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Abstract
Since the beginning of quantum physics, the relation between the properties of the microscopic
quantum and the macroscopic classical world has been an important source for the development
of the theory, and has led to new insights on the role of the environment in the transition from
quantum to classical physics. Decoherence affects both coherence and entanglement of open
systems. Quantum optics and cavity quantum electrodynamics have allowed detailed
investigations of this phenomenon, within the framework of microwaves and light waves. In this
paper, I present a personal account of theoretical and experimental developments that have led to
the probing of the subtle frontier between quantum and classical phenomena.
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(Some figures may appear in colour only in the online journal)

1. Introduction: light, the quantum, and the classical

Light was at the onset of quantum physics, and continues to
be a powerful tool to investigate subtle properties of the
quantum world and, in particular, the long-standing problem
of the quantum–classical transition. Coherence and entan-
glement are conspicuous and omnipresent properties of the
microscopic world, but the majority of states allowed by
quantum physics are not seen in the macroscopic world. This
has led the founders of quantum mechanics to raise important
questions regarding the classical limit of this theory.

The correspondence principle was used by Niels Bohr in
his paper on the model of the atom in 1913, as a tool for
building the quantum theory from its expected classical limit,
and explicitly formulated in 1920 [1, 2]. In a paper published
in 1917 [3], Albert Einstein proposes a generalization to
integrable multidimensional systems of the Bohr–Sommer-
feld–Epstein quantization rule. He notes however that non-
integrable systems cannot be quantized in this way, which
implies that the route from a quantum model, based on the
linear Schrödinger equation, to the corresponding classical
chaotic system, is far from trivial.

In 1926, Erwin Schrödinger considers the quantum
solution for the eigenstates of the harmonic oscillator, [4] and
argues that ‘at first sight it appears very strange to try to
describe a process, which we previously regarded as
belonging to particle mechanics, by a system of such proper
vibrations’. He then demonstrates that ‘a group of proper
vibrations’ of high quantum number n and of relatively small
quantum-number differences may represent a particle
executing the motion expected from usual mechanics, i.e.
oscillating with a constant frequency—these are the coherent
states, subsequently studied by Roy Glauber with great detail
[5, 6]. Schrödinger goes back to this question in 1935. In his
critical appraisal on the status of quantum mechanics [7], he
argues, with his famous cat example, that the existence of
quantum superpositions in the microscopic world imply that
they must also exist in the macroscopic world. He realizes
then a fundamental distinction between this new situation and
the one considered by him in 1926: ‘an uncertainty originally
restricted to the atomic domain has become transformed into a
macroscopic uncertainty, which can be resolved through
direct observation... This inhibits us from accepting in a naive
way a ‘blurred model’ as an image of reality.... There is a
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difference between a shaky or not sharply focused
photograph and a photograph of clouds and fogbanks’.

Albert Einstein, in a letter to Max Born in 1954 [8],
considers a fundamental problem of quantum mechanics the
inexistence at the classical level of the majority of states
allowed by quantum mechanics, namely coherent super-
positions of two or more macroscopically localized states. He
argues, in that letter: ‘let y1 and y2 be two solutions of the
same Schrödinger equation. Then y y y= +1 2 also repre-
sents a solution of the Schrödinger equation, with equal claim
to describe a possible real state. When the system is a macro
system, and when y1 and y2 are ‘narrow’ with respect to the
macro-coordinates, then in by far the greater number of cases,
this is no longer true for ψ. Narrowness in regard to macro-
coordinates is a requirement which is not only independent of
the principles of quantum mechanics, but, moreover, incom-
patible with them’.

Decoherence induced by the interaction with the
environment plays an important role in the understanding of
these fundamental questions [9–11]. This interaction leads to
loss of coherence and entanglement. The dynamics of this
decoherence process is thus related to the elusive boundary
between the quantum and the classical world. It also has
strong implications for a practical question: the robustness of
quantum computers, which depend on the resilience of
coherence and entanglement.

The recent development of methods to study the quantum
mechanical behavior of individual atoms and photons has
allowed the experimental investigation of the dynamics of
decoherence [12, 13] and, in particular, of the dynamics of
entanglement in open systems [14–28]. Furthermore, in the
last few years, experiments with light have led to the reali-
zation of multi-partite entangled states, up to 10 000 entan-
gled modes [29], or up to 3000 atoms entangled with the
intermediation of a single photon [30]. This opens new
frontiers both for applications in quantum information and for
new explorations into the frontiers of quantum mechanics. In
particular, as will be shown in this paper, optical setups allow
the investigation of subtle decoherence phenomena, which
help to throw some light on the quantum–classical transition.

This article reviews some of these developments, with
emphasis on the investigations with which I was personally
involved. For a less personal, and therefore much more
embracing review, focusing on the dynamics of entanglement
in open systems, see [28].

2. Schrödinger cats and the decay of coherence

The first experimental probe of the environment-induced
quantum–classical transition was realized in 1996 [12]. The
basic tools were a microwave cavity formed by super-
conducting mirrors (with damping times τ that reach, nowa-
days, a fraction of a second, corresponding to a quality factor

wt=Q of the order of 1010), and a beam of Rydberg atoms.
The experimental setup is sketched in figure 1.

The superconducting cavity is fed by a microwave gen-
erator, which injects a coherent state into the cavity.

Rubidium atoms are excited by a combination of laser and
microwave fields to a high-lying level, with a valence electron
in a circular orbit seeing a shielded core, a system that can be
considered, within a good approximation, a hydrogenoid
atom. The corresponding principal quantum number is of the
order of 50 and the orbital angular momentum quantum
number is =ℓ 49, which implies that this excited state has a
long lifetime (of the order of 30 ms). The transition dipoles
for these excited states are huge, of the order of 1000 atomic
units.

The experiment involves three main steps: (i) the
electromagnetic field in the superconducting cavity is pre-
pared in a single-mode (frequency ω) coherent state, as
mentioned above; (ii) the Rydberg atoms, previously excited
to a state ñe∣ , cross successively a low-Q cavity (R1 in
figure 1), the superconducting cavity C and another low-Q
cavity R ;2 (iii) the atomic state is detected. The low Q of R1

and R2 implies that the field inside these cavities can be
considered as classical, even though it has an average photon
number of the order of one [31]. This field prepares a coherent
superposition of two Rydberg states ñe∣ and ñg∣ .

The relevant atomic levels are sketched in figure 2. The
transition «g e, corresponding to frequency wge, is detuned
by d w w= -C ge from the cavity mode with frequency wC, so
that the atom has a dispersive interaction with the field. Under
this condition, the action of the atom on the field can be
considered as that of a single-atom refraction index, which
induces a phase change in the field. The frequency shift f can

Figure 1. Experimental arrangement for producing and measuring a
coherent superposition of two coherent states of the field in cavity C.

Figure 2. Atomic level scheme for the production and measurement
of a coherent superposition of two coherent states of the
electromagnetic field in a cavity: the transition «g e is detuned by δ
from the frequency wC of a mode of cavity C , and is resonant with
the fields in R1 and R2.
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be obtained from second-order perturbation theory: states ñe∣
and ñg∣ shift the phase of the coherent state añ∣ in opposite
directions by f d= W t 40

2
int , i.e. the product of the Stark shift

per photon and the interaction time tint between the atom and
the cavity field. Therefore, after the atom exits cavity C, the
combined atom-field system is represented by the state

a f a fñ ñ + ñ - ñe gexp i exp i 2[∣ ∣ ( ) ∣ ∣ ( ) ] , which can be
considered as a realization of the typical measurement model,
as discussed by von Neumann [32]: the two coherent states
with different phases mimic two different positions of the
pointer in a measuring apparatus, correlated with two differ-
ent states of the atom. The action of R2 implies that this state
becomes a f a fñ ñ - - ñe exp i exp i{∣ [∣ ( ) ∣ ( ) ]

a f a f+ ñ ñ + - ñg exp i exp i 2∣ [∣ ( ) ∣ ( ) ]} . Detection of the
atom in state ñe∣ or ñg∣ , through an ionization detector, projects
therefore the field onto a superposition of two coherent states
with different phases, an example of a ‘Schrödinger cat’-like
state.

Decoherence is probed by a second atom, sent in the
same initial state as the first one through the three-cavity setup
[33, 34]. Figure 3 illustrates, for the special case f p= 2, the
behavior of the correlation probability P e e T, ;( ) of finding
the second atom in the excited state, if the first one was
detected in this state, as a function of gT , where γ is the decay
rate of the field in the cavity and T is the time interval
between the two detections. In the absence of noise, there is
perfect correlation between the detection of the first and
second atom: the second atom is found in the same state as the
first one. However, noise affects the coherence, the more so
the longer it takes for the probing atom to arrive [34], as
shown in figure 3. The fast decay of the correlation to the
value 1/2, exhibited in this figure, signalizes the loss of
coherence between the two coherent states a f ñexp i∣ ( ) and
a f- ñexp i∣ ( ) , the state becoming the mixture
a f a f a f a fñá + - ñá - Nexp i exp i exp i exp i[∣ ( ) ( )∣ ∣ ( ) ( )∣] ,

where N is a normalization constant. This dynamics was
verified experimentally [12]. The decay of coherence is
exponential, within a very good approximation, with a life-
time equal to the damping time of the cavity field divided by
d 22 , where a f=d 2 sin 22∣ ∣ ( ) is the distance between the
two phasors a fexp i( ) and a f-exp i( ) in phase space. The
larger the average number of photons aá ñ =n 2∣ ∣ in the initial
coherent state, the larger is this distance, and the faster is the
decoherence. For large average photon numbers, this time
scale is much smaller than the one corresponding to the decay
of the field in the cavity, which in figure 3 corresponds to the
tail of the correlation function.

This behavior, which characterizes the quantum–classical
transition in this case, is a conspicuous trait of the quantum
world, which explains the inexistence at the classical level of
the majority of states allowed by quantum mechanics, namely
coherent superpositions of two or more macroscopically
localized states: ‘Schrödinger cats’ have very short lives, the
shorter the fatter they are... On the other hand, coherent states
are much more robust, deserving the name ‘pointer states’
[10], as suggested by the analogy with a measuring device.

This analysis is relevant for understanding how classical
chaotic dynamics may emerge from quantum systems,
described by the linear Schrödinger equation. Decoherence
plays again a major role in driving the quantum system
towards classical trajectories in phase space [35–40]. For a
quantum system that has a classically chaotic limit, the
evolution in phase space generates quantum superpositions
with characteristic interference fringes, which are damped out
through the interaction with the environment, leading to
classical trajectories as the typical action corresponding to the
quantum state becomes much larger than the Planck con-
stant [39].

My involvement in these research themes, plus my early
contributions to the analysis of deviations from exponential
decay in atomic physics [41, 42], led me to consider an
analogous problem concerning entanglement: How robust
should it be under the influence of the environment? Is the
decay law exponential? How does this decay scales with the
number of particles? These questions will be addressed in the
following sections.

3. Two-qubit entanglement and non-exponential
decay

3.1. Measures of entanglement

Regarding entanglement, Schrödinger made a deep statement
in one of his 1935 papers [7], which offers a clue for defining
a measure of entanglement: ‘this is the reason that knowledge
of the individual systems can decline to the scantiest, even
zero, while that of the combined system remains continually
maximal. Best possible knowledge of a whole does not
include best possible knowledge of its parts—and that is what
keeps coming back to haunt us’. Ignorance about parts of an
entangled system is a hallmark of entanglement. This

Figure 3. Probability of detecting the second atom in state ñe∣ if the
first atom is detected in this state. There is a fast decay to the value
0.5, corresponding to the transformation of the coherent super-
position of two coherent states of the field into a statistical mixture,
followed by a slow decay, corresponding to the decay of each
coherent state in the mixture.
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suggests defining an entropic measure for the entanglement of
a pure state.

Entanglement is usually defined by its opposite: a state is
entangled if it is not separable. A separable pure state of n
parties can be written as a product of the states of the parties:

y y yY ñ = ñ Ä ñ Ä ñ... , 1n n12 ... 1 2∣ ∣ ∣ ∣ ( )

while a separable mixed state of n parties can be written as

 år r r r= Ä Ä
m

m
m m m

mp p... , 0 1, 2n n12 ... 1 2 ( )

meaning that, with probability pμ, it can be found in the
product state r r rÄ Äm m m... n1 2 .

For pure states, two possible measures are the Von
Neumann entropy corresponding to the reduced density
matrix rr of one of the parts, r r r= -S Tr logr r rN 2( ) [ ], and the
linear entropy r r= -S 2 1 Trr rL

2( ) ( ). Both definitions lead to
the value zero if the global pure state of the system is a
product of the states of its parts, since then each part is a pure
state. One has in this case a separable (non-entangled) state.
The normalization is chosen so that, for two qubits, both
entropies have a maximum value equal to one, corresponding
to maximal ignorance about the state of each part. This
defines the maximally entangled states of two qubits, for
which r = 1 2r ( ) , where  is the unit 2×2 matrix. So are
the Bell states: Y ñ = ñ Ä ñ  ñ Ä ñ 0 1 0 1 2A B A B∣ ([∣ ∣ ∣ ∣ ) ,
F ñ = ñ Ä ñ  ñ Ä ñ 0 0 1 1 2A B A B∣ ([∣ ∣ ∣ ∣ ) , where ñ0∣ and ñ1∣
are orthogonal states of a two-level system.

These measures do not work however for mixed states,
for which ignorance of the state of each party does not cor-
respond necessarily to entanglement. Equation (2) implies
that the state of each party is not completely known, even
though the global state is separable.

If the global state of a system can be decomposed as in
(2), the state is separable. However, it is usually very difficult
to find such a decomposition for a general state.

A necessary condition for separability was first noted by
Asher Peres [43]. It is based on the operation of partial
transposition, which is not positive-definite, as opposed to the
transposition of a matrix. According to Peres, if ρ is separ-
able, then the partially transposed matrix is positive, that is,
the density operator has a positive partial transpose (PPT):

år r r r= Ä Ä Ä
m

m
m m mp ... ... , 3n

T
i n12 ... 1

Ti ( ) ( )

which follows immediately from the fact that the transposition
of the density matrix rmi does not change its eigenvalues.

This condition was shown to be necessary and sufficient
for bipartite 2× 2 and 2× 3 systems by the Horodecki family
[44]. For higher dimensions, it is possible to find PPT states
that are entangled.

These criteria have led to the definition of a measure of
entanglement, called negativity [45, 46]. It is defined by the
expression

 år lº -2 , 4AB
i

i( ) ∣ ∣ ( )

where l -i are the negative eigenvalues of the partially
transposed matrix. The normalization is chosen so that  = 1

for a Bell state. It is clear from the above comments that, for
dimensions higher than 6,  = 0 does not imply separability.
Entangled states for which  = 0 are said to have bound
entanglement [47], designation corresponding to the fact that
they cannot be transformed into maximally entangled states
through distillation operations.

For two qubits, Wootters [48] introduced another mea-
sure of entanglement, the concurrence  , given by

 = Lmax 0, , 5{ } ( )

where

l l l lL = - - - , 61 2 3 4 ( )

and the liʼs are the eigenvalues, in decreasing order of
magnitude, of the matrix *r s s r s sÄ Äy

A
y
B

y
A

y
B( ) ( ), the

conjugation operation being done in the computational basis
ñ ñ ñ ñ00 , 01 , 10 , 11{∣ ∣ ∣ ∣ }, where ñ º ñ Ä ñ00 0 0A B∣ ∣ ∣ . For separ-

able states,  = 0, while  = 1 for maximally entangled
states. For pure states,  reduces to the square root of the

linear entropy:  r= -2 1 Tr r
2( ) .

These measures should not be taken, however, as a tool
for comparing entanglement of different states. Indeed, the
ordering of entangled states depends on the measure. As
shown in [49], states with the same negativity may have
different concurrences, and vice versa. However, all measures
are defined so that they vanish for separable states.

3.2. Probing the dynamics of entanglement with light

The decay of entanglement may be remarkably different from
that of coherence. As shown by several authors [50–56],
entanglement may vanish at finite times, with non-exponen-
tial decay, before coherence disappears.

Here we discuss this peculiar dynamics within the fra-
mework of a paradigmatic example: the spontaneous decay of
a two-level atom [55]. Each qubit of an entangled pair cor-
responds to a two-level atom, with excited and ground states
ñe∣ and ñg∣ , respectively. The dynamics of each atom is

described by the the system of equations

ñ Ä ñ  ñ Ä ñ

ñ Ä ñ  - ñ Ä ñ + ñ Ä ñ

g g

e p e p g

0 0

0 1 0 1 , 7

S E S E

S E S E S E

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ( )

where, for a decaying atom, = - -Gp t1 exp( ). The
subscript S stands for system, while E stands for environment.
With this choice of p, the above system of equations—usually
named ‘amplitude channel’ or ‘amplitude map’—is essen-
tially the one derived by Weisskopf and Wigner in 1930 [57].
The first equation above states that, if the atom is in the
ground state, and there are no photons in the environment,
then the global state does not change. The second equation
corresponds to the situation in which the atom is initially in
the excited state, and the field (environment) is in the vacuum
state. There is then a probability p that the atom decays,
releasing one photon into the environment, and a probability
- p1 that it remains in the initial state. The solution of the

above equation, traced out with respect to the environment,
coincides with the result obtained from the usual master
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equation for the decay of a two-level atom, in the Markovian
approximation.

One should note, however, that the same set of equations
could be used to describe an atom interacting with a single
mode of the electromagnetic field in a cavity, by setting
= Wp tcos 22( ), where Ω is the Rabi frequency. It is more

general, therefore, to consider the evolution of the system as a
function of p, rather then t. This is the strategy adopted
in [14].

Starting with a generic two-qubit entangled state, one
applies the above evolution to each of the two qubits, one
traces out the environment, thus finding the evolution of the
two-qubit reduced density matrix, from which one calculates
either the negativity or the concurrence. If one takes for
definiteness the initial two-qubit state as

a bY ñ = ñ + ñgg ee0 , 8∣ ( ) ∣ ∣ ( )

then the concurrence, which in this case coincides with the
negativity for all values of p, is given by

 b a b= - -p pmax 0, 2 1 . 9{ ( )∣ ∣(∣ ∣ ∣ ∣)} ( )

The initial concurrence, corresponding to p=0, is
 ab= 2∣ ∣. States with the same initial concurrence may
display however very different behavior. If the initial
population of the excited state is not larger than that of the
ground state, that is, if b a∣ ∣ ∣ ∣, then the concurrence
vanishes only for p=1, which corresponds to infinite times
if = - -Gp t1 exp( ). If instead b a>∣ ∣ ∣ ∣, then the concur-
rence vanishes for a b=p ∣ ∣, that is, entanglement vanishes
for finite times, even though coherence still survives. This
characteristic trait of the dynamics of entanglement was
named ‘sudden-death’ [58].

This peculiar behavior of the dynamics of entanglement
was demonstrated experimentally in [14], by using twin-
photon beams generated by shining UV laser light on a
nonlinear crystal. The experimental scheme used to realize an
amplitude map is displayed in figure 4. The main idea is to
associate the states of a two-level atom with the horizontal
and vertical polarization of a photon, and the two states of the
environment in equation (7) with distinct spatial paths. The
coupling between polarization and path is provided by
polarized beam splitters (PBS): a horizontally polarized
photon goes through the PBS, which reflects a vertically
polarized photon.

Figure 4 displays a Sagnac-like interferometer and the
path followed by an initially horizontally polarized photon
(dashed line), which comes out in the spatial mode a,
corresponding to state ñ0 E∣ of the environment. This trajectory
mimics the first equation in (7). On the other hand, a vertically
polarized photon is reflected by PBS1, and if the half-wave
plate HWP1 is absent, follows the full-line path, emerging
also in the spatial mode a. This is a realization of the second
equation in (7), for the special case p=0. Generalization for

=p 0 amounts to inserting the optical element HWP1
(together with HWPC, which compensates for the path dif-
ference introduced by HWP1). HPW1 transforms the state of
a vertically polarized photon into the superposition

q qñ + ñV Hcos 2 sin 2∣ ∣ . The H component of this state emer-
ges in mode b, corresponding to state ñ1 E∣ of the environment.
Therefore, the polarization of an initial vertically polarized
photon becomes entangled with the path,
ñ ñ  - ñ ñ + ñ ñV p V p H0 1 0 1E E E∣ ∣ ∣ ∣ ∣ ∣ , with

q=p sin 22( ), thus realizing the second line of (7). Polariza-
tion tomography is realized by joining the two paths inco-
herently, which amounts to tracing out the environment (path)
degrees of freedom.

This setup is duplicated, so that each photon of an initial
entangled state is submitted to its own amplitude map.
Coincidence joint polarization tomography is realized on the

Figure 4. Realization of amplitude map with photons. The polarized
beam splitter PBS1 reflects vertically polarized light (full-line path
coming out of PBS1), and lets the horizontal component go through
(dashed-line path coming out from PBS1). The half-wave plate
HWP1 turns the vertical polarization by the angle q2 , while HWPC
compensates for the path difference introduced by HWP1, without
changing the horizontal polarization of the photon that takes this
path. QWP2 is a quarter-wave plate, which together with the half-
wave plates HWP2 and HWP3 is used for the tomographic
reconstruction of the polarization state. Spatial modes a and b are
recombined incoherently in PBS2, by introducing a path difference
larger than the coherence length, with the help of mirrors M1 and
M2. Adapted from [14].
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Figure 5. Experimental demonstration of the dynamics of entangle-
ment. When the population of the excited state is larger than that of
the ground state, entanglement vanishes for values of the decay
probability smaller than one, corresponding to finite times. Adapted
from [14].
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photon pairs, and the concurrence is calculated from the
reconstructed density matrix, by using equations (5) and (6).
The experimental results are displayed in figure 5, together
with the theoretical curves obtained by applying the theor-
etical map to the initial experimental entangled state, which is
very well approximated by the expression (8), with α and β

real. Different relations between the coefficients α and β in
(8) are considered. Note that, even though Λ, defined by (6),
and obtained from the tomographically reconstructed polar-
ization state, may be negative, the concurrence C, defined by
(5), is always positive, and it vanishes for values of p smaller
than one if the initial state is such that a b<∣ ∣ ∣ ∣.

4. Entanglement dynamics for multipartite states

An important question, both for practical applications of
entanglement, and for probing the boundary between quant-
um and classical physics, is the scaling behavior of the decay
of entanglement with the number of qubits.

A detailed study of the dynamics of the class of states
a bYñ = ñ + ñÄ Ä0 1N N∣ ∣ ∣ , where ñÄ0 N∣ stands for the tensor

product of N states ñ0∣ , was developed in [59]. These states
generalize the Greenberger–Horne–Zeilinger (GHZ) state

ñ + ñ000 111 2(∣ ∣ ) , defined in [60]. In [59], each qubit
interacts with its own independent environment. Several
kinds of environment were considered: amplitude decay,
corresponding to the map (7), depolarization, dephasing, and
thermal environments.

Peculiar features of the dynamics emerged from that
study. For instance, it was shown that, for these generalized
GHZ states, the vanishing of the negativity, for a given par-
tition of the state, implies the separability of this partition.
Furthermore, it was shown that the finite-time disappearance
of entanglement is verified also for this generalized situation,
but with a surprising caveat: the ‘sudden-death’ time
approaches infinity as the number of qubits increases! Thus,
for amplitude damping, with a b < 1∣ ∣ , the negativity van-
ishes for all bipartitions -k N k: when the transition prob-
ability reaches the critical value a b=p N

c
2∣ ∣ , which is

independent of k. Furthermore, as shown in [59], the state
becomes fully separable at this point. One notes however that

p 1c when  ¥N , so the disentanglement time goes to
infinity as the number of qubits increases! Does this result
imply that entanglement becomes more robust as N increases?
This would be a strange conclusion, since one would expect
that as N increases quantum features should get more fragile.

This apparent paradox is resolved by examining the full
evolution of the state [59]. Figure 6 displays, for the depo-
larizing channel, the negativities as functions of p corresp-
onding to the balanced partitions N N2 : 2, for several
values of N, with the inset showing the behavior of the
negativities in the region where the entanglement vanishes for
the N=4 state. The inset displays the behavior noted above
for the amplitude channel: as N increases, the disentanglement
time also increases. However, the full plot shows that, as the
number of qubits increases, the decay of entanglement
becomes faster, implying that the negativity becomes

negligible much before it vanishes. In this region, the tiny
amount of entanglement still remaining is extremely suscep-
tible to extra noise, which can be taken as a manifestation of
the classical limit in this case.

The generalization of this study for graph states was
carried out in [61, 62]. Graph states are defined in the fol-
lowing way. Consider a mathematical graph consisting of
vertices and edges connecting the vertices. Associate to each
vertex a qubit, in the state +ñ = ñ + ñ0 1 2∣ (∣ ∣ ) . Apply,
between two states in adjacent vertices i and j (that is, con-
nected by an edge) a ‘controlled Z’ operation:

ñ + ñ Ä ñ + ñ0 1 0 1i j(∣ ∣ ) (∣ ∣ )  ñ ñ + ñ ñ0 0 0 1i j i j∣ ∣ ∣ ∣
+ ñ ñ - ñ ñ1 0 1 1i j i j∣ ∣ ∣ ∣ . The resulting state is a graph state. It
has been shown to be a basic resource in measurement-
induced quantum computation [63]. An example is given in
figure 7.

Light has been a useful resource to build graph states. In
particular, quantum optical frequency combs have been used
to build multipartite graph states involving tens of
modes [64, 65].

Figure 6. Negativities versus p for N=4, 40 and 400, for the
depolarization channel and for the most balanced partitions. The
initial state is taken as Yñ = ñ + ñÄ Ä0 1 3 0 8 3 1N N∣ ( ) ( )∣ ( )∣ . The inset
shows a magnification of the region in which the negativity for the
state with 4 qubits vanishes. Even though the negativities for the
states with 40 and 400 qubits cross the latter and vanish much later,
they become orders of magnitude smaller than their initial value long
before reaching the crossing point. Reproduced with permission
from [59]. Copyright American Physical Society 2008.

Figure 7. Example of a mathematical graph. The corresponding
physical state is obtained by associating each vertex with a qubit in
the state +ñ = ñ + ñ0 1 2∣ (∣ ∣ ) , and applying controlled-Z gates on
adjacent qubits. A possible partition of this graph is diplayed,
splitting the system in three parts , , and  . The vertices and
edges in gray correspond respectively to the boundary qubits and the
boundary-crossing edges. Reproduced with permission from [61].
Copyright American Physical Society 2009.
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In [61, 62] it was shown that graph-state entanglement is
particularly resilient to the deleterious effects of the
environment. For a large class of quantum channels and
entanglement quantifiers, lower bounds for entanglement
were shown to depend only on boundary qubits (connected by
gray lines in figure 7). Inner qubits, represented by black dots
in figure 7 do not contribute to the lower bounds, thus miti-
gating the scaling of the decay with the number of qubits.

Further resistance to decoherence can be reached by
exploring, through quantum control, non-Markovian features
of the interaction between multi-partite systems and the
environment [66, 67]. Global coupling to a common
environment, as opposed to the individual environments
considered here, may also lead to environment-induced
entanglement [68] or even the generation of macroscopic
superpositions of quantum states [69].

5. Decoherence and the flow of entanglement:
probing the environment with optical setups

A subtle question regarding the dynamics of entanglement
concerns the imprint of an initially entangled state into the
environment. It was argued by Zurek [70] that the detailed
study of the environment uncovers essential traits of the
classical world. In particular, classical-like states, the so-
called pointer states mentioned in section 2, lead to the pro-
liferation, in the environment, of multiple records of these
states, as opposed to superpositions of pointer states. It it this
multitude of copies that allows us to obtain relevant infor-
mation on those states without having to re-prepare them, by
using the information already present in the environment.
This has been named by Zurek ‘quantum Darwinism,’ term
associated with the resilience of pointer states: only quantum
states that leave multiple records in the environment can be
observed on the macroscopic scale.

The perspective is quite different however when one
deals with entanglement, an intrinsic quantum phenomenon.
Then, the question is: What is the effect of an initial entangled
state on its environment? As the original entanglement
decays, what kinds of entanglement show up in the
environment, and between the system and the environment?

These questions have been investigated recently in a
series of experimental papers [24–27]. They were based on
the realization, already discussed in [16], that a simple
modification of the setup displayed in figure 4 allows the joint
tomography of polarization and path, as shown in figure 8.
Since only two states of the environment show up in (7), the
states ñ0 E∣ and ñ1 E∣ , it can be considered as a qubit, and
therefore the joint tomography is equivalent to the recon-
struction of the state of four qubits, two of which are initially
entangled.

When twin photons are sent through the respective
Sagnac interferometers, the initial entanglement gets trans-
ferred to the corresponding paths [27]. The polarization-path
tomography [27] demonstrates that the disappearance of
polarization entanglement is mediated by the appearance of
genuine multipartite entanglement, that is, a joint system-

environment state that is not biseparable. Recognition of
genuine multipartite entanglement is made by adapting a
fidelity witness defined in [71]: whenever the fidelity
  r= á ñ∣ ∣ of the measured state ρ with respect to the state

ñ = ñ + ñ
+ ñ + ñ + ñ
1 6 0000 1111

0011 0110 1001 10

∣ ( )(∣ ∣
∣ ∣ ∣ ) ( )

is larger than 2/3, the state has genuine four-partite
entanglement. The fidelities for the experimentally recon-
structed ρ are shown in figure 9. In the interval

Figure 8. Variation of the setup shown in figure 4, allowing the joint
tomography of polarization and path. The two outgoing paths from
the interferometer shown in (a), previously combined incoherently,
as shown in (b), are now separated, as shown in (c), and can thus be
measured independently. Reproduced with permission from [16].
Copyright American Physical Society 2008.

Figure 9. Fidelity between the experimentally reconstructed system-
environment density matrix and the state ñ∣ defined in (10), as
function of p. Genuine four-partite entanglement is detected in the
region Îp 0.27, 0.73( ). Adapted from [27].
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Îp 0.27, 0.73( ), the fidelities exceed 2/3, demonstrating the
presence of genuine four-partite entanglement.

6. Conclusion

In this paper, we have reviewed some work that is related to
the use of electromagnetic radiation in the microwave and
optical spectra in order to explore subtle questions related to
the emergence of the classical world from quantum physics.
Decoherence plays a major role in all the work reviewed here:
the environment rules the transition from quantum to classi-
cal. Technically demanding experiments have helped to
explore some aspects of this question, including the scaling of
decoherence and disentangling with the ‘size’ of the system,
which is related to the number of its constituents (number of
photons, number of qubits).

The relationship between the quantum and the classical
world is a long-standing theme in physics, since the inception
of quantum mechanics. The theory of decoherence explains
important aspects of this subject, but many open questions
remain.

Recent contributions have unveiled relations between
quantum and classical descriptions of nature, revisiting the
derivation of the Schrödinger equation [72] and obtaining a
wave equation that interpolates between classical and quant-
um mechanics [73].

Full understanding of the emergence of the classical
world from the quantum substrate is still far from being
attained. Light may again come to the rescue: optomechanical
experiments [74, 75] may help to elucidate the role of grav-
itation in decoherence, a topic which up to now is very little
understood. It is related to one of the most challenging pro-
blems of this century: the connection between quantum theory
and general relativity.
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