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The estimation of parameters characterizing dynamical processes is central to science and technology. The
estimation error decreases with the number N of resources employed in the experiment (which could quantify,
for instance, the number of probes or the probing energy). Typically, it scales as 1/

p
N . Quantum strategies

may improve the precision, for noiseless processes, by an extra factor 1/
p
N . For noisy processes, it is not

known in general if and when this improvement can be achieved. Here we propose a general framework for
obtaining attainable and useful lower bounds for the ultimate limit of precision in noisy systems. We apply this
bound to lossy optical interferometry and atomic spectroscopy in the presence of dephasing, showing that it
captures the main features of the transition from the 1/N to the 1/

p
N behavior as N increases, independently

of the initial state of the probes, and even with use of adaptive feedback.

It is by now well established that, in the absence of noise,
quantum properties of the probes help to increase the pre-
cision in the estimation of parameters that characterize dy-
namical processes, like phase shifts in optical interferometry
or transition frequencies in atomic spectroscopy [1–4]. The
estimation error decreases with the amount of resources em-
ployed in the measurement, which might be for instance the
energy of a probing light field or the number N of identical
probes. For independent probes, it is proportional to 1/

p
N ,

a consequence of the central-limit theorem. By entangling the
probes one may attain, for noiseless processes, the ultimate
lower bound for the estimation error, which scales then with
1/N [3, 4], the so-called Heisenberg limit, thus allowing bet-
ter accuracy for the same number of resources. For noisy pro-
cesses, however, it is not known in general if this limit can be
attained, and if entanglement can still be a helpful resource for
this purpose. For lossy optical interferometry, it was shown
recently [5, 6] that the Heisenberg limit is not attainable when
N ! 1. General expressions for the uncertainty in the esti-
mation are known, but their calculation involves complex opti-
mization procedures, which become quite cumbersome when
the number of resources increases. Here we show that the ef-
fectiveness of quantum states for parameter estimation in the
presence of noise can be precisely assessed. We introduce
a bound for this uncertainty, proven to be attainable, which
leads to useful expressions for the ultimate limit of precision
in noisy systems. We exemplify the utility of this bound by
applying it to lossy optical interferometry and atomic spec-
troscopy in the presence of dephasing.

Parameter estimation and the Cramér-Rao bound
A general protocol to estimate an unknown parameter x cor-
responding to a quantum process is shown in Fig. 1a). This
parameter is estimated from the knowledge of the initial and
final states of a probe that undergoes the process under investi-
gation. The protocol may be divided in three stages. First, the
probe is prepared in an initial state (first box on the left-hand
side of the figure), and evolves under the action of the quan-
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tum process, corresponding to the second box in Fig. 1a). In
general, after this step, the probe will be in a mixed state (third
box). The second stage concerns the choice of a suitable mea-
surement, applied to the probe after its evolution (fourth box),
so as to extract information about the parameter to be esti-
mated. The third and last step consists in associating, through
some rule (estimator), each experimental result with an es-
timation of the parameter. A concrete example is shown in
Fig. 1b), which refers to phase shift estimation in optical in-
terferometry.

Typically, one has some prior knowledge about the param-
eter. This is sometimes called in the literature “local estima-
tion”, as opposed to the situation when there is complete ig-
norance about the parameter to be estimated, which is known
as “global estimation.” In local estimation, a merit quantifier
that allows the comparison of different strategies and perfor-

mances is the error estimate [7, 8] �x ⌘
q
h(xest � xreal)

2i,
where the average is taken over all possible experimental re-
sults, xreal is the real value of the unknown parameter x and
xest is the estimated value of x, obtained from the measure-
ment results through the use of an estimator.

When the initial state, the physical system, and the mea-
surement procedure, involving ⌫ repetitions of the experiment,
are fixed, the error �x is limited by the Cramér - Rao inequal-
ity [9] �x � 1/

p
⌫F (x

real

) (valid for unbiased estimators,
that is, estimators for which hxesti = xreal). Here F (x) is the
Fisher Information, given by

F (x) =
X

j

p
j

(x)

⇢
d ln [p

j

(x)]

dx

�2

, (1)

where p
j

(x) is the probability of getting the experimental re-
sult j. This relation is valid for both classical and quantum
physics.

In quantum mechanics, p
j

(x) = Tr

h
⇢̂(x) ˆE

j

i
, where the

operators ˆE
j

correspond to a specific measurement setup, as-
sociated to the results j, and ⇢̂(x) is the density matrix of the
probe after its interaction with the system under investigation.
The Hermitian operators ˆE

j

are positive operator-valued mea-
sures (POVM’s) [10], satisfying the relation

P
j

ˆE
j

= 11. In
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general, the evolution of a density matrix ⇢̂ under the action of
a quantum channel may be expressed in terms of Kraus opera-
tors [11] ˆ⇧

`

(x) as ⇢̂(x) =
P

`

ˆ

⇧

`

(x)⇢̂0 ˆ⇧
†
`

(x), where ⇢̂0 is the
initial value of ⇢̂ and

P
`

ˆ

⇧

†
`

(x)ˆ⇧
`

(x) = 11. The maximiza-
tion of (1) over all possible measurement strategies yields the
so-called Quantum Fisher Information F

Q

[7, 8, 12, 13] and
the quantum generalization of the Cramér-Rao inequality,

�x � 1/
q
⌫F

Q

[⇢̂ (xreal)] . (2)

For a closed system, evolving under a unitary transforma-
tion ˆU(x) and prepared in a pure initial state ⇢̂0 = | ih |, F

Q

can be expressed as [14]

F
Q

h
ˆU(x)⇢̂0 ˆU

†
(x)

i
= 4h� ˆH2i , (3)

where

h� ˆH2i ⌘
h
h | ˆH2

(x)| i � h | ˆH(x)| i2
i
,

and ˆH(x) ⌘ i
⇣
d ˆU†

(x)/dx
⌘
ˆU(x). However for more gen-

eral situations where the initial state is a mixture and/or the
evolution is not governed by a unitary transformation, a closed
expression for F

Q

as a function of Kraus operators is un-
known and finding it remains an open problem.

Although analytic expressions for F
Q

have been found for
some specific classes of initial states and non-unitary pro-
cesses (see, for instance refs. [15–17]), in most cases only
an upper bound to F

Q

can be obtained. For example, when
the initial state of the probe is mixed but the quantum chan-
nel is unitary, an upper bound based on the convexity of F

Q

can always be established. More recently an upper bound to
F

Q

, applicable to general quantum channels, was derived in
terms of Kraus operators and was shown to be attainable for a
special class of processes (“quasi-classical” processes) [18] .
Bounds for error estimation in noisy systems
We introduce here an universal upper bound to F

Q

, expressed
in terms of the initial state of the probe and any Kraus repre-
sentation of the quantum channel. This bound is valid for both
unitary and non-unitary processes, and it is always possible to
choose a Kraus representation such that it coincides with the
quantum Fisher information. We show that this bound leads to
useful analytical approximations for the precision of parame-
ter estimation.

Let S be the probe used to estimate a parameter of a gen-
eral dynamical process. Our strategy consists in introducing
additional degrees of freedom, which play the role of an en-
vironment E for the system S, so that a general dynamical
evolution concerning S is transformed into a unitary evolu-
tion for S + E. The problem is thus reduced to parameter
estimation for a unitary evolution. A given general dynami-
cal evolution of a system S may be related to an infinitude of
unitary evolutions of an enlarged system consisting of S plus
some “environment” E. Fixing the unitary evolution and the
“environment” E is equivalent to singling a specific represen-
tation of Kraus operators out from the unlimited number of
such representations that describe the same dynamical evolu-
tion of S alone.

The detailed calculation of this upper bound can be found
in the Supplementary Material. An outline of the derivation is
presented in the Methods section. Given an initial pure state
⇢̂0 = | ih | of a system S and an arbitrary process, which
changes the state to ⇢̂(x) ⌘

P
`

ˆ

⇧

`

(x)⇢̂0 ˆ⇧
†
`

(x), we get the
upper bound to F

Q

C
Q

⇣
⇢̂0, ˆ⇧`

(x)
⌘
= 4

h
h ˆH1(x)i � h ˆH2(x)i2

i
, (4)

where

ˆH1(x) ⌘
X

`

dˆ⇧†
`

(x)

dx

dˆ⇧
`

(x)

dx
, (5)

ˆH2(x) ⌘ i
X

`

dˆ⇧†
`

(x)

dx
ˆ

⇧

`

(x) , (6)

the symbol h i meaning h•i ⌘ Tr [•⇢̂0].
Equations (4)-(6) show that the upper bound C

Q

can be ex-
plicitly evaluated in terms of the Kraus operators describing
the quantum channel and the initial state of the probe. When
the process is unitary C

Q

reduces to the quantum Fisher in-
formation, as given by Eq. (3). This upper bound can also be
applied to situations with ancillas, where the initial state of the
probe is entangled with some external system. The bound is
then easily calculated from the reduced density matrix of the
probe. The attainability of this bound is demonstrated in the
Methods section, implying that

F
Q

[⇢̂(x)] = min{⇧̂`(x)}CQ

h
⇢̂0, ˆ⇧`

(x)
i
, (7)

where the minimization runs over all Kraus representations
{ˆ⇧

`

(x)} of the quantum channel.
Equation (7) leads to an interesting physical insight, within

the framework of our method: there is always an environment
E such that monitoring it together with the system S does
not lead to more information about the parameter x than that
obtained by monitoring just the system S itself. These con-
siderations motivate a strategy for choosing convenient Kraus
operators: the aim should be to reduce the non-redundant in-
formation about the parameter in the environment.

We apply now the bound (4) to some important problems
in quantum metrology, and show that it leads to the elucida-
tion of fundamental questions regarding limits of precision in
parameter estimation.
Role of entanglement in quantum-enhanced metrology
In recent years, much effort has been made to establish
the relevance of entanglement in quantum metrology [1–
4, 16, 17, 19–25]. For unitary processes, it is now clear that
entanglement does lead to enhancement of the precision in pa-
rameter estimation. However, an important question remains:
does this gain persist in the presence of decoherence?

A typical paradigm of quantum metrology involves N
probes undergoing N independent and identical x-dependent
processes, and being submitted to a measurement afterwards,
with the aim of estimating the parameter x. If the initial state
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of the probes is not entangled and each probe is measured
independently of the others, then the error scales at most as
�x ⇠ 1/

p
N [3]. It was shown in [4] that, for unitary pro-

cesses and in the absence of feedback, initial entanglement is
a necessary ingredient to improve the error scale to the ulti-
mate quantum limit �x ⇠ 1/N . Moreover, it was also shown
that, for unitary processes of the type ˆU(x) = exp

⇣
ix ˆH

⌘
,

it is always possible to find an initial entangled state of the
probes that leads to �x ⇠ 1/N .

We consider now the effect of noise on these results. When
the N probes are submitted to N independent processes,
which depend on the parameter x, a set of Kraus operators
that describes the evolution of the probes is

ˆ

⇧

`1,`2,...,`N (x) = ˆ

⇧

(1)
`1

(x)⌦ ˆ

⇧

(2)
`2

(x)⌦ · · ·⌦ ˆ

⇧

(N)
`N

(x), (8)

where ˆ

⇧

(m)
`m

(x) is a Kraus operator corresponding to the m-th
process. From (4), it is then straightforward to show that C

Q

can be decomposed into two parts (see Supplementary Mate-
rial)

C
Q

⇣
⇢̂0, ˆ⇧`1,`2,...,`N (x)

⌘
= 4

NX

m=1

h
h ˆH(m)

1 i � h ˆH(m)
2 i2

i

+8

NX

m1=2

m1�1X

m2=1

h
h ˆH(m1)

2
ˆH
(m2)
2 i � h ˆH(m1)

2 ih ˆH(m2)
2 i

i
, (9)

where the operators ˆH
(m)
1,2 correspond to the definitions (5)

and (6) for the m-th process. The first term in Eq. (9) is of
o(N), while the second is of o(N2

), as they involve the sum
of N and N(N � 1)/2 terms respectively.

Since C
Q

� F
Q

, this result has two immediate implica-
tions: (i) a necessary condition for �x ⇠ 1/N is that the sec-
ond line of (9) is different from zero, which establishes the
kind of correlation needed in the initial state of the N probes
in order that the Heisenberg limit is attained – this condition
is also sufficient if there is a Kraus representation in the form
(8) that minimizes C

Q

; (ii) if a quantum channel has some
Kraus representation for which ˆH

(m)
2 = 0, then �x ⇠ 1/

p
N

at most, even when the initial state is entangled. The fact that
ˆH
(m)
2 = 0 implies �x ⇠ 1/

p
N was derived for the more

restrict situation of finite-dimensional spaces in [26], which
also showed that the condition ˆH

(m)
2 = 0 holds for almost

all finite-dimensional quantum channels, the “full-rank” chan-
nels. Moreover, (ii) remains valid when feedback is included,
as demonstrated in the Supplementary Material. Therefore,
for this class of channels, the limit �x ⇠ 1/N cannot be
achieved, in the presence of decoherence, even with the use
of entanglement and/or feedback control.
Precision limits for lossy optical interferometry
Optical interferometry with standard light sources leads to an
uncertainty in the determination of the phase that scales with
the inverse of the square root of the mean number of photons,
the so-called shot-noise or standard quantum limit [27, 28].
On the other hand, it has been shown that squeezed [27, 28]
or entangled states [2, 3] may lead, in the absence of losses, to

a scaling of this uncertainty with the inverse of the mean num-
ber of photons. This is the ultimate limit imposed by quantum
mechanics [4, 29].

In the presence of losses, general results concerning the
limit of precision are still unknown. Special entangled quan-
tum states have been proposed for optical metrology in order
to mitigate the deleterious effect of noise on the precision of
phase estimation [23]. Numerical limits for the minimum un-
certainty in the measurement of the phase shift, when either
one or both arms of an interferometer are subject to photon
losses, were found in [16, 17] for input states with fixed pho-
ton numbers. These studies show that, for states with total
number of photons up to N = 80, the best possible scaling
of the uncertainty is intermediate between the standard and
the Heisenberg limit. Experimental confirmation with two-
photon entangled states was presented in [25], while bounds
found in [5] for global estimation and in [6] for local estima-
tion lead to a 1/

p
N scaling. This raises an important question

concerning the behavior of the precision as a function of N .
Here we answer this question in a general way, by finding an
analytical lower bound for the phase uncertainty.

We consider for definiteness a two-arm interferometer with
a dispersive object placed in the upper arm (see Fig. 1-b). An
incoming photon is described by a two-mode state, each mode
corresponding to one of the arms of the interferometer. In
the absence of losses the initial two-mode state in the inter-
ferometer evolves into | (✓)i = ˆU(✓)| i0 = exp(in̂✓)| i0,
where n̂ is the photon number operator corresponding to the
dispersive-arm mode and ✓ is the phase shift parameter to be
estimated. Therefore, from (3),

F
Q

(⇢̂0) = 4h�n̂2i0 and �✓ �
�
4⌫h�n̂2i0

��1/2
, (10)

where h�n̂2i0 is the photon-number variance of the state
in the dispersive arm of the interferometer, before it under-
goes the phase shift. From this expression, it follows that
states maximizing the photon-number variance lead to min-
imum values of the phase uncertainty. This is the case of
the NOON states | (N)i = (|N, 0i + |0, Ni)/

p
2 [2, 20],

where |N1, N2i represents a Fock state with N1 and N2 pho-
tons in the upper and lower arms, respectively. For this state,
h�n̂2iNOON = N2/4, which yields the Heisenberg limit
�✓ � 1/(

p
⌫N).

We consider here interferometers with losses only in the
dispersive arm – see Fig. 1b). Generalization to losses in both
arms is presented in the Supplementary Material. As shown
in the Methods section, proper choice of Kraus operators, in-
spired by physical considerations, leads to

F
Q

(⇢̂0) 


4⌘hn̂i0h�n̂2i0
h�n̂2i0 (1� ⌘) + ⌘hn̂i0

�
, (11)

where ⌘ quantifies the photon losses (from ⌘ = 1, lossless
case, to ⌘ = 0, complete absorption) and hn̂i0 is the initial
average number of photons in the dispersive arm.

The above equation has a high degree of generality: it
was derived under no assumption whatsoever about the ini-
tial state, which might therefore have a definite, limited or un-
limited number of photons. Furthermore, it displays the limit
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of precision as a continuous function of losses as well as the
variance and the average photon number of the field in the
dispersive arm, for the entire range of values of these quanti-
ties. When h�n̂2i0/hn̂i0 << ⌘/(1 � ⌘), this expression ap-
proaches the lossless case (10),while when h�n̂2i0/hn̂i0 >>
⌘/(1� ⌘) Eq. (11) yields the more restricted result

�✓ �

s
1� ⌘

4⌫⌘hn̂i0
. (12)

Equations (11) and (12) imply, quite generally, that photon
losses in interferometers gradually blur the gain yielded by
the special quantum states for phase estimation; even with the
best strategy, asymptotically the improvement with respect to
standard light sources is not by a scale change but only by a
limited constant factor, as shown in (12). This last expression
coincides with the bounds obtained in [5, 6] for states with
definite photon number.

For states with well-defined number N of photons, exten-
sively discussed in quantum metrology, Eq. (11) leads to an
upper bound for the quantum Fisher information maximized
over all initial states, which depends only on ⌘ and on N . In
this case, one gets then (see Supplementary Material)

F
Q

(⇢̂0)  ˜C
Q

⌘

2

4 2N

1 +

q
1 +

(1�⌘)N
⌘

3

5
2

. (13)

The behavior of the corresponding lower bound for the phase
uncertainty �✓, as a function of N , is shown in Fig. 3, where
the phase estimation error is normalized by the shot-noise
limit, expressed in terms of the total number of photons in
both arms [16, 17]: �✓

SN

= (

p
⌘ + 1)/

p
4⌫⌘N . This re-

sult clearly exhibits the change from the Heisenberg scale to
a 1/

p
N scale. For N >> ⌘/(1 � ⌘), one gets a 1/

p
N

scaling, corresponding to Eq. (12), with the average number
of photons replaced by N , while for N << ⌘/(1 � ⌘), the
Heisenberg dependence, proportional to 1/N , is obtained.

One may wonder how tight is the bound (13). The com-
parison of this bound with F

Q

for the numerically determined
optimal states is shown in Fig. 3, for all ⌘ and for different
values of N up to N = 100. This yields, for this range of N ,

1/
q
⌫ ˜C

Q

 �✓  1.25/
q
⌫ ˜C

Q

, thus showing that, for these
states, ˜C

Q

provides a very good qualitative and quantitative
approximation to the ultimate quantum limit. As N increases,
the fundamental limit of the phase uncertainty given by the
quantum Fisher information becomes at most 1.25 larger than
the one given by our bound.
Precision limits for atomic spectroscopy under dephasing
We consider now the estimation of transition frequencies in
atomic spectroscopy, in the presence of Markovian dephasing,
which is a common source of decoherence for atoms, and the
most important one in trapped-ions experiments. The aim is to
estimate the transition frequency !0, by preparing the atoms
in a known initial state, letting them evolve freely, and then
measuring the final atomic state. The resources here, which
affect the error in the estimation, are the number N of atoms

and the total time T = t⌫, where t is the evolution time for
each atom and ⌫ is the number of experimental repetitions. In
the absence of decoherence, the error scales as ⇠ 1/

p
N if the

initial state of the N atoms is separable. On the other hand, an
initial maximally entangled GHZ atomic state may improve
the scaling to ⇠ 1/N [1]. The situation changes when de-
phasing is present. In [19], it was shown that, in this case, a
separable state or a GHZ state of the atoms lead to the same
error �!0 =

p
2�e/(NT ), where � is the dephasing rate. It

was also shown that a generalized Ramsey spectroscopy, in-
volving a joint measurement of all the atoms, may lead, for an
optimal non-maximally entangled state, to an error limited by
�!0 �

p
2�/(NT ), a better bound then before, but still pro-

portional to 1/
p
N . In this regard, two questions were raised

in Ref. [19]: whether this bound is saturated asymptotically
by the proposed measurement strategy; and whether it coin-
cides with the one obtained from the quantum Fisher infor-
mation. Ref. [30] has shown that, for properly chosen initial
states, this bound is actually saturated asymptotically, for the
proposed measurement scheme. Here we show that the re-
maining question can be tackled by our method. Indeed, we
show that the above bound coincides asymptotically with the
one given by the quantum Fisher information optimized over
all initial atomic states.

We show in the Supplementary Material that it is possible
to choose a physically-motivated set of Kraus operators such
that our bound, optimized over all initial states, leads to

⌫Fmax
Q

 NT

2�


2�tN

1 + (e2�t � 1)N

�
 NT

2�
. (14)

which coincides with the bound derived in Ref. [19]. Since
Ref. [30] showed that this bound is attained asymptoti-
cally for the above generalized Ramsey measurement and
a specific class of initial states, it follows that necessarily
lim

N!1 ⌫Fmax
Q

/N � T/2�. In view of inequality (14), one
concludes that lim

N!1 ⌫Fmax
Q

/N = T/2�. This general-
izes the previous results, showing that, no matter the initial
state and the measurement scheme, the maximum improve-
ment obtainable in the presence of dephasing is by a factorp
e, which does not change the scaling of the error with N .

Therefore, also in this case decoherence does not allow attain-
ing the quantum scale, no matter how small the dephasing rate
is, as long as N is sufficiently large. It can be shown that this
conclusion remains valid in the presence of feedback.
Summary and perspectives
We presented here a lower bound for the error in single-
parameter estimation, within the framework of quantum
metrology, valid for both unitary and non-unitary processes,
which is always attainable. The calculation of the best state
leading to the ultimate quantum limit in the presence of noise
is a difficult task, requiring numerical analysis that becomes
more and more cumbersome as the number of resources in-
creases. The upper bound (4), on the other hand, circumvents
this difficulty, leading to useful relations that do not depend on
the initial state, and that do not require optimizations over all
possible Kraus representations. Indeed, convenient classes of
Kraus operators may be chosen inspired by physical consid-
erations regarding the process under investigation. The power
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of this method was exemplified within the framework of two
important problems in quantum metrology, the estimation of
phase in optical interferometry and of transition frequencies in
atomic spectroscopy. In optical interferometry, it captures the
main features of the transition from the Heisenberg limit to
the asymptotic shot-noise-like behavior. Furthermore, it im-
poses a severe restriction on the asymptotic behavior of the
estimation error: even for weak noise, the improvement on
the shot-noise limit is at most by a constant factor, which does
not change the 1/

p
N behavior.

Due to the omnipresence of non-unitary dynamics and the
problem of parameter estimation in several fields of science,
we envisage that this approach might find useful applications
to other kinds of systems, involving for instance stochastic
processes [31] and dynamical evolutions that depend non-
linearly on the number of resources.
Methods
Outline of the derivation of the upper bound to the quan-
tum Fisher information
Given an initial pure state ⇢̂0 = | ih | of a system S and
an arbitrary process, which changes the state to ⇢̂(x) ⌘P

`

ˆ

⇧

`

(x)⇢̂0 ˆ⇧
†
`

(x), we expand the Hilbert space, introducing
an environment E so that the total state in S +E undergoes a
unitary evolution, described by

| (x)i = ˆU
S,E

(x)| i
S

|0i
E

=

X

`

ˆ

⇧

`

(x)| i
S

|`i
E

. (15)

Here |0i
E

is the initial state of the environment. The states
|`i

E

form an orthogonal basis in E, which is independent of
the parameter x to be estimated and the Kraus operators ˆ

⇧

`

(x)
act on S.

The upper bound for the quantum Fisher information is ob-
tained from the inequality

F
Q

⌘ max

Ê

(S)
j ⌦11(E)

F
⇣
ˆE
(S)
j

⌦ 11(E)
⌘

 max

Ê

(S,E)
j

F
⇣
ˆE
(S,E)
j

⌘
⌘ C

Q

, (16)

where F is the Fisher information defined in Eq. (1). This
inequality results from the fact that, for F

Q

, the maximization
is made for all POVMs contained in the S space, while for
C

Q

the maximization is for all POVMs in S + E. Therefore,
C

Q

is an upper bound for F
Q

. The right-hand side of (16) can
be explicitly evaluated, since one is dealing in this case with a
unitary evolution. It is then straightforward to obtain (4).
Saturation of the upper bound to the quantum Fisher in-
formation
We show now that it is always possible to choose a set of
Kraus operators such that the inequality in Eq. (16) is trans-
formed into an equality. The proof is based on Uhlmann’s
theorem [32] and on the relation between Bures’ fidelity

F
B

(⇢̂1, ⇢̂2) ⌘ Tr

q
⇢̂
1/2
1 ⇢̂2⇢̂

1/2
1 and the quantum Fisher in-

formation [12]. Uhlmann’s theorem implies that [10]

(F
B

[⇢̂(xreal), ⇢̂(x)])
2
= max| (x)i|h�(xreal)| (x)i|2 ,

(17)

where |�(xreal)i is an arbitrary purification of ⇢̂(xreal) in S+

E and the maximization runs over all purifications | (x)i of
⇢̂(x), also in S + E. On the other hand, Ref. [12] shows that,
up to second order in �x = x� xreal,

(F
B

[⇢̂(xreal), ⇢̂(x)])
2
= 1� (�x/2)2F

Q

[⇢̂(xreal)] . (18)

Expanding the right-hand side of (17) up to second order in
�x, and comparing the resulting expression with the right-
hand side of (18), one gets (see Supplementary Material) (7).
Therefore C

Q

coincides with the quantum Fisher information
for some choice of Kraus operators. This proves the attain-
ability of our bound. We show, in the supplementary material,
that there is, in fact, an infinite number of Kraus representa-
tions that satisfy the above relation.
Upper bound for quantum Fisher information in lossy op-
tical interferometry
A convenient choice for the Kraus operators corresponding to
an interferometer with losses in one of the arms is

ˆ

⇧

`

(✓;↵) =

s
(1� ⌘)

`

`!
ei✓(n̂�↵`)⌘

n̂
2 â`, (19)

where â is the annihilation operator corresponding to the
dispersive-arm mode, and ⌘ quantifies the photon losses (from
⌘ = 1, lossless case, to ⌘ = 0, complete absorption). The pa-
rameter ↵ defines a family of Kraus operators and it is used to
minimize the value of C

Q

. This choice of Kraus operators is
inspired by physical considerations. For ↵ = 0 (↵ = �1) the
process can be interpreted as a probabilistic photon absorption
event, simulated by a beam splitter with transmissivity ⌘ and
after (before) it a phase shift ✓. If the beam splitter is placed
after the dispersive element, then monitoring the environment
leads to full recovery of the information, yielding therefore
a non-reliable bound, which coincides with the one for the
lossless case, while only partial information is obtained if the
beam splitter is placed before the dispersive element (since
in this case the deflected photons do not carry phase infor-
mation). This last situation corresponds to the experimental
setup used in [25]. It may lead to a bound better than the one
corresponding to the first choice, although not as good as the
one obtained by optimizing over all values of ↵.

The Kraus operators given by Eq. (19) lead to (see Supple-
mentary Material)

ˆH1 (✓;↵) = ⌘ (1� ⌘) (1 + ↵)2n̂

+ [1� (1� ⌘) (1 + ↵)]
2
n̂2, (20)

ˆH2 (✓;↵) = [1� (1� ⌘) (1 + ↵)] n̂ . (21)

We get then, for all real values of ↵,

C
Q

(⇢̂0;↵) = 4 [1� (1� ⌘) (1 + ↵)]
2 h�n̂2i0

+ 4⌘ (1� ⌘) (1 + ↵)2hn̂i0 , (22)

where hn̂i0 is the initial average number of photons in the
dispersive arm, and h�n̂2i0 is the corresponding variance.

When ↵ = �1, one gets the trivial result F
Q

 4h�n̂2i0,
while for ↵ = 0, F

Q

 4⌘
⇥
⌘h�n̂2i0 + (1� ⌘) hn̂i0

⇤
. The
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factor ⌘ before the brackets in this last expression comes from
the energy loss, a classical effect. This expression implies
that, only super-poissonian states (h�n̂2i0 > hn̂i0) may lead
to an improvement of the phase estimation over the standard
quantum limit, which corresponds to F

Q

= 4⌘hn̂i0.
For each value of h�n̂2i0 and hn̂i0, the minimization of C

Q

with respect to ↵ yields (11) – see Supplementary Material.
One should note that there is a choice of Kraus operators

for which ˆH2 = 0 in (20), and at the same time the term pro-
portional to n̂2 in ˆH1 vanishes: the one that corresponds to
taking in (20) 1 + ↵ = 1/(1� ⌘). This implies, according to
the discussion in the Supplementary Material, that, even in the
presence of feedback [33–35], the scaling in the phase uncer-
tainty cannot be better than the standard quantum limit. Even
though Refs. [33–35] deal with global estimation, our method

still applies, since (2) is a lower bound for the uncertainty in
global estimations, which is given by the Holevo variance [8].
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[31] A. André, A. S. Sorensen, and M. D. Lukin, Stability of atomic
clocks based on entangled atoms, Phys. Rev. Lett. 92, 230801
(2004).

[32] A. Uhlmann, The ‘transition probability’ in the state space of a
*-algebra, Rep. Math. Phys. 9, 273-279 (1976).

[33] D. W. Berry and H. M. Wiseman, Optimal states and almost op-
timal adaptive measurements for quantum interferometry. Phys.
Rev. Lett. 85, 5098-5101 (2000).

[34] M. A. Armen, Adaptive homodyne measurement of optical
phase. Phys. Rev. Lett. 89, 133602 (2002).

[35] A. Hentschel and B. C. Sanders, Machine learning for precise
quantum measurement, Phys. Rev. Lett. 104, 063603 (2010).



7

FIG. 1: Setups for quantum parameter estimation. a) General
algorithm to estimate an unknown parameter x of an arbitrary dy-
namical process. The probe, prepared in a known initial state, is sent
through a physical channel. A measurement is performed on the final
state, from which the parameter x is estimated. b) Setup for estimat-
ing a phase shift ✓ in an optical interferometer.
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FIG. 2: Lower bounds for the phase error. Lower bound �✓ of
the normalized variance �✓

p
4⌫⌘N

1+
p
⌘ as a function of the number of

photons N for different values of the photon-loss parameter ⌘, which
ranges from 0 (complete absorption) to 1 (lossless case): ⌘ = 0.5
(blue), ⌘ = 0.9 (green), ⌘ = 0.99 (red), and ⌘ = 1 (black). The
respective dashed lines correspond to the limit (12) for each value of
⌘.
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FIG. 3: Numerical test of the tightness of the bound. Comparison
between the numerical maximum value of FQ and the upper bound

C̃Q,
q

FQ/C̃Q as a function of the photon-loss parameter ⌘, for
photon numbers N = 10 (blue), N = 20 (green), and N = 40
(red). The inset displays the minimum of this ratio over all values of
⌘ as a function of N .


