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We describe a method in which the entanglement of any pure quantum state can be experimentally deter-
mined by a simple projective measurement, provided the state is available in a twofold copy. We propose
implementations of this approach for various systems and discuss in detail its first experimental realization,
which employed twin photons entangled in two degrees of freedom, prepared in identical polarization and
momentum states. We analyze the effect of errors due to imperfect state preparation.
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I. INTRODUCTION

Entanglement, one of the fundamental characteristics
which distinguishes the quantum from the classical world
and a key resource for quantum information processing, re-
mains a puzzling and still counterintuitive concept when it
comes to its quantification. In principle, all we can know
about a given quantum state is encoded in its statistical op-
erator, and so is entanglement, but nonlinearly so �1,2�. As a
consequence, we cannot immediately infer the state’s en-
tanglement from simple inspection of the density matrix el-
ements, but rather have to evaluate nonlinear functions
thereof. Thus, quantum-state tomography �3–5�, which al-
lows, at least in principle, for a complete measurement of all
elements of the density matrix, appears as the only reliable
strategy towards the complete description of the nonclassical
correlations inscribed into an arbitrary state.

However, quantum-state tomography rapidly reaches its
practical limits as the dimension of the density matrix in-
creases with the number and/or the Hilbert space dimensions
of the constituent subsystems. Indeed, the experimental de-
termination of the entanglement of a system composed of
more than a few subsystems using tomographic means seems
elusive given the unfavorable scaling of the required experi-
mental resources.

Furthermore, existing entanglement measures lack direct
physical meaning, since they are obtained by applying state
transformations like conjugation and partial transposition,
which are not completely positive �1,2�.

Therefore, alternative, physically motivated and less de-
manding strategies to determine or estimate the entanglement
of composite quantum systems of increasing size would be
quite useful, the more so since experiments nowadays
achieve ever improving state control on ever increasing mul-
tipartite quantum systems.

Entanglement witnesses �6� provide one such alternative
and have proven both versatile and efficient in the detection
of specific classes of entangled states. However, witnesses
are state specific; i.e., they are constructed to detect specific
types of entangled states and fail to identify others. There-
fore, their successful use relies on some a priori knowledge
of the state under scrutiny.

We have recently devised another alternative for the effi-
cient determination of the degree of entanglement of a pure
state, which is based on a projective measurement. If the
state is available in a twofold copy �7,8�, then the state’s
concurrence �1,9� is given as the expectation value of a
single, suitably defined, self-adjoint operator A, defined with
respect to the twofold copy. Apart from the availability of
two faithful copies of a pure state, no further assumptions are
necessary. In particular, A is state independent, and the very
same measurement protocol is applicable for arbitrary pure
states, in arbitrary dimensions.

In the present paper, we specialize the general theoretical
treatment to the exemplary case of entangled twin photons,
which allow a simple demonstration of the efficiency of this
approach in the laboratory. The experimental realization is
discussed in detail, with an evaluation of possible sources of
error due to experimental inaccuracies in the initial state
preparation. We also show how our method could be imple-
mented in cavity quantum electrodynamics �cavity QED� and
with trapped ions.

II. THEORETICAL IDEA

The original definition of concurrence—restricted to sys-
tems of two qubits described by a pure state ��� in the Hil-
bert space H=H1 � H2—reads �1�

c��� = ���*��y � �y���� , �1�

where �y is the second Pauli matrix and ��*� is the complex
conjugate of ���, with the conjugation performed in the stan-*Electronic address: swalborn@if.ufrj.br
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dard product basis. This is different from the expectation
value of the Hermitian operator �y � �y with respect to the
state ���, due to the complex conjugation of the bra. Equa-
tion �1� does not define a valid measurement prescription.

Nevertheless, it is possible to express concurrence in
terms of a legitimate projective measurement: Indeed, one
can rewrite concurrence in terms of an overlap of a twofold
copy of ���—i.e., ��� � ���—with some state that is an el-
ement of the duplicate Hilbert space H � H—i.e., of H1
� H2 � H1 � H2. The algebraic identity

��*��y � �y��� = 2������� � ���� �2�

holds for ���= ��0011�− �0110�− �1001�+ �1100�� /2—that is,
for the unique state that is antisymmetric with respect to the
exchange of the two copies of the first subsystem �the first
and the third entries of ����, as well as with respect to the
exchange of the two copies of the second subsystem �the
second and fourth entries�. The state ��� is simply the prod-
uct of the antisymmetric state ��1�= ��01�− �10�� /�2 of the
duplicate first subsystem and its analogous counterpart ��2�
for the second subsystem. For a separable state ���= ��1�
� ��2�, one easily verifies

��i����i� � ��i�� = 0 �i = 1,2� , �3�

since ��i� � ��i� is symmetric for any state ��i�. Thus, it be-
comes evident that concurrence vanishes for any separable
state. Furthermore, it is also strictly positive for any nonsepa-
rable state �10�.

From Eqs. �1� and �2� it follows that

c��� = ���� � ���A��� � ��� , �4�

with A=4������. Consequently, concurrence may be ex-
pressed as the expectation value of a Hermitian operator and
may thus be related to a measurable quantity.

Moreover, the formulation of Eq. �4� also has a nice gen-
eralization to arbitrary finite dimensions, where ������ is re-
placed by P−

�1�
� P−

�2�, the direct product of the projectors onto
the antisymmetric parts of the duplicate first and second sub-
systems. These projectors are defined in arbitrary
dimensions—the only difference from the case of qubits is
that they are not one dimensional anymore, which reflects
the fact that there is no single state ��� that distinguishes all
entangled states from the separable ones. With the definition
of concurrence given in Eq. �4� and A=4P−

�1�
� P−

�2�, one not
only ensures that c is nonvanishing for all entangled states,
but this expression is also equivalent to a prior definition of
concurrence �11�,

c��� = �2�1 − Tr�1
2� = �2�1 − Tr�2

2� , �5�

in terms of the purity of the reduced density matrices �1
=Tr2������ or �2=Tr1������—tantamount to the informa-
tion loss on the state of one subsystem �1 or 2� upon tracing
over its complement �2 or 1�.

Equation �4� defines a measurement prescription in terms
of the Hermitian operators P−

�1,2�. This measurement does not
involve collective observables on both the first and second
subsystems, but only on the copies of either one. That is,

concurrence is now expressed in terms of only separable
observables—though on a twofold copy of the state ���. At
first sight, this procedure might seem to be incompatible with
the no-cloning theorem �12,13�. However, this is not the
case: since in any experiment a state has to be prepared re-
peatedly in order to obtain reliable measurement statistics,
the only step one has to take beyond typical experimental
techniques is to replace the individual measurements on each
of the separately prepared copies of a state by a combined
measurement on pairs of those, which should be available at
the same time. It has been known for some time that com-
bined measurements, performed on two copies of a state, can
be more efficient, in terms of information transfer, than indi-
vidual measurements �14�. Also, it is in general possible to
measure polynomial functions of the elements of a density
matrix by finding the expectation value of an observable on
several copies of the density matrix, without performing state
tomography �15–17�. We discuss in the following how such a
collective observable leads to a direct measurement of con-
currence, which is directly implementable in various physi-
cal systems with relative ease.

Equation �5� shows that the degree of mixing of �1 equals
that of �2. Therefore, concurrence can be expressed in terms
of either of those. An analogous choice is left open in the
explicit formulation of Eq. �4�. Indeed, let P+ be the projec-
tor onto the symmetric space, with P++ P−=1. The products
P−

�1�
� P+

�2� and P+
�1�

� P−
�2� project onto states that are globally

antisymmetric—i.e., antisymmetric with respect to an ex-
change of the two copies of the entire bipartite system. The
twofold copy of the system state, however, is globally sym-
metric. Therefore, the expectation values of both of these
operators necessarily vanish with respect to a twofold copy
of any state ���. Consequently, one can also measure P−

�1�

� P−
�2�+ P−

�1�
� P+

�2�= P−
�1�

� 1�2� or P−
�1�

� P−
�2�+ P+

�1�
� P−

�2�=1�1�

� P−
�2�, instead of P−

�1�
� P−

�2�. The expectation values of these
three operators coincide on a twofold copy of ���. In a single
run of an experiment, this simply reflects that, if a measure-
ment on one of the duplicate subsystem reveals an antisym-
metric or symmetric state, then the other duplicate subsystem
is projected onto an antisymmetric or symmetric state. Con-
sequently, concurrence can be measured with a single mea-
surement on only one of the twin subsystems, as long as one
deals with pure states. Experiments with two-photon en-
tangled states obtained from parametric down-conversion,
for example, have demonstrated a high degree of purity �18�.
In other systems, where the degree of purity of the state
might be smaller, a measurement on the second duplicate
subsystems may be employed to experimentally verify the
purity of the state. If the system is in a mixed state �, its
purity is easily related to P− and P+ via 1−Tr�2

=2Tr���2�P−
�1�

� P+
�2�+ P+

�1�
� P−

�2��� �19�.

III. EXPERIMENTAL IMPLEMENTATIONS

The projector P− is, in principle, measurable in any com-
posite quantum system. While in many systems it is techni-
cally very demanding and often virtually impossible, to mea-
sure a complete set of observables, it is indeed rather easy to
measure P− in various systems. In particular, for two-level
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systems, P− is simply the projector onto the singlet state
��−�= ��01�− �10�� /�2.

For photon pairs, the most prominent experimental
method to obtain the probability of projecting two photons in
the singlet state is by using a Hong-Ou-Mandel interferom-
eter: the two photons are injected from different sides of a
beam splitter, and one measures the fraction of the total num-
ber of photons that leave the beam splitter in different mo-
mentum modes �20�, since for the three other Bell states both
photons come out along the same direction. This measure-
ment would be applied on two photons belonging to two
different �entangled� photon pairs, each pair generated by a
nonlinear crystal.

An analogous effect can also be observed with electron-
spin systems in solid-state devices, where the probability to
observe ��−� can be measured simply in terms of current
correlations �21�, or within the framework of cavity QED
�22� and trapped ions �23,24�. Cavity QED can be employed
for the measurement of concurrence of a two-atom entangled
state, repeatedly produced in some experimental setup. In the
first step, one transfers the atomic state to a two-mode cavity
field, initially in the vacuum state �00�. This can be done by
letting each of the atoms in the entangled state be resonant
with one of the modes, so that if the atom enters the cavity in
the upper state �e�, it leaves one photon in the corresponding
mode, exiting the cavity in the lower state �g�:

���ee� + ��eg� + 	�ge� + 
�gg�� � �00�

→ �gg� � ���11� + ��10� + 	�01� + 
�00�� . �6�

Next, one sends a second set of entangled atoms, prepared in
the same state as the first one, through the cavity. The aim
now is to determine the probability of finding one of the
atoms, together with one of the cavity modes, in the Bell
state ��−�= ��g1�− �e0�� /�2. This can be accomplished by us-
ing the technique described in �25�, which proposed a
scheme for teleportation of atomic states using two cavities.
The result yields the concurrence of the two-atom state.

For trapped ions, a possible experimental procedure
would consist in first producing two copies of an entangled
state on two pairs of ions in a trap, using the internal degrees
of freedom of the two ions. One would then map the en-
tangled state of one of the pairs onto two collective vibra-
tional modes �involving the four ions�, and finally one would
measure the Bell states corresponding to the internal degrees
of freedom of one of the atoms of the second pair and one of
the vibrational modes. This measurement can be made by
implementing a controlled-NOT gate between the ion internal
state and one of the vibrational modes �see Refs. �23,24� for
the implementation of controlled-NOT gates in ion traps� and
then applying a � /2 rotation on the internal atomic state.
Measurement of the atomic-state and vibrational-state popu-
lations, which can be done by standard techniques, yields
direct information on the Bell states. Though it is possible in
principle to implement the required projective measurement,
application of this scheme to cavity QED and trapped ions
would require the preparation of highly pure states, which is
not an easy task with present technologies. Twin-photon

systems are privileged in this respect, since purities of the
order of 99% have been reached in recent experiments �18�.

IV. EXPERIMENTAL REALIZATION WITH TWIN
PHOTONS

Among other systems, twin photons generated by sponta-
neous parametric down-conversion allow for an efficient ex-
perimental demonstration of the two-copy scheme. Projec-
tion of two photons onto the antisymmetric Bell state using
Hong-Ou-Mandel interference has been performed in the
context of teleportation �26� and entanglement-swapping ex-
periments �27,28�: Two pairs of photons were produced via
parametric down-conversion using the “double-pass” geom-
etry, in which a laser pulse propagates through the nonlinear
crystal source and is then reflected by a mirror back through
the crystal. When one pair of photons is produced in each
interaction, two photons �one photon of each pair� are inci-
dent simultaneously on different sides of a 50-50 nonpolar-
izing beam splitter. The registration of a two-photon coinci-
dence count of one photon in each output mode of the beam
splitter signals the measurement of the antisymmetric Bell
state. In �27,28�, two photons taken from two different copies
of a maximally entangled state were projected onto the anti-
symmetric state, as is required to determine the concurrence
using Eq. �4�. However, only maximally entangled states
were used in �27,28�, as this maximizes the amount of en-
tanglement to be swapped. In contrast, Eq. �4� provides a
recipe to directly infer the concurrence of arbitrary pure
states. Since this calls for an expectation value, also the reg-
istration of all possible final states of one photon and its
copy—symmetric as well as antisymmetric Bell states—is
required for proper normalization.

Finally, to create two perfect copies of polarization-
entangled photons one would have to prepare the first pair,
store them, and prepare the second pair with the same prepa-
ration system. Thus, to perform the concurrence measure-
ment using two-photon interference, one would need her-
alded photon pairs �i.e., the availability of the photons is
marked by a trigger signal�, as well as a precision photon
memory device, to assure that the photons of different pairs
“meet” at the beam splitter. However, present-day parametric
down-conversion sources are probabilistic. To overcome the
need for heralded photons and storage one could create two
pairs simultaneously, one photon in each of four different
spatial modes, as in Refs. �26–28�, and use different prepa-
ration devices for each entangled photon pair. In this case the
copies are not perfect, since there will be errors due to im-
perfect calibration and alignment of the different preparation
systems.

An essentially equivalent method is to generate two pho-
tons instead of four and utilize two different degrees of free-
dom for each photon �29�—polarization and momentum, for
example—to store two copies of the state. This significantly
simplifies the measurement apparatus, as a complete Bell-
state measurement of polarization-momentum states can then
be realized with perfect efficiency using linear optics only
�30�. Recently, we reported the experimental determination
of concurrence using this encoding scheme �8�. The experi-
mental setup is depicted in Fig. 1.
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A. Preparation

Hyperentangled states—i.e., states which bear simulta-
neous entanglement in two or more different degrees of
freedom—are routinely prepared with parametric down-
conversion �29,31�. Instead of pumping a single crystal, one
can use two crystals, aligned with their optical axes perpen-
dicular. If one of the crystals generates horizontally polarized
photons, then the other yields pairs of vertically polarized
photons. The pump laser generates a pair of photons that
may be horizontally or vertically polarized, depending on the
crystal that generated the pair. These two possibilities are
coherent as long as the coherence length of the pump laser is
larger than the length of the crystals. In this case, the state of
the photon pair is ��0�=��H��H�+��V��V�, where H and V
stand for horizontal and vertical linear polarization, respec-
tively. The complex coefficients � and � are directly deter-
mined by the polarization state of the pump beam, which can
be controlled using a half- and quarter-wave plate �3,18�.
Using additional waveplates in the paths of the down-
converted photons, one can create even more general states.
For example, a half-wave plate placed in the path of photon
2 yields the state ���=��H��V�+��V��H�.

In addition to the polarization, the momentum degrees of
freedom can be used to encode a copy of the pure state ���.
Contrary to polarization entanglement, down-converted pho-
tons are naturally entangled in momentum as a consequence
of the phase matching conditions, and thus it is also possible
to use this same source to create states which are entangled
in momentum �29,32�. In fact, it is difficult to produce twin
photons that are not entangled in momentum. Two distinct
spatial modes a and b can be selected for each photon using
a double aperture. Due to the emission cones of the down-
converted photons, it is more convenient to use a vertically
aligned double aperture, as all the collected photons have
approximately the same frequency spectrum �18�. The ex-
periment reported in Ref. �8� used two vertically aligned
1-mm2 squares separated by 1 mm �the apertures shown just
after the crystals in Fig. 1 were drawn in the horizontal for

convenience�. The magnitude of the coefficients � and � of a
state ���=��a��b�+��b��a� can be controlled by changing the
position of the double apertures, since the momentum spatial
distribution has a Gaussian profile. Alternatively, neutral
density filters placed in front of the apertures could be used
to control the relative weights of � and �. The relative phase
between � and � can be controlled by tilting a thin glass
plate in one of the modes.

The combination of these two degrees of freedom allows
for easy preparation of entangled states such as

��� � ��� = ���HV� + ��VH�� � ���ab� + ��ba�� . �7�

Thus, after identification of the momentum state �a� as the
equivalent of the polarization state �H� and analogously for
�b� and �V�, one ends up with two copies of the same state
���, stored in the respective degrees of freedom, of a single
pair of photons. Equation �7� describes a general state in a
given Schmidt basis. All other states can then be obtained by
the application of suitable local unitary transformations
�waveplates, etc.� or can be prepared directly using a slightly
different experimental setup �33�.

For the pure state in Eq. �7� one needs to assume an
idealized preparation process. In any laboratory experiment,
there is some residual mixing. The purity of the polarization
state is limited by so called “which way information”—that
is, the possibility of distinguishing from which crystal the
photon pair was emitted renders the �HH� and �VV� compo-
nents incoherent, which ruins the entangled state. Conse-
quently, it depends on the spatial overlap between vertical
and horizontal modes. It is possible to obtain arbitrarily pure
states by spatial mode filtering, which is done by allowing
the down-converted photons to propagate in free space
�about a meter across the optical table is sufficient� and using
pinholes to select low-order spatial modes. The same filter-
ing can be achieved using lenses instead of free propagation
�34�. In typical experiments, purities higher than 99% have
been obtained �3,18�. In �8� the purity of the state, estimated
by performing polarization interference measurements, was
approximately 95%. Narrower crystals or narrower pinholes
help to increase this value, at the expense of reducing the
flux of detected photon pairs.

The two-crystal source has some advantages, in compari-
son to sources using a single type-II crystal �35�. With the
two-crystal source, no longitudinal walk-off compensation is
required, since any pair of photons have the same polariza-
tion and thus experience the same amount of temporal delay
due to birefringence of the crystals. Coherence of the state is
assured when the coherence length of the pump laser is
larger than the width of the two-crystal ensemble. The phase
of the state depends only on the phase difference between the
pump field in each crystal and thus is very stable.

The purity of the momentum state depends essentially on
the mode filtering, crystal length, and the spectral properties
of the pump laser beam. Typical momentum interference ex-
periments �32,36� report results corresponding to purities of
approximately 90%, due to errors in temporal and spatial
mode matching. Given the small apertures used to select the
momentum modes, the narrow bandwidth interference filters,
and the proximity of the momentum modes, as well as the

Lc
HWP

pump
laser

PBS

POL

D2

V

V
H

H

H,V H,V

a1
b1

D1

type-I
crystals

HWP POLa2
b2

a1

b1

HWP QWP

CNOT

source

Lc

HWP

FIG. 1. �Color online� Experimental setup for entanglement
measurement on two copies of the quantum state. Photons en-
tangled in both polarization and momentum are produced by pump-
ing two nonlinear crystals with a laser beam and detected by detec-
tors D1 and D2. A CNOT gate, where the change of the momentum of
one photon is conditioned on its polarization, is implemented with a
polarization-sensitive beam splitter �PBS� and two cylindrical
lenses Lc.
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Sagnac interferometer configuration used in the experiment
reported in Ref. �8�, we estimate that the purity of the mo-
mentum state can be at least 90%.

B. Measurement

For the measurement of concurrence, one needs to find
the probability that the state of a duplicate subsystem is ob-
served in the singlet state ��−�= ��01�− �10�� /�2. For the two
copies of the first subsystem in the specific setting of Ref.
�8�, this antisymmetric state reads ��−�= ��Hb�− �Va�� /�2.
Thus, one single collective measurement in the Bell basis

��±� =
1
�2

��H� � �a� ± �V� � �b�� , �8a�

��±� =
1
�2

��H� � �b� ± �V� � �a�� , �8b�

comprised of both momentum and polarization, is required.
Measurements in entangled bases are typically far more

involved than measurements in separable bases. Therefore,
the task is significantly eased if the Bell states can be
mapped onto separable states by a suitable transformation.
As is well known, this can be achieved with a controlled-NOT

�CNOT� gate �37,38�, where the evolution of one subsystem is
conditioned by the state of the second. In the present case,
the evolution of the momentum state is controlled by the
polarization, which can be realized by a polarization-
sensitive Sagnac interferometer as depicted in Fig. 1. The
input photons are first incident on a polarizing beam splitter
�PBS�, which transmits H-polarized photons and reflects
V-polarized photons, so that H- and V-polarized photons
propagate in opposite senses within the interferometer and
leave through the same exit port. Cylindrical lenses are used
to transform the momentum modes. Since the different po-
larizations propagate in opposite directions, the action of the
cylindrical lenses Lc indeed depends on the polarization
states, as is described in detail in the following section.

C. Cylindrical lenses

Figure 2 shows a set of situations in which an object is
imaged with a cylindrical lens or lenses. Figure 2�a� shows
the simplest case where the image is inverted in the horizon-
tal direction �flipped around the vertical axis� and unchanged
with respect to the vertical direction. This is the important
difference in comparison with a spherical lens, where the
image is inverted in both vertical and horizontal directions.

Figure 2�b� shows what happens when the object is ro-
tated with respect to the cylindrical lens axis, which is ver-
tical in Fig. 2�b�. The image is again flipped around the ver-
tical axis, which is equivalent to a rotation by twice the
object angle and inversion with respect to the horizontal di-
rection. In Fig. 2�b� we start with an image aligned at −45°,
ending up with an inverted image aligned at +45° with re-
spect to the vertical. Therefore, the result is a total rotation of
90°. If the initial object is a line “�,” instead of an “F,” the
inversion has no physical effect and the image is equivalent

to the object field rotated by twice the object angle.
In Fig. 2�c� we show that two cylindrical lenses in a con-

focal arrangement are equivalent to a single lens. This
equivalence preserves the rotation rule: an object imaged by
a double-lens system is rotated twice the angle between ob-
ject and lens axis.

There are two more subtle points to the use of the cylin-
drical lenses within the interferometer. Since the photons
travelling in the interferometer undergo an odd number of
mirror reflections while propagating between the two cylin-
drical lenses, one also has to take into account the action of
these mirrors when aligning the lenses. Figure 3 shows the
effect of a mirror reflection on the propagation of two paral-
lel beams. Considering a given propagation axis, the reflec-
tion inverts the positions of the beams with respect to the
propagation direction. The one to the right of the propagation
axis at the input will be on the left after the mirror reflection.
Therefore, the effect of a mirror is to invert an image with
respect to the normal plane. In the case of three mirrors

FIG. 2. Image formation by a cylindrical lens: �a� the image is
flipped with respect to the vertical axis, �b� the image is rotated 90°
with respect to the object, and �c� two confocal lenses are equiva-
lent to a single lens.

Mirror
FIG. 3. Effect of reflection through a plane mirror.
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between the two cylindrical lenses as in Fig. 1, the light field
will be inverted with respect to the horizontal after three
reflections. Thus, a light beam propagating in this interfer-
ometer will see the second cylindrical lens inverted with re-
spect to the horizontal. For this reason it is necessary to align
the cylindrical lenses at +45° and −45° with respect to the
vertical axis. This inversion compensates the reflections at
the three mirrors and the effective propagation of the light
beam can be described by an arrangement like the one in Fig.
2�d�.

The second subtlety is that, since �i� the H-polarized com-
ponent of the field suffers one mirror reflection before reach-
ing the lens system, while �ii� the V-polarized component of
the field suffers two reflections before reaching the lens sys-
tem, and �iii� the H- and V-polarized photons propagate in
opposite directions within the Sagnac interferometer, the H
and V polarization components encounter the cylindrical lens
systems aligned at +45° and −45°, respectively. The momen-
tum modes of the H-polarized photons are thus rotated by
90°, while the momentum modes of the V-polarized photons
are rotated by −90°. The result is a relative 180° rotation,
which is equivalent to a CNOT gate, defined by the operation

�H� � �a� → �H� � �ã�

�H� � �b� → �H� � �b̃�

�V� � �a� → �V� � �b̃�

�V� � �b� → �V� � �ã� ,

where ã and b̃ denote the two momentum modes that are
obtained from a and b by the overall 90° rotation caused by
the interferometer. It is possible—but unnecessary—to rotate

ã and b̃ back to the vertical axis using a second cylindrical
lens system.

Eventually, this operation takes the Bell-states of Eq. �8�
into separable states ��+�→ �+ � � �ã�, ��−�→ �−� � �ã�, ��+�
→ �+ � � �b̃�, and ��−�→ �−� � �b̃�, where �± �= �H�± �V�. The
identification of all four polarization-momentum Bell states
can then be performed by measuring the polarization and
momentum in adequate bases.

D. Fine-tuning of the copies

For the present measurement approach it is vital to have
two precise copies �39�, such as Eq. �7�, instead of

��� � ��� = ���HV� + ��VH�� � ����ab� + ���ba�� . �9�

The prefactors � and � of the polarization state can be de-
termined via an initial calibration of the setup without the
interferometer. The absolute values of �� and �� can be ob-
tained by the normalized coincidence counts of the detectors
D1 at positions a1 and b1.

The polarization and momentum states prepared in this
fashion are nearly perfect copies of each other: they have the
same Schmidt coefficients, and given the identification of
local polarization and momentum bases, their Schmidt bases

coincide—up to a difference of local phases. Since concur-
rence is a function of the Schmidt coefficients only, both
copies do have the same value of concurrence, and, as we
elaborate later in Sec. V A, the present measurement of con-
currence is indeed insensitive to this difference of local
phases.

It is important, however, that these phases have the same
value for each experimental run, so that a pure state is effec-
tively produced. The phase of the polarization state depends
basically on the pump polarization state, which can be easily
controlled. Other problems, like fluctuations of the refractive
index of the crystals due to temperature changes, are insig-
nificant. All experiments �see Refs. �3,18�, for example� per-
formed with entangled polarization states produced by this
kind of source have shown phase stability. The phase of the
momentum state depends basically on the propagation across
the optical table. In our setup, different momentum modes
propagate very close to each other and pass through the same
optical components, due to the convenient Sagnac interfer-
ometer configuration. Therefore, any relative phase shifts are
negligible. The phase stability of the interferometer in Ref.
�8� was tested using first-order interference.

V. ERRORS DUE TO IMPERFECT PREPARATION

So far, we have assumed that the preparation of the twin
states is perfect. Since a laboratory experiment can only be
conducted with limited precision, we discuss here the conse-
quences of small deviations from an ideal preparation. In this
context one needs to distinguish the following two cases.
First, there is a systematic error, such that the two “copies”
may not match exactly, though the preparation of both first
and second copies individually is reliable. And second, the
preparation process could suffer from fluctuations from run
to run, or, equivalently, it produces a mixed state.

A. Imperfect copies

Let us start with an investigation of the consequences that
imperfect copies yield on the concurrence measurement. In-
stead of an ideal twofold copy ��� � ���, we assume that we
are dealing with two different states ��� � ���� with
��� ������1. Thus, we can express ���� as

���� = �1 − 2��� + �
�� , �10�

with �� �
��=0. The quantity cm that one actually measures
in a laboratory experiment reads

cm = ���� � ����A��� � ���� . �11�

In contrast to the case of exact copies above, the value of cm
now depends on the choice of A; i.e., it depends on whether
one measures 4�P−

�1�
� P−

�2��, 4�P−
�1�

� 1�2��, or 4�1�1� � P−
�2��.

However, the matrix elements of the kind ��� � ���P−
�1�

� P+
�2���� � �
�� vanish since P−

�1�
� P+

�2� is globally antisym-
metric, whereas ��� � ��� is globally symmetric. Therefore,
the differences between the different choices for A are of
order 2 and can be neglected in a first-order approximation.
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In general, the states ��� and ���� have a different value
of concurrence, so before one can estimate the quality of the
measurement of c, one needs to agree on what one wants to
measure. Unless there is good reason to assume that the
preparation of one “copy” is more precise than the other, we
need to assume that both copies have been prepared with
imperfection. Therefore, a good figure of merit is obtained
by the comparison of cm with the mean value �c���
+c����� /2, which reads up to first order in 

�c��� + c�����/2 = c��� +


2c���
���� � ���A��� � �
��

+ �
�� � ���A��� � ���� . �12�

With the analogous expansion for cm, one easily verifies
that the difference of �c���+c����� /2 and cm is of order 2,
such that the present measurement scheme is insensitive to
imperfect preparation of the copies, in first order.

Whereas there is no imperfection �
�� that spoils the con-
currence measurement in first order, typical errors have a
detrimental impact of second, or higher order, with a weight
which can depend on the choice of A. So, if one has an idea
of what error there might be in the preparation process, one
can compensate for that in some cases. For example, in the
preparation in �8� it was guaranteed that the two states ���
and ���� had the same Schmidt coefficients and their
Schmidt bases coincided up to different local phases. In that
case, one can compensate for the error completely by choos-
ing A to be 4�P−

�1�
� 1�2�� or 4�1�1� � P−

�2��. Then, indeed, one
has c���=c����=cm; i.e., the error vanishes exactly.

B. Mixed states

The second source of possible errors may result from an
imperfect preparation procedure that produces mixed states
instead of pure states �39�. A two-crystal type-I down-
conversion source �18�, with improper spatial mode match-
ing and spectral filtering, may produce the state

� = �1 − ������� + ����2�HH��HH� + ���2�VV��VV�� ,

�13�

instead of the ideal pure state ���=��HH�+��VV�. That is,
the phase coherence between �HH� and �VV� is reduced by
1− and � is mixed. Consequently, the actual concurrence of
� is smaller than that of ��� and reads �1�

c��� = 2�1 − ����� . �14�

For the experimentally accessible quantities, however, one
obtains

�4Tr���2�1�1�
� P−

�2��� = �4Tr���2�P−
�1�

� 1�2��� = 2���� .
�15�

Thus, the relative error due to mixing is linear in .
If, however, one is not satisfied with this precision and

aims at a reduction of the error, one can achieve an increase
of precision by a factor of 2 if one measures not only on the
two copies of one subsystem, but on both of the twin sub-
systems. The difference between the experimentally obtained
value

�4Tr���2�P−
�1�

� P−
�2��� = 2�1 −  − 2/2����

	 2�1 − /2����� �16�

and the exact one, given by Eq. �14�, then amounts to only
����.

As a matter of fact, if one performs this second measure-
ment, one does not only measure P−

�1�
� P−

�2�. Since P− and P+

add up to the identity, one also obtains P+
�1�

� P−
�2� and P−

�1�

� P+
�2� without any further experimental effort. Thus, one can

employ the estimate of concurrence for mixed states �19�,

c��� � �Tr���2V� = 2�1 − ����� , �17�

with V=4�P−
�1�

� P−
�2�− P−

�1�
� P+

�2��, and, indeed, one obtains
the exact result given by Eq. �14�.

C. Imperfect copies of mixed states

It is not necessarily guaranteed that a preparation process
suffers only from one of the above imperfections. Since it
might be that one ends up preparing imperfect copies of
mixed states, let us look at the consequences thereof for the
measurement of concurrence. Suppose, for instance, that one
of the copies is in a pure state � given by Eq. �13�, with 
=0, while ��, the state of the second copy, has a finite value
of . In that case the measurement of A=4P−

�1�
� P−

�2� gives
cm=2�1− /4�����; i.e., the experimentally obtained value
lies between the two values of concurrence for the imperfect
twin brothers—i.e., c����cm�c����. If on the other hand
the bound of �19� is measured on two imperfect twins, then
one obtains a valid bound for the product of the concurrences
of the two states �40�:

c���c���� � �Tr�� � ��V� . �18�

That is, by assuming that one of the states was maximally
entangled, one always finds a valid lower bound for the other
one.

VI. MULTIPARTITE GENERALIZATIONS AND SCALING

The crucial figure of merit for the present approach is its
scaling behavior with increasing system size: whereas a bi-
partite qubit system is well suited for academic investiga-
tions, only the applicability to large systems gives an honest
estimate of the capabilities of the present measurement
scheme.

A complete tomographic measurement of a quantum state
of a �d1�d2�-dimensional system is comprised of �d1d2�2

−1 individual observables. If, however, the state to be char-
acterized is pure, concurrence can also be inferred by
quantum-state tomography on only one subsystem, since it is
a function of the reduced density matrix of a single sub-
system �11�. In that case a tomographic measurement is com-
prised of d2−1 observables, where d is the dimension of the
smaller subsystem.

In the presently described approach, concurrence is in-
ferred with a single observable. However, in laboratory ex-
periments with high-dimensional quantum systems it might
not always be practical to implement the projection onto the
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antisymmetric subspace in terms of a single measurement.
Depending on the actual system one might need to perform
projective measurements on individual antisymmetric states.
Though even under the assumption of the worst case—that
is, if one needs to decompose the projection onto P− into
projections onto one-dimensional subspaces—one has di�di
−1� /2 �i=1,2� measurements per subsystem to perform.

For a system of two three-level systems �qutrits� this
amounts to 9 measurements as compared to 80 for quantum-
state tomography on mixed states; for pure states, the present
method requires 3 measurements, whereas tomography needs
8.

Also for multipartite generalization of concurrence �41�
the present methods scales favorably as compared to
quantum-state tomography. The exponential growth of global
observables with increasing number of subsystems makes the
characterization of entanglement properties of large states a
very tedious task. Tomography on an n-partite system of qu-
bits requires the determination of 4n observables. With the
present method, there are two observables to be measured
per subsystem: the projections onto P− and onto P+. The
number of independent n-partite system observables com-
prised of P± reads 2n−1	2n, that is the square root of the
number of observables to be measured for quantum state
tomography. For the largest system in which entangled states
have been prepared so far �4�, this means that instead of
65 535, only 256 observables would have to be measured in
the present approach.

VII. CONCLUSION

In conclusion, we have shown that the concurrence of a
pure state can be measured directly in various systems, pro-

vided one has access to two copies of the state. We have
demonstrated this measurement experimentally using pho-
tons entangled in two degrees of freedom, which has allowed
us to create the two copies on a single pair of entangled
photons. Whereas state reconstruction and subsequent math-
ematical determination of entanglement is a viable and suc-
cessfully demonstrated option for systems with few sub-
systems, more efficient approaches are required for larger
objects. The strong appeal of our method is the association of
a physical meaning to concurrence in terms of the results of
a projective measurement on a twofold copy of the pure
state. This was the first demonstration of the measurement of
functions of the density matrix through projective measure-
ments on multiple copies of a state. The proof-of-principle
experiment described here suggests that it may be possible to
avoid the large numbers of measurements required for state
reconstruction and reliably characterize the entanglement
properties directly, even in the unavoidable presence of ex-
perimental imperfections.
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