣∣G(V,C)ν

〉

= siν(−i)Zi ⊗
⊗
j∈Ni

Zj

∣∣G(V,C)ν

〉
. (6)

So, when applied to any pure graph—or mixed graph-
diagonal—state, the following operator equivalences hold up
to a global phase:

Xi ↔
⊗
j∈Ni

Zj , (7a)

Yi ↔ Zi ⊗
⊗
j∈Ni

Zj . (7b)

B. Open-system dynamics

As we mentioned in Sec. I, our ultimate goal is to study
the behavior of graph-state entanglement in realistic dynamic
scenarios where the system evolves during a time interval t

according to a generic physical process, which can include
decoherence. This process can always be represented by a
completely positive trace-preserving map �, that maps any
initial state ρ to the evolved one after a time t , ρt ≡ �(ρ). In
turn, for every such �, there always exists a maximum of D2

[D = dim(H)] operators Kµ such that the map is expressed in
the Kraus form [22]:

ρt ≡ �(ρ) =
∑

µ

KµρK†
µ. (8)

Operators Kµ are called the Kraus operators, and decompose
the identity operator 1 of H in the following manner:∑

µ K†
µKµ = 1. Conversely, the Kraus representation encap-

sulates all possible physical dynamics of the system. That
is, any map expressible as in (8) is automatically completely

positive and trace preserving. For our case of interest (N -qubit
systems), index µ runs from 0 to (2N )

2 − 1 = 4N − 1. For
later convenience, we will represent it in base 4, decomposing
it as the following multi-index: µ ≡ µ1 · · · µN , with µi = 0,
1, 2, or 3 ∀ i ∈ V .

We call � a separable map with respect to some multi-
partition of the system if each and all of its Kraus operators
factorize as tensor products of local operators each one with
support on only one of the subparts. For example, if we split
the qubits associated with the graph shown in Fig. 1 into a set
Y of boundary qubits (in black) and its complement Y ≡ V/Y
of nonboundary qubits (in green), � is separable with respect
to this partitioning if Kµ ≡ KYµ ⊗ KYµ

, with KYµ and KYµ

operators acting nontrivially only on the Hilbert spaces of the
boundary and nonboundary qubits, respectively.

In turn, we call � an independent map with respect to
some multipartition of the system if it can be factorized as
the composition (tensor product) of individual maps acting
independently on each subpart. Otherwise, we say that � is
a collective map. Examples of fully independent maps are
those in which each qubit i is independently subject to its own
local noise channel Ei . By the term independent map without
explicit mention to any respective multipartition we will refer
throughout to fully independent maps. In this case, the global
map � factorizes completely:

�(ρ) = E1 ⊗ E2 ⊗ · · · ⊗ EN (ρ). (9)

It is important to notice that all independent maps are
necessarily separable but a general separable map does not
need to be factorable as in (9) and can therefore be both, either
individual or collective.

1. Pauli maps

A crucial family of fully separable maps is that of the Pauli
maps, for which every Kraus operator is proportional to a
product of individual Pauli and identity operators acting on
each qubit. That is, Kµ ≡ √

P(µ1,...µN ) σ1µ1
⊗ · · · ⊗ σN µN

≡√
Pµ σµ, with σi0 = 1i (the identity operator on qubit i),

σi1 = Xi , σi2 = Yi , and σi3 = Zi , and P(µ1,...µN ) ≡ Pµ any
probability distribution. Popular instances are the (collective or
independent) depolarization and dephasing (also called phase
damping, or phase-flip) maps, and the (individual) bit-flip and
bit-phase-flip channels [22]. For example, the independent
depolarizing (D) channel describes the situation in which
the qubit remains untouched with probability 1 − p, or is
depolarized—meaning that it is taken to the maximally mixed
state (white noise)—with probability p. It is characterized
by the fully factorable probability Pµ = p1µ1

× · · · pN µN
,

with pi0 = 1 − p and pi1 = pi2 = pi3 = p/3, ∀ i ∈ V . The
independent phase-damping (PD) channel in turn induces
the complete loss of quantum coherence with probability
p, but without any energy (population) exchange. It is also
given by a fully factorable probability with pi0 = 1 − p/2,
pi1 = 0 = pi2, and pi3 = p/2, ∀ i ∈ V .

For later convenience, we finally recall that each
Pauli operator σiµi

can be written in the following way:
Ti (ui ,vi ) ≡ Z

vi

i .X
ui

i , with ui and vi = 0, or 1. Indeed, notice
that σi2vi+|vi+ui |2 = Ti (ui ,vi ) (up to an irrelevant phase factor
for ui = 1 = vi), where “| |2” stands for modulo 2. In

032317-3



L. AOLITA et al. PHYSICAL REVIEW A 82, 032317 (2010)

this representation, called the chord representation [23],
the Kraus decomposition of the previously considered
general Pauli map has the following Kraus operators:
KC (U,V ) ≡ √

PC(u1,v1,...uN ,vN ) T1(u1,v1) ⊗ · · · ⊗ TN (uN ,vN ) ≡√
PC(U,V ) T(U,V ), where U ≡ (u1, . . . uN ) and V ≡

(v1, . . . vN ). The probability PC(U,V ) ≡ PC(u1,v1,...uN ,vN )

in turn is related to the original Pµ by PC(u1,v1,...uN ,vN ) ≡
P(2v1+|v1+u1|2,...,2vN +|vN+uN |2)).

2. Independent thermal baths

An important example of a non-Pauli, independent map
is the generalized amplitude-damping channel (GAD) [22].
It represents energy diffusion and dissipation with a thermal
bath into which each qubit is individually immersed. Its Kraus
representation is

Kiµi=0 ≡
√

n + 1

2n + 1
(|0i〉〈0i | +

√
1 − p|1i〉〈1i |), (10a)

Kiµi=1 ≡
√

n + 1

2n + 1
p|0i〉〈1i |, (10b)

Kiµi=2 ≡
√

n

2n + 1
(
√

1 − p|0i〉〈0i | + |1i〉〈1i |), (10c)

and

Kiµi=3 ≡
√

n

2n + 1
p|1i〉〈0i |. (10d)

Here n is the average number of quanta in the thermal bath,
p ≡ p(t) ≡ 1 − e− 1

2 γ (2n+1)t is the probability of the qubit
exchanging a quantum with the bath after a time t , and γ is the
zero-temperature dissipation rate. Channel GAD is actually
the extension to finite temperature of the purely dissipative
amplitude damping (AD) channel, which is obtained from
GAD in the zero-temperature limit n = 0. In the opposite
extreme, the purely diffusive case is obtained from GAD in
the composite limit n → ∞, γ → 0, and nγ = �, where �

is the diffusion constant. Note that in the purely diffusive
limit, channel GAD becomes a Pauli channel, with defining
individual probabilities pi0 = 1

2 (1 − p/2 + √
1 − p), pi1 =

p

4 = pi2, and pi3 = 1
2 (1 − p/2 − √

1 − p), ∀ i ∈ V .
Finally, the probability p in channels D, PD, and GAD

above can be interpreted as a convenient parametrization of
time, where p = 0 refers to the initial time 0 and p = 1 refers
to the asymptotic limit t → ∞.

III. EVOLUTION OF GRAPH-STATE ENTANGLEMENT
UNDER GENERIC NOISE

As mentioned before, the direct calculation of the entangle-
ment in arbitrary mixed states is a task exponentially hard in
the system’s size [19]. In this section, we elaborate in detail a
formalism that dramatically simplifies this task for graph—or
graph-diagonal—states undergoing a noisy evolution in a fully
general context. Along the way, we also describe carefully
which requirements an arbitrary noisy map has to satisfy so
that the formalism can be applied.

A. The general idea

Consider a system initially in graph state (1) that evolves
during a time t according to the general map (8) toward the
evolved state,

ρt ≡ �
(∣∣G(V,C)0

〉) =
∑

µ

Kµ

∣∣G(V,C)0

〉 〈
G(V,C)0

∣∣K†
µ. (11)

We would like to follow the entanglement E(ρt ) of ρt during
its entire evolution. Here, E is any convex entanglement
monotone [18,19] that quantifies the entanglement content
in some given multipartition of the system. An example of
such multipartition is displayed in Fig. 1, where the associated
graph is split into two subsets, painted, respectively, in yellow
and white in the figure. The edges that connect vertices
at different subsets are called the boundary-crossing edges
and are painted in black in the figure. We call the set of
all the boundary-crossing edges X ⊆ C, and its complement
X ≡ C/X the set of all non-boundary-crossing edges. All the
qubits associated with vertices connected by any edge in X
constitute the set Y ⊆ V of boundary qubits (or boundary
subsystem), and its complement Y ≡ V/Y is the nonboundary
qubit set. We refer to G(Y,X ) as the boundary subgraph.

We can use this classification and the operational defini-
tion (1) to write the initial graph state as

∣∣G(V,C)0

〉 =
⊗

{i,j}∈X
CZij

∣∣G(Y,X )0

〉 ⊗ ∣∣g(Y)0

〉
, (12)

where |g(Y)0
〉 ≡ ⊗

i∈Y |+i〉. In other words, we explicitly fac-
tor all the CZ gates corresponding to non-boundary-crossing
edges out.

Consider now the application of some Kraus op-
erator Kµ of a general map on graph state (12):
Kµ

⊗
{i,j}∈X CZij |G(Y,X )0〉 ⊗ |g(Y)0

〉. The latter can always be
written as

⊗
{i,j}∈X CZij K̃µ|G(Y,X )0〉 ⊗ |g(Y)0

〉, with

K̃µ =
⊗

{i,j}∈X
CZij Kµ

⊗
{i ′,j ′}∈X

CZi ′j ′ , ∀ µ. (13)

Now, consider every map � such that transformation rule (13)
yields, for each µ, modified Kraus operators of the form,

K̃µ = K̃Yγ ⊗ K̃Yω, (14)

where K̃Yγ and K̃Yω are normalized modified Kraus operators
acting nontrivially only on the boundary and nonbound-
ary qubits, respectively. In the last, γ = {µi, i ∈ Y} and
ω = {µi, i ∈ Y} are multi-indices labeling, respectively, the
alternatives for the boundary and nonboundary subsystems,
being µi in turn the individual base-4 indices introduced after
Eq. (8). The modified map �̃, composed of Kraus operators
K̃µ is then clearly biseparable with respect to the bipartition
“boundary/nonboundary”. For all such maps the calculation of
E(ρt ) can be drastically simplified, as we see in what follows.

In these cases, the evolved state (11) can be written as

ρt ≡ �
(∣∣G(V,C)0

〉) =
⊗

{i,j}∈X
CZij ρ̃t

⊗
{k,l}∈X

CZkl, (15)
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with

ρ̃t = �̃
(∣∣G(Y,X )0

〉 ⊗ ∣∣g(Y)0

〉)
=

∑
µ

K̃Yγ (µ)

∣∣G(Y,X )0

〉 〈
G(Y,X )0

∣∣K̃†
Yγ (µ)

⊗ K̃Yω(µ)

∣∣g(Y)0

〉 〈
g(Y)0

∣∣K̃†
Yω(µ)

=
∑

ω

K̃Yω

∣∣g(Y)0

〉 〈
g(Y)0

∣∣K̃†
Yω

⊗
∑

γ

K̃Y(γ |ω)

∣∣G(Y,X )0

〉 〈
G(Y,X )0

∣∣K̃†
Y(γ |ω), (16)

where K̃Y(γ |ω) is the γ th modified Kraus operator on the
boundary subsystem given that K̃Yω has been applied to the
nonboundary one. Recall that both γ ≡ γ (µ) and ω ≡ ω(µ)
come from the same single multi-index µ and are therefore
in general not independent on one another. In the second
equality of (16) we have chosen to treat ω as an independent
variable for the summation and make γ explicitly depend on
ω. This can always be done and will be convenient for our
purposes.

The crucial observation now is that the CZ operators
explicitly factored out in the evolved state (15) correspond to
non-boundary-crossing edges. Thus, they act as local unitary
operations with respect to the multipartition of interest. For
this reason, and since local unitary operations do not change
the entanglement content of any state, the equivalence,

E(ρt ) = E(ρ̃t ), (17)

holds.
In the forthcoming subsections we see how, by exploiting

this equivalence in different noise scenarios, the computational
effort required for a reliable estimation (and in some cases, an
exact calculation) of E(ρt ) can be considerably reduced. The
main idea behind this reduction lies on the fact that, whereas in
general state (11) the entanglement can be distributed among
all particles in the graph, in state (16) the boundary and
nonboundary subsystems are explicitly in a separable state. All
the entanglement in the multipartition of interest is therefore
localized exclusively in the boundary subgraph. The situation
is graphically represented in Fig. 2, where the same graph
as in Fig. 1 is plotted but with all its non-boundary-crossing
edges erased.

FIG. 2. (Color online) Same graph as in Fig. 1 but where all
non-boundary-crossing edges have been erased, representing the fact
that the boundary and nonboundary subsystems are fully unentangled.
The entanglement in the whole system is obtained via a calculation
involving only the smaller boundary subsystem.

More precisely, the general approach consists of obtaining
lower and upper bounds on E(ρt ) by bounding the entangle-
ment of state (16) from above and below as explained in what
follows.

1. Lower bounds to the entanglement evolution

The property of LOCC monotonicity of E, which means
that the average entanglement cannot grow during an LOCC
process [18], allows us to derive lower bounds on E(ρ̃t ). The
ones we consider can be obtained by the following generic
procedure:

(i) After bringing the studied state into the form (16),
apply some local general measurement M = {Mω}, with
measurement elements Mω, on the non-boundary subsystem
Y;

(ii) for each measurement outcome ω trace out the mea-
sured nonboundary subsystem;

(iii) and, finally, calculate the mean entanglement in the
resulting state of the boundary subsystem Y , averaged over
all outcomes ω.
Since this procedure constitutes an LOCC with respect to the
multipartition under scrutiny, the latter average entanglement
can only be smaller than, or equal to, that of the initial state,
that is,

E(ρt ) = E(ρ̃t ) �
∑

ω

PωE

( ∑
ω′

1

Pω

〈
g(Y)0

∣∣K̃†
Yω′M

†
ω.MωK̃Yω′

∣∣g(Y)0

〉∑
γ

K̃Y(γ |ω′)
∣∣G(Y,X )0

〉 〈
G(Y,X )0

∣∣K̃†
Y(γ |ω′)

)
, (18)

with Pω ≡ ∑
ω′ 〈g(Y)0

|K̃†
Yω′M

†
ω.MωK̃Yω′ |g(Y)0

〉 being the
probability of outcome ω.

Notice that if the states {K̃Yω′ |g(Y)0
〉} of the nonboundary

subsystem happen to be orthogonal, then there exists

an optimal measurement M = {Mω ≡ K̃Yω|g(Y)0
〉〈g(Y)0

|K̃†
Yω

〈g(Y)0
|K̃†

Yω
K̃Yω|g(Y)0

〉 }
that can distinguish them unambiguously, so

that 〈g(Y)0
|K̃†

Yω′M
†
ω.MωK̃Yω′ |g(Y)0

〉 = δω,ω′ × 〈g(Y)0
|K̃†

Yω

K̃Yω|g(Y)0
〉 and Pω = 〈g(Y)0

|K̃†
Yω

K̃Yω|g(Y)0
〉. In these cases

an optimal lower bound is achieved as

E(ρt ) �
∑

ω

PωE

(∑
γ

K̃Y(γ |ω)

∣∣G(Y,X )0

〉 〈
G(Y,X )0

∣∣K̃†
Y(γ |ω)

)
.

(19)
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Full distinguishability of the states in the nonboundary sub-
system allows to reduce the mixing in the remaining boundary
subsystem. In other words, the measurement outcome ω works
as a perfect flag that marks which subensemble of states of the
boundary subsystem, from all those present in mixture (16),
corresponds indeed to the obtained outcome.

In the opposite extreme, when states {K̃Yω′ |g(Y)0
〉} are

all equal, no flagging information can be obtained via any
measurement. In this case, the resulting bound is always
equal to that obtained had we not made any measurement
at all, but just directly taken the partial trace over Y
from (16):

E(ρt ) � E

(
1

2|Y|
∑
ω,γ

K̃Y(γ |ω)

∣∣G(Y,X )0

〉 〈
G(Y,X )0

∣∣K̃†
Y(γ |ω)

)
,

(20)

where |Y| stands for the number of nonboundary qubits and
full mixing over variable ω takes place now.

Henceforth, we refer to lower bound (20) as the lowest
lower bound (LLB). As its name suggests, its tightness is far
from the optimal one given by (19). However, as we will see
in the forthcoming subsections, due to the partial tracing, it
typically does not depend on the total system’s size but just on
that of the boundary subsystem.

This constitutes an appealing, useful property, for it allows
one to draw generic conclusions about the robustness of
entanglement in certain partitions of graph states, irrespective
of their number of constituent particles (see examples in
Sec. IV B).

2. Upper bounds to the entanglement evolution

On the other hand, we consider upper-bounds on E(ρt )
based on the property of convexity of E, which essentially
means that the entanglement of the convex sum is lower than,
or equal to, the convex sum of the entanglements [18,19].
From (16), the latter implies that

E(ρt ) = E(ρ̃t ) �
∑

ω

PωE

(
1

Pω

K̃Yω

∣∣g(Y)0

〉 〈
g(Y)0

∣∣K̃†
Yω

⊗
∑

γ

K̃Y(γ |ω)

∣∣G(Y,X )0

〉 〈
G(Y,X )0

∣∣K̃†
Y(γ |ω)

)
, (21)

where, once again, Pω = 〈g(Y)0
|K̃†

Yω
K̃Yω|g(Y)0

〉. In each term
of the last summation the boundary and nonboundary subsys-
tems inside the brackets are in a product state. Therefore, as for
what the multipartition of interest concerns, the nonboundary
subsystem works as a locally added ancilla (in a state

1
Pω

K̃Yω|g(Y)0
〉〈g(Y)0

|K̃†
Yω

) and consequently does not have any
influence on the amount of entanglement. This leads to the
generic upper bound,

E(ρt ) �
∑

ω

PωE

(∑
γ

K̃Y(γ |ω)

∣∣G(Y,X )0

〉 〈
G(Y,X )0

∣∣K̃†
Y(γ |ω)

)
.

(22)

3. Exact entanglement

Notice that the upper bound (22) and the optimal lower
bound (19) coincide. This means that, in the previously
mentioned case when states {K̃Yω|g(Y)0

〉} are orthogonal, these
coincident bounds yield actually the exact value of E(ρt ):

E(ρt ) =
∑

ω

PωE

(∑
γ

K̃Y(γ |ω)

∣∣G(Y,X )0

〉 〈
G(Y,X )0

∣∣K̃†
Y(γ |ω)

)
.

(23)

Expression (23) is still not an analytic closed formula
for the exact entanglement of ρt , but reduces its calculation
to that of the average entanglement over an ensemble of
states of the boundary subsystem alone. More in detail, a
brute-force calculation of E(ρt ) would require, in general,
a convex optimization over the entire 22N − 1 real-parameter
space. Through Eq. (23), in turn, such a calculation is reduced
to that of the average entanglement over a sample of 2|Y|
states (one for each ω) of |Y| qubits, being |Y| the number of
boundary qubits. The latter involves at most 2|Y| independent
optimizations over a 22|Y|−1 real-parameter space. This,
from the point of view of computational memory required,
accounts for a reduction of resources by a factor of O(22|Y|).
Alternatively, when computational memory is not a major
restriction, for example, if large classical-computer clusters
are at hand, one can take advantage of the fact that the |Y|
required optimizations in (23) are independent and therefore
the calculation comes readily perfectly suited for parallel
computing.

In the cases where states {K̃Yω|g(Y)0
〉} are not orthogonal

and the upper and lower bounds do not coincide, expres-
sions (22) and (18) still yield highly nontrivial upper and lower
bounds, respectively, as we discuss in Sec. IV B.

Finally, it is important to stress that all the bounds
derived here are general in the sense that they hold for any
function fulfilling the fundamental properties of convexity
and monotonicity under LOCC processes. This class includes
genuine multipartite entanglement measures, as well as several
quantities designed to quantify the usefulness of quantum
states in the fulfillment of some given task for quantum-
information processing or communication [19].

IV. GRAPH STATES UNDER PAULI MAPS
OR THERMAL RESERVOIRS

In the present section we apply the ideas of the previous
section to some important concrete examples of noise pro-
cesses. This shows how the method is helpful in the entan-
glement calculation for systems in natural, dynamic physical
scenarios. We first discuss the case of Pauli maps and then the
generalized amplitude damping channel (thermal reservoir).
Explicit calculations for noisy graph states composed of up to
14 qubits are presented as examples.

A. Pauli maps on graph states

Pauli maps defined in Sec. II B provide the most important
and general subfamily of noise types for which expression (23)
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for the exact entanglement of the evolved state applies. In
this case, every Xi or Yi Pauli matrix in the map’s Kraus
operators is systematically substituted by products of Zi and
1i according to rules (7). The resulting map �̃ defined in this
way automatically commutes with any CZ gate and is fully
separable, so that condition (14) is trivially satisfied. Since for
every qubit in the system four orthogonal single qubit operators
are mapped into products of just two, several different Kraus
operators of the original map contribute to the same Kraus
operator of the modified one. This allows us to simplify the
notation going from indices µi , which run over four possible
values each, to modified indices µ̃i having only two different
alternatives. In fact, the original operators Kµ give rise to only
2N modified ones of the form,

K̃µ̃ =
√

P̃µ̃Z
µ̃1
1 ⊗ Z

µ̃2
2 ⊗ · · · ⊗ Z

µ̃N

N ≡
√

P̃µ̃Zµ̃, (24)

where multi-index µ̃ stands for the binary string µ̃ =
µ̃1 · · · µ̃N , with µi = 0 or 1, ∀i ∈ V . Probability P̃µ̃ is given
simply by the summation of all Pµ in the original Pauli map
over all the different events µ for which σµ yields—via rules
(7)—the same modified operator Zµ̃ in (24).

To compute the latter modified probability we move to the
chord notation [23], mentioned at the end of Sec. II B 1. Indeed,
under transformation (7), we have that Ti (ui ,vi ) → Z

vi 1
i ⊗⊗

j∈Ni
Z

ui

j , so that T(U,V ) ≡ T1(u1,v1) ⊗ · · · TN (uN ,vN ) →
Z

v1+
∑

j∈N1
uj

1 ⊗ · · · ⊗ Z
vN +∑

j∈NN
uj

N . The latter coincides with
Zµ̃ every time µ̃i = |vi + ∑

j∈Ni
uj |2, ∀ i ∈ V . Thus, in this

representation, the modified probability P̃Cµ̃ is obtained from
the defining probability PC(U,V ) in the original map by the
explicit formula,

P̃Cµ̃ ≡
∑
U

PC(u1,|µ̃1−
∑

j∈N1
uj |2,...,uN ,|µ̃1−

∑
j∈NN

uj |2). (25)

The modified Kraus operators (24) in turn are fully
separable; thus, as said, they trivially satisfy factorization
condition (14). We can express them as K̃µ̃ = K̃Y γ̃ ⊗ K̃Yω̃,
with

K̃Y γ̃ ≡ K̃Y(γ̃ |ω̃) =
√

P̃(γ̃ |ω̃)Z
γ̃ and K̃Yω̃ =

√
P̃ω̃Zω̃. (26)

The new multi-indices are γ̃ = {µ̃i , i ∈ Y} and ω̃ = {µ̃i , i ∈
Y}, and the corresponding probabilities satisfy P̃(γ̃ |ω̃)P̃ω̃ ≡ P̃µ̃.

The states {K̃Yω̃′ |g(Y)0
〉 =

√
P̃ω̃′Zω̃′ |+i〉 =

√
P̃ω̃′

⊗
i∈Y

1√
2
(|0i〉 + (−1)µ̃i |1i〉) ≡

√
P̃ω̃′ |g(Y)ω̃′ 〉} are trivially checked to

be all orthogonal. Thus, they provide perfect flags that mark
each subensemble in the boundary subsystem’s ensemble.
The perfect flags are revealed by local measurements on the
nonboundary qubits in the product basis {|g(Y)ω̃

〉}. Therefore,
for Pauli maps the exact entanglement E(ρt ) can be calculated
by expression (23), which, in terms of binary indices γ̃ and ω̃,
and using graph-state relationship (3), can be finally expressed
as

E(ρt ) =
∑

ω̃

P̃ω̃E

⎛
⎝∑

γ̃

P̃(γ̃ |ω̃)

∣∣G(Y,X )γ̃

〉 〈
G(Y,X )γ̃

∣∣
⎞
⎠ , (27)

In Fig. 3 we have plotted the bipartite entanglement of the
exemplary bipartition of one qubit versus the rest shown in its

14 qubits

12 qubits

p

N
eg

at
iv

ity

FIG. 3. (Color online) Negativity versus p for 14-qubit (green
triangles) and 12-qubit (pink solid curve) cluster states undergoing
independent depolarizing noise, and for the bipartition shown in inset.
Parameter p can be thought as a parametrization of time (see text).

inset for 14- and 12-qubit graph states evolving under individ-
ual depolarization. This map, as said before, is characterized by
the one-qubit Kraus operators

√
1 − p1,

√
p/3X,

√
p/3Y , and√

p/3Z. The parameter p (0 � p � 1) refers to the probability
that depolarization has occurred: for p = 0 the state is left
untouched and for p = 1 it is completely depolarized. Once
more, p can be also set as a parametrization of time: p = 0
referring to the initial time (when nothing has occurred) and
p = 1 referring to the asymptotic time t → ∞ (when the
system reaches its final steady state).

As the quantifier of entanglement, we choose the nega-
tivity [24], defined as twice the absolute value of the sum
of the negative eigenvalues of the density matrix partially
transposed with respect to the considered bipartition. It is a
convex entanglement monotone that in general fails to quantify
entanglement of some entangled states—those ones with
positive partial transposition (PPT)—in dimensions higher
than six [19]. However, since its calculation does not require
optimizations but just matrix diagonalizations, it is very
well-suited for a simple illustration of our ideas.

We emphasize that, for the 14-qubit graph used in Fig. 3,
a brute-force calculation would involve diagonalizing a 214 ×
214 = 16 384 × 16 384 density matrix for each value of p,
whereas with the assistance of expression (27) E(ρp) is
calculated via diagonalization of at most 211 23 × 23 = 8 × 8
dimensional matrices only.

B. Independent thermal reservoirs on graph states

In the case of Pauli maps the entanglement lower and upper
bounds coincide, and deliver the exact entanglement. However,
this is not the case for general, non-Pauli, noise channels. The
upper bound is given, as usual, by convexity. The lower bounds
must be optimized by appropriately choosing the LOCC
operations. Here, we investigate and optimize measurement
strategies for channel GAD, defined in Sec. II B 2.

Observe that the Kraus operators defined in Eq. (10)
satisfy the following: Ki0 and Ki2 commute with any CZ
operator, while for every j ∈ V different from i it holds
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FIG. 4. (Color online) Negativity versus p for a four-qubit linear
cluster subjected to the amplitude damping channel and for the
partition displayed in the inset. Solid (upper) black curve, exact
entanglement; solid (lower) blue curve, lowest lower bound LLB
(obtained by tracing out the flags); dashed-dotted blue curve, upper
bound (obtained by convexity); dotted red curve, LB(0) (obtained by
measuring the flags in the Z basis); dashed brown curve, LB(π/4)
(obtained by measuring the flags in the X basis).

that (Ki1 ⊗ 1j ) · CZij = CZij · (Ki1 ⊗ Zj ) and (Ki3 ⊗ 1j ) ·
CZij = CZij · (Ki3 ⊗ Zj ). Based on this, one can perform the
factorization in equation (13) and apply this way the formalism
described in Sec. III A.

In what follows we focus on two main limits of channel
GAD discussed in Sec. II B 2: the purely dissipative limit n = 0
(amplitude damping), and the purely diffusive limit n → ∞,
γ → 0, and nγ = �.

1. Graph states under zero-temperature dissipation

We consider a four-qubit linear (one-dimensional) cluster
state subjected to the AD map and study the decay of
entanglement in the partition consisting of the first qubit versus
the rest shown in the inset of Fig. 4. Along with the exact
calculation of entanglement via brute-force diagonalization
of the partially transposed matrices, the lowest lower bound
LLB (20), obtained by tracing out the flags, and the upper
bound (22), obtained from convexity, are plotted. In addition,
the tightness of the lower bounds (18) obtained by the
flag measurements can be scanned as a function of the
measurement bases.

Based on observations about the behavior of the system
under the AD map we can guess good measurement strategies.
For example, examination of the initial state reveals that at
p = 0 each of the nonboundary qubits is in one of the states of
the basis {|+〉,|−〉}; whereas at p = 1, in one of the states of
{|0〉,|1〉}. We call the lower bound obtained from (18) through
measurements in the basis {|+〉,|−〉} LB(π/4), and the one
obtained from (18) through measurements in {|0〉,|1〉} LB(0).
The latter bounds are the two additional curves plotted in Fig. 4.
We observe that LB(0) provides only a slight improvement
over the LLB, whereas LB(π/4) appears to give a significant
one. This raises the obvious question of how to optimize the
choice of measurement basis at each instant p in the evolution.

p = 0.1

p = 0.3

p = 0.5

p=0.01

θ

N
eg
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ity

FIG. 5. (Color online) Lower bound LB(θ ) to the negativity as
a function of the angle θ in the measurement basis, for the same
situation as in Fig. 4, and for fixed values of p. Each value p =
0.01,0.1,0.3,0.5 has two curves associated with it. The horizontal
(gray) straight line represents the exact entanglement at each p, while
the blue (black) curve represents the bound LB(θ ) at this p. The red
line (vertical) corresponds to θ = π

4 (i.e., measurements in the basis
{|+〉,|−〉}).

As an illustration we consider lower bounds LB(θ ) obtained
from (18) through orthogonal measurements composed of pro-
jectors |θ+〉 = cos θ |0〉 + sin θ |1〉 and |θ−〉 = − sin θ |0〉 +
cos θ |1〉, and look for the angle θ that gives us approximately
the largest value of LB(θ ). This is certainly not the most general
measurement scenario one may consider, but it gives one a hint
on how to increase the tightness of the bounds.

Figures 5 and 6 illustrate this idea. At fixed values of p, we
have varied angle θ in the range [0,π/2]. The entanglement
given by LB(θ ) for each value of θ is compared with the
exact entanglement at the given p. In physical terms, we are
taking snapshots of the evolution of the system’s entanglement
at discrete time instants. The value of θ at each instant p

that maximizes LB(θ ) represents the optimal measurement

p = 0.9

θ

N
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FIG. 6. (Color online) Same as Fig. 5 for p = 0.9.
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basis at that particular instant. As is clearly seen in Fig. 5,
for small values of p angles around θ = π

4 give the closest
approximations to the exact entanglement, in consistence
with the significant improvement of LB(π/4) over the LLB
observed in Fig. 4. For large values of p though, the best
approximations tend to be given by the angles away from
θ = π

4 , as can be observed in Fig. 6. It must still be kept
in mind that none of these closest approximations equals the
exact entanglement of the state.

2. Graph states under infinite-temperature diffusion

We now consider the purely diffusive case of the GAD chan-
nel, where each qubit is in contact with an independent bath
of infinite temperature. In Fig. 7 we display the entanglement
evolution in a similar way as in Fig. 4. Since in the purely
diffusive limit channel GAD becomes a Pauli map, as was
mentioned in the end of Sec. II B 2, bound LB(π/4) yields the
exact entanglement. LB(0) on the other hand coincides with
the lowest lower bound LLB. The fact that in this case LB(θ )
reaches the exact entanglement at θ = π

4 can also be seen in a
clearer way in Fig. 8.

In Fig. 7 the upper bound (22) is plotted as well. Since in this
case the channel is a Pauli channel, one would expect the upper
bound to coincide with the exact entanglement as well. The
fact that this does not occur is because, even though the noise
itself is describable as a Pauli map, the plotted upper bound
has been calculated using the original Kraus decomposition of
Eq. (10), which is not in a Pauli-map form. For every given
particular Kraus decomposition of a superoperator, the naive
application of convexity always yields UB through Eq. (22),
but this needs not the tightest, for the Kraus decomposition of a
superoperator is in general not unique. This observation leads
to a whole family of upper bounds for a given map. In the same

p

N
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ity

FIG. 7. (Color online) Negativity versus p for a four-qubit linear
cluster for the bipartition shown in the inset, subjected to the
generalized amplitude damping channel in the diffusive limit n → ∞.
The central curve corresponds to both the exact entanglement (solid
black) and LB(π/4) (dashed brown), which coincide exactly. The
lower curve corresponds to both LBB (solid blue) and LB(0) (dotted
red), which also coincide exactly. The upper curve is the upper
bound (22) (dot-dashed blue).

p = 0.1

p = 0.3

p = 0.5

p=0.01
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θ

FIG. 8. (Color online) Lower bound LB(θ ) to the negativity
as a function of the angle θ in the measurement basis, for the
same situation as in Fig. 7, and for fixed values of p. Each value
p = 0.01,0.1,0.3,0.5 has two curves associated with it. Again, the
horizontal (gray) straight line represents the exact entanglement at
each p, while the blue (black) curve represents the bounds LB(θ ) at
this p. The red line (vertical) corresponds to θ = π

4 (i.e., measurement
in the basis {|+〉,|−〉}).

spirit as with the lower bounds, one could in principle optimize
the obtained UBs over all possible Kraus representations of the
map.

V. EXTENSIONS AND LIMITATIONS

The framework developed here is not restricted to graph
states. The crucial ingredient in our formalism is to factor
out all the entangling operations that act as local unitary
transformations with respect to the considered partition, and to
redefine the Kraus operators acting on the state, reducing the
entanglement evaluation problem to the boundary subsystem
alone. Given an entangled state and a prescription for its
construction in terms of entangling operations, useful bounds
and exact expressions for the entanglement can be readily
obtained. As an example, a GHZ-like state |ψ〉 = α|0〉⊗N +
β|1〉⊗N can be operationally constructed by the sequential
application of the maximally entangling operation controlled-
NOT (CNOT)ij = |0i0j 〉〈0i0j | + |0i1j 〉〈0i1j | + |1i0j 〉〈1i1j | +
|1i1j 〉〈1i0j | to the product state (α|0〉 + β|1〉) ⊗ |0〉 ⊗ · · · ⊗
|0〉 such that |ψ〉 = ⊗N−1

i=1 CNOTi,i+1(α|0〉 + β|1〉) ⊗ |0〉 ⊗
· · · ⊗ |0〉. Using our techniques and the permutation symmetry
of the state it can be seen that, for GHZ-like states undergoing
the previously discussed noise processes, the entanglement
evaluation in any bipartition can be reduced to that of a two-
qubit system. It is also important to mention that the techniques
presented here can also be straightforwardly extended to
higher-dimensional graph states [25].

In addition, it is important to mention that all bounds
developed so far can in fact also be exploited to follow the
entanglement evolution when the system’s initial state is a
mixed graph-diagonal state. This is simply due to the fact that
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any graph-diagonal state as (4) can be thought of as a Pauli
map �GD acting on a pure graph state:

ρGD =
∑

ν

Pν

∣∣G(V,C)ν

〉 〈
G(V,C)ν

∣∣
=

∑
ν

PνZ
ν
∣∣G(V,C)0

〉 〈
G(V,C)0

∣∣Zν = �GD
(∣∣G(V,C)0

〉)
.

(28)

Thus, the entanglement at any time t in a system initially in
a mixed graph-diagonal state ρGD, and evolving under some
map �, is equivalent to that of an initial pure graph state
|G(V,C)0〉 whose evolution is ruled by the composed map � ◦
�GD, where �GD is defined in (28). When � is itself a Pauli
map, then � ◦ �GD is also a Pauli map and the expression (27)
for the exact entanglement can be applied. For the cases where
� is not a Pauli map but the relations (13) are satisfied by its
Kraus operators, the relations (13) will also be satisfied by the
composed map � ◦ �GD, so that all other bounds derived here
also hold.

Furthermore, as briefly mentioned before, any arbitrary
state can be depolarized by some separable map toward a
graph-diagonal state without changing the diagonal elements
in the considered graph basis [21]. The latter, since the entan-
glement of almost all states cannot increase under separable
maps [26], implies that all the lower bounds presented here
also provide lower bounds to the decay of the entanglement
that, though in general far from tight, apply to almost any
arbitrary initial state subject to any decoherence process.

The gain in computational effort provided by the machinery
presented here diminishes with the ratio between the number
of particles in the boundary subsystem and the total number
of particles. For example, for multipartitions such that the
boundary system is the total system itself, or for entanglement
quantifiers that do not refer to any multipartition at all,
our method yields no gain. An example of the latter are
the entanglement measures that treat all parties in a system
indistinguishably, some of which, as was mentioned in Sec. I,

have been studied in Refs. [15,16]. These methods naturally
complement with ours to offer a rather general and versatile
toolbox for the study of the open-system dynamics of graph-
state entanglement.

VI. CONCLUSIONS

We have studied in detail a general method for computing
the entanglement of graph and graph-diagonal states undergo-
ing decoherence, introduced in Ref. [17]. This method allows
one to drastically reduce the effort to compute the entangle-
ment evolution of graph states in several physical scenarios.
We have given an explicit formula for the construction of the
effective noise involved in the calculation for Pauli maps and
extended the formalism to the case of independent baths at
arbitrary temperature. Furthermore, we have elaborated the
formalism to construct nontrivial lower and upper bounds to
the entanglement decay where exact results cannot be obtained
from the formalism itself.

Finally, we would like to add that the necessary require-
ments on the noise channels for the method to apply do not
prevent us from obtaining general results for a wide variety of
realistic decoherence processes. Furthermore, the conditions
required on the entanglement measures are satisfied by most
quantifiers.

ACKNOWLEDGMENTS

D.C. acknowledges financial support from the National
Research Foundation and the Ministry of Education of
Singapore. L.A. acknowledges the “Juan de la Cierva”
program for financial support. R.C. and L.D. acknowledge
support from the Brazilian agencies CNPq and FAPERJ, and
from the National Institute of Science and Technology for
Quantum Information. A.A. is supported by the European
PERCENT ERC Starting Grant and Q-Essence project, the
Spanish MEC FIS2007-60182 and Consolider-Ingenio QOIT
projects, Generalitat de Catalunya and Caixa Manresa.

[1] M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A 69, 062311
(2004); M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den
Nest, and H. J. Briegel, Proceedings of the International School
of Physics Enrico Fermi on “Quantum Computers, Algorithms
and Chaos” (2006), e-print arXiv:quant-ph/0602096.

[2] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001); R. Raussendorf, D. E. Browne, and H. J. Briegel, Phys.
Rev. A 68, 022312 (2003).

[3] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and
M. Van den Nest, Nature Phys. 5, 19 (2009).

[4] D. Schlingemann and R. F. Werner, Phys. Rev. A 65, 012308
(2001).

[5] W. Dür, J. Calsamiglia, and H. J. Briegel, Phys. Rev. A 71,
042336 (2005); K. Chen and H.-K. Lo, Quantum Inf. Comput.
7, 689 (2007).

[6] O. C. Dahlsten and M. B. Plenio, Quantum Inf. Comput. 6, 527
(2006).

[7] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in
Bell’s Theorem, Quantum Theory, and Conceptions of the
Universe, edited by M. Kafatos (Kluwer, Dordrecht, 1989),
p. 69.

[8] S. Bose, V. Vedral, and P. L. Knight, Phys. Rev. A 57, 822 (1998);
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