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We present a quantum circuit that implements a nondemolition measurement of complementary single-
and bipartite properties of a two-qubit system: entanglement and single-partite visibility and predictabil-
ity. The system must be in a pure state with real coefficients in the computational basis, which allows a
direct operational interpretation of those properties. The circuit can be realized in many systems of interest
to quantum information.

DOI: 10.1103/PhysRevLett.98.250501 PACS numbers: 03.67.Mn, 03.65.Ta

Quantum measurements frequently lead to a ‘‘back-
action’’ on the observable being measured. This is the
case, for instance, in the measurement of the position of
a particle, which disturbs its momentum, thus affecting the
future values of its position. This backaction can be over-
come by using a quantum nondemolition (QND) scheme,
introduced in [1]. In QND measurements, the observable
OS of a system S is measured by detecting a change in an
observable OP of a probe P coupled to S during a finite
time, without perturbing the subsequent evolution of OS;
after the measurement, the final state remains an eigenvec-
tor of OS. Experimental implementations have been per-
formed in the optical domain, for measuring the intensity
of an electromagnetic field [2] or the polarization of a
photon [3], and in cavity quantum electrodynamics [4].
The characterization of QND measurements on qubit sys-
tems was discussed in Ref. [5].

Extension of the QND concept to bipartite systems poses
quite a challenge, since entanglement measures, like the
concurrence introduced by Wootters [6], do not have a
direct operational meaning. Also, in the same way that
the measurement of the photon number leads to complete
uncertainty on the phase of the field [7], determination of
the entanglement of a pair of qubits should lead to uncer-
tainty on a complementary variable, and vice-versa.
Identification of this complementary quantity is thus an
important ingredient in understanding the QND scheme.

In this Letter, we propose a quantum circuit for QND
measurements of complementary variables in two-qubit
systems described by pure states with real coefficients in
the computational basis—named rebits in Ref. [8]. This
restriction allows one to attach an operational meaning to
those variables. One of them is the concurrence, while the
other is a measure of the single-partite character of the
global system. QND determination of the entanglement of
a pair of qubits generates maximally entangled states even
if the incoming state is a product state, analogous to the
QND measurement of the number of photons in a cavity,
which results in a Fock state [7]. It also leads to complete
loss of single-partite properties. These are expressed as a

sum of two contributions, standing for predictability and
visibility, which in a Young double-slit interference corre-
spond to the well-known duality between which-way in-
formation and the appearance of interference fringes.
Bipartite and single-partite properties are thus seen as
complementary aspects, generalizing the concept of
wave-particle duality to bipartite systems.

The concept of complementarity is commonly related to
mutually exclusive properties of single-partite quantum
systems, the best known example being provided by the
quantum interpretation of Young’s double-slit experiment.
Quantitative relations between visibility of interference
fringes and distinguishability, corresponding to which-
path information, were derived in [9,10]. Quantification
of the concept of complementarity for multipartite systems
is a relatively recent undertaking. A complementarity re-
lation between single- and two-particle visibility (which is
an intrinsic bipartite property) was introduced in Ref. [11].
In [12], a possible connection between the distinguish-
ability and an entanglement measure was hinted at, and
in [11,13] an intimate relation was established between
concurrence [6] and the two-particle visibility in an inter-
ferometric setup. Prompted by these observations, in [14],
it was shown that there is an underlying generalized com-
plementarity relation of which these more restricted rela-
tions emerge as special cases. For two-qubit pure states, the
general complementarity relation of [14] can be mathe-
matically expressed as

 C 2 �V 2
k � P 2

k � 1; (1)

where the ingredients are the concurrence C, a genuine
bipartite entity, and the single-partite visibility V k and
predictability P k (for particle k � 1, 2). For mixed states,
the sum of the three terms on the left-hand side of the above
equation is smaller than 1.

For a pure state j�i, the visibility V k, a measure of the
single-particle coherence (wavelike aspect), is defined as
V k � 2jh�j��k j�ij, in terms of the Pauli matrix ��k �
��xk � i�

y
k�=2. Perfect visibility (V k � 1) is obtained for

the states �j0i � exp�i��j1i�=
���
2
p

.
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The predictability P k, the particlelike aspect, a measure
of the single-particle relative population, is defined for a
pure state as P k � jh�j�

z
kj�ij. Perfect predictability

(P k � 1) is obtained for the eigenstates of �z, that is, the
states j0i and j1i.

Finally, for pure states, the concurrence is defined as [6]

 C � jh��j�y 	 �yj�ij: (2)

One should note that the visibility and the predictability
are not invariant under local (single-particle) unitary trans-
formations, which can actually transform one into the
other. For instance, a unitary transformation takes the
maximum-predictability state j0i into the maximum-
visibility state �j0i � ei�j1i�=

���
2
p

. However, the quantity
S2
k � V 2

k � P 2
k is invariant under local unitary transfor-

mations and can be considered as the proper measure for
the single-partitedness of the global system. With this
definition, one can read Eq. (1) as a duality relation be-
tween bipartite and single-partite properties,

 C 2 � S2
k � 1: (3)

One may say therefore that the single-partite property and
the bipartite property of a two-particle state are comple-
mentary just as the wave and particle properties of single-
particle systems are complementary. While visibility and
predictability are properties of an individual particle and
exhaust for a single-particle system the full content of
wave-particle duality, for a bipartite system, the concur-
rence, a genuine bipartite quantity, also enters into the
complementarity relation.

We now discuss in detail our method for implementing a
QND measurement of the complementary quantities in
Eq. (1). To this end, we first note that a general bipartite
pure qubit state can be written in the Bell basis as

 j�i � �j 
i � �j �i � �j�
i � �j��i; (4)

where j �i��j10i�j01i�=
���
2
p

, j��i � �j11i � j00i�=
���
2
p

are the Bell states and j�j2 � j�j2 � j�j2 � j�j2 � 1.
For this state, one has

 V 1
2
� 2j<����� ���� � i=���� � ����j; (5)

 P 1
2
� 2j<����� ����j; (6)

 C � j�2 
 �2 
 �2 � �2j: (7)

The definition of concurrence involves state conjuga-
tion, a nonphysical operation, and therefore this quantity
cannot be directly measured in the general case. For pure
states, direct detection of entanglement has been demon-
strated by making a measurement on two copies of a state
[15]. If one measures just one copy at a time, however, one
must further specialize the state in order for concurrence to
be given an operational meaning. Equation (2) implies that
concurrence is the magnitude of the average of�y 	 �y for
all states with real coefficients in the computational or

Bell-state basis. Therefore, it can be given an operational
meaning for this class of states, thus providing the possi-
bility of directly measuring each term in Eq. (1). For this
reason, from now on we will be dealing only with the case
of real coefficients. Even though this limits the general
applicability of the method, one should note that real
quantum computation has the full quantum computation
power as was shown in Ref. [16]. Also, any state with com-
plex coefficients in the computational basis can be trans-
formed into a real state with local unitary transformations.

For this class of states, the visibility is given by
jh�j�xj�ij. Therefore, the quantities in Eq. (1) can be
expressed in terms of averages of the operators (taking k �
1 for definiteness) V̂1 � �x 	 1, P̂1 � �z 	 1, and Ĉ �
�y 	 �y. Since these operators do not commute, a QND
measurement of one of them would necessarily spoil the
determination of the other. Thus, for instance, the QND
measurement of Ĉ leads to an eigenstate of this observable,
with eigenvalue �1, yielding a state with maximal con-
currence (equal to one), which is not an eigenstate of V̂1 or
P̂1. In fact, the averages of these operators in the resulting
state are equal to zero, thus yielding zero visibility and
predictability, as expected from Eq. (1). The uncertainty
relation among these three observables is expressed in
terms of the sum of variances ��V̂k�2���P̂k�2���Ĉ�2�
2 (k � 1, 2), where ��O�2 � hO2i 
 hOi2. Since each
variance is at most one, this relation shows that when one
of the observables is perfectly known, the two others
must have maximum variance. Uncertainty relations in-
volving products of variances are not useful in this case
since, for instance, �V̂1�P̂1 � jh�y 	 1ij=4, and the right-
hand side vanishes for an eigenstate of P̂1, so that �V̂1 is
undetermined.

We show now that there is a general circuit, involving
three adjustable parameters, which implements QND mea-
surements of these three observables. We start with a
simpler scheme that measures the concurrence and then
consider a more general scheme, which performs a QND
measurement of all three quantities in Eq. (1).

QND measurement of concurrence.—The correspond-
ing circuit is shown in Fig. 1. It consists of single-qubit
rotations and controlled-not (CNOT) gates, which are the
fundamental building blocks of QND measurements.

The composite state, given initially by Eq. (4), evolves
as follows. The gates Rx��=2� transform it into

|χ
R x (π ⁄2)

(π ⁄2) (π ⁄2)

• R x

R x • R x (−

(π ⁄2)(−

|0

FIG. 1. Quantum circuit for QND measurement of concur-
rence. j�i is the two-qubit input state, the ancilla qubit is initially
in the state j0i, and Rx��=2� � exp�
i��x=4�.
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 j�ij0i ! ��j 
i 
 i�j �i � �j�
i 
 i�j��i�j0i: (8)

The two CNOT gates lead to the state

 ��j 
i 
 i�j �i�j1i � ��j�
i 
 i�j��i�j0i: (9)

After the final rotations, one has

 ��j 
i � �j��i�j1i � ��j�
i � �j �i�j0i: (10)

The final step is to perform the measurement on the ancilla
state. Thus, the conditional outgoing states are

 j�1i �
�j 
i � �j��i

������������������
�2 � �2

p if the ancilla is in j1i

j�0i �
�j�
i � �j �i

������������������
�2 � �2

p if the ancilla is in j0i:

(11)

The concurrences of these states are easily calculated to be
equal to one. Thus, the outgoing state is maximally en-
tangled for any input state, provided the coefficients in the
initial state are real. We can even start with a separable
state such as j00i, for example, and the final state will still
be either j��i or j�
i, depending on the ancilla measure-
ment outcome. The concurrence of the initial state is
determined from the statistics of the measurements on
the ancilla for many realizations of the experiment: jp1 

p0j � j�

2 
 �2 
 �2 � �2j � C���, pi being the proba-
bility of finding the ancilla in state i.

Although entanglement is invariant under local trans-
formations, we undo the rotations in order to end up in a
�y 	 �y eigenvector, avoiding then the backaction. The
circuit thus measures in a QND way the expectation value
h�y 	 �yi, the magnitude of which is the concurrence for
real states.

QND measurement of single- and bipartite features.—In
order to perform QND measurements of all the observables
corresponding to the quantities in the complementarity
relation (1), we need a circuit that allows the measurement
of single-particle features as well. Such a circuit is pre-
sented in Fig. 2.

The previous result can be obtained by setting ~	3 �
��=2�ŷ, so that the ancilla is prepared in a maximally
entangled state j��i. Only j��i and j �i are used, and
these states act as a logical qubit. This circuit is then
completely equivalent to the one in Fig. 1, replacing j0i !
j��i and j1i ! j �i. Here, ~	1 � ��=2�x̂ � 
 ~	2, as in the
previous circuit. A local measurement in the computational
basis distinguishes between j��i and j �i. The probabil-
ities are easily related: p�� � p00 � p11 and p � � p10 �

p01. The concurrence is now given by jp � 
 p��j.
For the QND measurement of V̂k and P̂k, corresponding

to visibility and predictability, we choose ~	3 � 0, which
leads to a separable ancilla state j00i. In this case, the odd
lines of the circuit are decoupled from the even ones, thus
yielding two independent circuits, a natural choice if one
wants to measure single-particle aspects.

A single CNOT gate, without any rotation, would project
the final state onto an eigenvector of �z, that is, onto one of
the computational-basis states. The average of the mea-
surements on the ancilla yield h�zi, and hence this is a
nondemolition measurement of the predictability.
Therefore, measurement of the predictability corresponds
to the choice ~	1 � ~	2 � 0.

The state before the measurement of the ancilla is then

 

1
���
2
p ���
 ��j00ij00i � ��
 ��j01ij01i � ��� ��j10ij10i � ��� ��j11ij11i�: (12)

A measurement on the ancilla leads to an outgoing state with perfect predictability for both qubits. The probabilities for
the several possible outcomes yield the predictabilities of the initial real state:

 j�p00 � p01� 
 �p10 � p11�j � 2j��� ��j � P 1 j�p00 � p10� 
 �p01 � p11�j � 2j��
 ��j � P 2: (13)

The first equation represents the difference between the probabilities of measuring 0 and 1 for the first ancilla, while the
second equation is the difference between the probabilities of finding the second ancilla in either 0 or 1.

For the QND measurement of the visibility, one must perform a �=2 rotation around the ŷ axis in state space, since the
visibility for real states is related to the �x matrix. However, the visibility does change under local rotations; therefore, the
initial rotation must be undone at the end of the circuit, in order to end up in a maximum-visibility state for both qubits.
Thus, one must have ~	1���=2�ŷ�
 ~	2, which leads to the following composite state right before the ancilla measure-
ment:

|χ
Rθ1

• Rθ2

Rθ1
• Rθ2

|0 Rθ3
•

|0

FIG. 2. Universal quantum circuit for QND measurement of
concurrence, visibility and predictability. The dashed box is the
ancilla state preparation and R ~	i

� exp�
i ~� � ~	i�.
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1
���
2
p ���� ��j�ij�ij00i � ��
 ��j�ij
ij01i � ��� ��j
ij�ij10i � ��
 ��j
ij
ij11i�; (14)

where j�i 
 �j1i � j0i�=
���
2
p

.
The ancilla measurement in the computational basis will

project the outgoing state onto a maximum-visibility state.
From the measurement statistics, one can infer the initial-
state visibility for both qubits:

 j�p00 � p01� 
 �p10 � p11�j � 2j��
 ��j � V 1

j�p00 � p10� 
 �p01 � p11�j � 2j��� ��j � V 2:

(15)

With these two measurements, one has a full QND char-
acterization of the single-particle features. The outgoing
state in both cases is separable.

It is easy to check that the above measurement scheme
fulfills all the requirements for qubit QND measurements
listed in Ref. [5]. The outgoing state is, after measurement,
an eigenvector of the measured observable. For instance,
when measuring concurrence, the state of the system be-
comes a �y 	 �y eigenvector. Also, S2

k and the concur-
rence do not change in time due to free local evolution. The
requirements for QND measurements are then fulfilled for
both parts of the complementarity relation in Eq. (3). On
the other hand, visibility and predictability can be inter-
changed between each other depending on the free
Hamiltonian. For many cases of interest, however, the
free Hamiltonian is proportional to (�z 	 1� 1 	 �z)
and, in these cases, the visibility and predictability mea-
surements are themselves QND-like.

The above circuits can be implemented in many systems
of interest for quantum information, since they involve
single-particle rotations and CNOT gates, which have been
demonstrated for instance in trapped ions [17], cavity QED
[18], and with two pairs of twin photons [19].

In conclusion, we have shown that it is possible to
implement independent QND measurements of all the
complementary quantities corresponding to a two-qubit
state, which express its single- and bipartite content. The
restriction to states with real coefficients in the computa-
tional basis seems to be unavoidable in the present context,
since otherwise it is not possible to attribute an operational
meaning to concurrence for measurements realized on
single copies of an ensemble.

These measurements illustrate the complementarity
among single- and bipartite quantities: a QND measure-
ment of entanglement leads to a maximally entangled state,
but spoils the visibility and the predictability for each
qubit. This could have broad implications for quantum
information processing, since after determining the

single-partite or bipartite content of a quantum state, the
state itself can be further processed; elimination of back-
action guarantees that the measured value is preserved.
Thus, after a measurement of entanglement, the resulting
state could be used as a resource in, e.g., teleportation [20]
and quantum cryptography [21] protocols.
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