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Abstract. We propose physical interpretations, also valid for temperatures different from
zero, for stochastic methods which have been developed recently to describe the evolution of
a quantum system interacting with a reservoir. As opposed to the usual reduced density
operator approach, which refers to ensemble averages, these methods deal with the dynamics
of single realizations, and involve the solution of stochastic &lihger equations. These
procedures have been shown to be completely equivalent to the master equation approach
when ensemble averages are taken over many realizations. We show that these techniques are
not only convenient mathematical tools for dissipative systems, but may actually correspond
to concrete physical processes, for any temperature of the reservoir. We consider a mode of
the electromagnetic field in a cavity interacting with a beam of two- or three-level atoms, the
field mode playing the role of a small system and the atomic beam standing for a reservoir at
finite temperature, the interaction between them being given by the Jaynes—Cummings
model. We show that the evolution of the field states, under continuous monitoring of the
state of the atoms which leave the cavity, can be described in terms of either the Monte Carlo
wavefunction (quantum jump) method or a stochastic &dinger equation, depending on

the system configuration. We also show that the Monte Carlo wavefunction approach leads,
for finite temperatures, to localization into jumping Fock states, while the diffusion equation
method leads to localization into states with a diffusing average photon number, which for
sufficiently small temperatures are close approximations to mildly squeezed states. We prove
analytically that, in the quantum jump situation, the system evolves in the mean towards a
Fock state, even if an infinite number of photon-number amplitudes is present in the initial
state.

Keywords: Stochastic Sclidinger equation, cavity QED, Monte Carlo, quantum jumps,
localization

1. Introduction electromagnetic fields in higlp cavities, probed by beams
of highly excited atoms (Rydberg atoms) [4]. This new
The dynamics of dissipative quantum systems is frequently generation of experiments, combined with the difficulties
described through a master equation for the reduced densityusually encountered in solving the master equation, have
matrix, obtained by tracing out the degrees of freedom of the stimulated the development of new techniques, which seek
reservoir and making the Born—Markov approximation [1]. to describe the dynamics of quantum dissipative systems
As usual in quantum mechanics, the corresponding solutionsby stochastic evolutions of the corresponding state vectors
refer to ensembles of identical systems. In recent years, the[5-15].
attainment of low temperatures and low-dissipation regimes, Basically two approaches have been proposed, one
as well as the improvement of detection techniques, haswhich involves random finite discontinuities in the dynamics
allowed the investigation of the dynamics of continuously of the system (Monte Carlo wavefunction (MCWF) or
monitored single quantum systems. Remarkable examplesquantum jumps’ method) [5, 9] and another for which the
of these are single ions [2] or Bose—Einstein condensatesstochastic evolution is generated by a diffusive term in the
[3] in electromagnetic traps, probed by laser beams, andSchibdinger equation for the state vector [7, 10]. These
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Figure 1. Physical realization of a quantum jump trajectory. A Figure 2. Physical realization of the homodyne stochastic
beam of two-level atoms crosses a resonant cavity. Schbdinger trajectory. A beam of three-level atoms crosses a

resonant cavity, being subjected to an external classical field.

alternative techniques can be shown to be formally equivalent
to the master equation approach [5,9,11], and sometimes ddn @ mixture of the two resonant states, in such a way that
lead to a dynamical behaviour resembling the experimental the population ratio between the excited and the ground state
monitoring of a single realization [9, 11, 12]. However, the equals the Boltzmann factor (see figure 1). On the other
possibility of attributing a physical interpretation to these hand, a Sclidinger diffusion equation is obtained when the
techniques should not be overplayed: indeed, in some casegeservoir is assumed to be made of three-level atoms with
they are just mathematical tricks, with no relation to a @ twofold-degenerated ground state, prepared in the same
concrete physical evolution of the system. The advantagekind of statistical mixture as before, but now with the two
of using them, from the numerical point of view, is that one ground state levels placed in a coherent superposition. While
deals with state vectors, instead of density matrices, thusa resonant exchange of energy is allowed between the cavity
reducing the total amount of matrix elements to be calculated. mode, the excited state and one of the ground state levels, the
In addition, they may provide insights into the behaviour transition between the other ground state level and the excited
of dissipative systems. In fact, and because of these twostate is assumed to be driven by an external (essentially
points, they have been extensively applied to dissipative classical) field (see figure 2).
quantum systems, especially in the fields of quantum optics ~ In order to further explore the physics underlying these
[8, 10-14, 16-20] and solid state physics [21]. In some approaches, we calculate the evolution of an initial field in
cases, these methods have led to analytical descriptions of théhe cavity under continuous monitoring, for different types
dissipation process [16, 18,22]. More recently, the MCWF of initial states of the field, with the two different methods
method has been extended to non-Markovian interactions andnentioned above. We find that for temperatures different
to strong reservoir couplings beyond the Born and rotating- from zero the two approaches lead to two kinds of localization
wave approximations [21], and also to nonlinear master in state space. For the quantum jump method, the state of
equations [13, 14]. the system approaches a Fock state, which suffers quantum
In this paper, we show that it is possible to jumpsin such away that the average distribution in time of
interpret the above-mentioned stochastic evolutions in termsthe number of photons satisfies the thermal distribution. On
of continuous measurements made on concrete physicalthe other hand, the diffusion equation leads to states which,
systems, for any temperature of the reservoir. Previous for sufficiently low temperatures (average number of thermal
research along this direction includes the pioneering work photons smaller than one), are quite close to mildly squeezed
of Carmichael [9], who established the connection between states. Even though localized in phase space, these states
stochastic Sclidinger equations and photoelectric detection, have a diffusive behaviour, eventually spanning a region of
and Wiseman and Milburn [11, 12], who developed the phase space in such a way that again the time-averaged
physical interpretations for Sabalinger stochastic equations  photon statistics coincides with the thermal distribution. We
describing the evolution of a cavity mode in contact with a will show that our atomic model for the reservoir allows
zero-temperature reservoir. These last two authors showeda simple interpretation of these localization phenomena,
that the mode of the electromagnetic field is described which extend to finite temperatures the discussion made
by a quantum jump equation if the outgoing light is by Garraway and Knight [16], and illustrates the general
directly detected by a photodetector, while homodyne or localization properties of quantum state diffusion equations
heterodyne detection schemes lead to two different stochasticdemonstrated by Gisin and Percival [10].
Schiddinger equations for the state of the field. The numerical simulations displayed in this paper
We also consider the time-dependent behaviour of ainvolve, of course, initial states with a finite number of
mode of the electromagnetic field in a cavity interacting amplitudes in the Fock-state basis. This leaves open the
with a reservoir (which may be associated to the continuum question of whether the localization into Fock states would
of modes of the field outside of the cavity, to which the hold if one started with a state having an infinite number of
internal field may be coupled via a semi-transparent mirror). components. We treat this problem analytically, and show
Our interpretations rely on the fact that the same masterthat the system evolves in the mean towards a Fock state, for
equation is obtained for quite different reservoir models. We any initial state of the field.
thus take as the reservoir an atomic beam which crosses In section 2, we review the stochastic approach to
the cavity, interacting resonantly with the field inside it. dissipative systems. In section 3 we propose a physical
We show that the Monte Carlo or quantum jump method interpretation for the Monte Carlo quantum jump approach
can be reproduced by taking as the reservoir a beam ofto the problem of field dissipation in cavity QED, for any
continuously monitored two-level atoms, prepared initially reservoir temperature, while in section 4 we show how to
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interpret physically a description of the same problem based Applying Dyson’s expansion to equation (9), we get:
on a stochastic Scodinger equation. In section 5, we ‘ f b

display our numerical results, and show that, depending onp(t) = Zf dtm/ dtm_l.../ dtl{S(t — tm)

the physical procedure used to monitor continuously the field m=0 0 0

in the cavity, one may get localization in state space. We also

prove analg//tically, in);,gction 5, thatthe Iocalizafi)on into Fock x ( ) J") S(tm = tm-1) - ( > J"> S(1) } p(0),(11)
states occurs in the mean, for any initial state of the field. Our "

n

conclusions are summarized in section 6, while details of the Where
calculations are displayed in the appendices. S(t) = exp{ [co + Z(L,, — Jn)]t}. (12)
2. Stochastic Schr c")dinger equa’[ions and Equation (11) may be rewritten in the fO”OWing way:

dissipative systems

t Im tp
p(t) = 22/ dzm/ dtm_l.../ dy
A wide class of master equations describing the evolution of m=0 { 0 0

dissipative quantum systems can be written in the Lindblad xAS(t — 1) I, SUn — tm—1) - .. S, S(t1)}p(0). (13)

form [23]; Each term in the above double sum can be considered

ps = Lps, @ as a quantum trajectory, the reduced density operator at
where time ¢ being given by the sum over all possible quantum
L=Lo+ Z Ly, 2) trajectories [9]. For each of these trajectories, equation (13)
n shows that the evolution of the system can be considered as a

i succession of quantum jumps, associated to the opetgtors
Lops = ﬁ[/)s, Hg], (3) interspersed by smooth time evolutions, associated with the
1p ot + + operatorsS(z). The probability of each trajectory is given by
Lnps = —3[C,Cups+ psC, Cu] + CupsC,, (4) the trace of the corresponding term in equation (13).

ps is the reduced density operator for the ‘small’ system From equations (10) and (12), we can write:
S (obtained by tracing out the degrees of freedom of the
reservoir R from the density operator for the full system
S + R), and Hs describes the Hamiltonian evolution of the
small systen® in the interaction picture. The operatafs
act on the space of states of the small sysfer@ind express
the interaction of with the reservoiR. The number of them N(@) = exp[ - :Hst ) Z(C ¢ )] (15)
depends on the nature of the problem.

An example of such an equation is the master equation Therefore, ifp is a pure state, thes\)p is also a pure state.
for a field in a lossy cavity, at temperatufg given in the  The sameistrue faf, p, with J, defined by equation (8). This

Stp=N@®pN©®", (14)

where

interaction picture by implies that a pure state remains pure, when a single quantum
dos 4 1t 1 + trajectory is considered. Note also that the evolution between
& = In(a’pra — aa py — 5praa’) jumps is given by the non-unitary operate(z).

+T(1 +ﬁ)(apfaT _ %aTapf _ %pfaTa), (5) It is clear from equation (9) that different choices of

the jump operators are possible. These different choices
wherea anda' are the photon annihilation and creation correspond to different decompositions in terms of quantum
operators, respectively, is the average number of thermal  {rgjectories of the time evolution of the density operatgr
photons, given by Planck’s distribution, amd = 1//cav, and, eventually, to different experimental schemes leading to
whererc, is the damping time. In this case, one could set  the continuous monitoring of the evolution of the system. It
_ _ is precisely due to this continuous monitoring that an initial
C1=I (1 +n)a, Cp=~Tna'. (6) pure state remains pure, since no information is lost in this
situation: for a field in a cavity, this continuous monitoring

A formal solution of equation (1) is amounts to accounting for every photon gained or lost by the

(1) = exp(Lt)p(0). @) field, due Fo |t_s interaction with the reservoir.
We will discuss now two different realizations of the
Let us define reservoir, for a field in a cavity, which will lead to a Monte
Jop = CopCl, 8 Carlo quantum jump equation, for the first realization, and to
. a Schbdinger equation with stochastic terms, for the second
and write one.

Pl = eXp{EOt ¥ Xn:[J" * (L= J,,)]z}p(O). © 3. Simulation of a Monte Carlo SSE

Note that We exhibit in this section a physical realization of the Monte
Carlo method. The corresponding experimental scheme is
(Lo = Jn)ps = —3(ClCyps+ psCrCy). (10) shown in figure 1. A monokinetic atomic beam plays the
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role of a reservoik and crosses a lossless cavity, interacting
with one mode of the electromagnetic field. The cavity mode
plays the role of a small systei The atoms, regularly

spaced along the atomic beam, are prepared in one of two

Rydberg states: an upper st&ié or a lower statéb). The
transition frequency between these two states is assumed
to be resonant with the cavity mode. A similar model of
reservoir was adopted in section 16.1 of [24].

The state of the atoms is measured by a detector just at

the exit of the cavity. The ratio between the flux of upper state
atomsr, and the lower state atonrs before their entrance
into the cavity is chosen so that

n

ru
1+7n’

=Tkl = (16)

Ty

where hw is the difference in energy betwedn) and
|b), and, as will be shown in the next paragraplfs,s
the reservoir temperature. The constaptrepresents the
Boltzmann constant ard, given by Planck’s formulaid =
[exp(hw/ksT) —1]71), is the mean occupation of the modes
with energyhw in a bath at temperaturg.

We now analyse the time evolution of the state vector

(i) The atom enters the cavity in state and is detected in
the same state. In this case, according to equation (19),
the state ofS at timer = 1, + t will be given by

2

1B, + 1)) = (1—k2’

2

aTa> [W(1,)). (20)
(ii) The atom enters the cavity in stgig and it is detected
in the same stat). In this case,

2

(@ +1)) = (1—A2r

2

aaT> [W(1,)). (21)

(i) The atom enters the cavity in the stae) and it is
detected in the state). In this case,

U + 1)) = —irtal¥ (). (22)

(iv) The atom enters the cavity in the stdte and it is
detected in the staté). Then,

1Bt +1)) = —irta’ | W ().

(23)

Note that in the cases (i) and (ii) a small change in the

|W (1)) of S, under the continuous measurement of the atoms state of 5’ takes place, while in the cases (jii) and (iv) a big
after they leave the cavity. We also assume that one knowschange may happen (quantum jump). However, these last

the state of each atom before it interacts with the cavity. This
may be achieved by selectively exciting the atomgatoor

|b), according to the proportion given by equation (16). We
will adopt the following simplifying assumptions: (a) the
atom—field interaction time is the same for all atoms; (b)

two cases are very rare, due to the small change of the atomic
state during the interaction time.

We consider now the change|df) fromz to¢+§z, where
the time intervalir is large enough so that many atoms go
through the cavity during this time interval (= r,6t > 1,

the spatial profile of the electric field is constant; (c) the cavity ,,, — ,, 5 > 1), and also much smaller thag,/7t (), where
is perfect, i.e., the field state is changed only by the atoms; (n) is the average number of photons in the state. This last

(d) the atom-field coupling constahtand the interaction  condition, as it will be seen later, implies that the probability
time  are both small, so that the atomic state rotation is sf 5 quantum jump duringr is very small. In most of the

very small; (e) the rotating-wave and dipole approximations ime intervalss the atoms will be detected at the same state

will be used; and (f), according to the statements (d) and (e),

they came in, since the transition probability is very small.

quantum cooperative effects will be neglected. In this case e evolution of W) during these intervals will be given by:

the interaction Hamiltonian in the interaction picture will be:

H =ha(|b)(ala’ + |a)(bla). (17)

The operatorsa and «' are annihilation and creation
operators, acting on the space of states of the field mode
Just before théth atom enters the cavity, the state describing
the combined system (atoin field) is given by

[Wa_y (1)) = V(1)) @ [Wa(t)).

Here|W,(t;)) = |a) or |V, (t;)) = |b), depending on the state
to which the atom was excited just prior to entering the cavity.

At time ¢; + 7, the atom—field state vector, up to second
order int, is given by:

(18)

W p(t; + 7)) = (1 —irtlby(ala” —irtla)(bla

2

2272 2272

5 |a><a|aa*)|%_ £@),  (19)
where the tilde indicates that the state vector is not
normalized. The expansion (19) should be very good in view
of condition (d). We assume thét, +r,)t < 1, so that there
is at most one atom inside the cavity at each instant of time.
After this atom exits the cavity and is detected, one of the
following four cases will be realized:

|bY(bla'a —
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2.2

A2t 2272

e Wy
2

aaT> (l —

W (s +681)) = (1—
2.2
a*a> |W(1)).

= (+- LA o
This result does not depend on the ordering of the upper-state
and lower-state atoms. We also note that in the interaction
picture the state vector does not evolve when there is no atom
inside the cavity, since the only source of field dissipation is
the interaction with the atomic beam.

Equation (24) displays the interesting property that the
wavefunction of the system (and, consequently, the mean
energy) may change even when there is no exchange of
energy between the system and the measurement apparatus
(represented by the atoms in the present case). An easy
way to understand this effect physically is to imagine that
all atoms are sent into the cavity in the lower state, and are
detected in the same state after exiting the cavity, for a given
realization of the system, which starts with a coherent state
in the cavity. Then, even though there is no exchange of
energy between the atoms and the field in the cavity, as time
evolves the ground state component of the initial state should
also increase, since the results of the measurements lead to
an increasing probability that there is a vacuum state in the

(24)
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cavity. In other words, the fact that there is no quantum jump, and using that
for that specific trajectory, provides us with information about
the quantum state of the system, and this information leads
to an evolution of the state. This is closely related to the
quantum theory of continuous measurement [25,26] and alsowherer; = —(8t;/2)I"'(1 +7) andi, = (8t;/2)T'n.
to quantum non-demolition measurement schemes proposed  The results of the measurement may be simulated
recently [27]. This problem is also very similar to that of by picking random numbers. The state vector given by
a Heisenberg microscope in which even the unsuccessfulequation (30) may be normalized as follows:
events of light scattering produce a change in the quantum
mechanical state of the particle [28].

We introduce now the following definitions:

ot

T 8t + )
cie s Y0 ChCn — @7 Zn CnCon Cié, (32)

C
! SNy +

\/ clcy

[V (1 +61)) =

c
2_5N,
\/cz*cz

_ 22 T .22 Ta,2 2 8t
[= (= ra)d?c? = 2% = 25202 (25) +(1— 8N1)(1—8N2)<1— > ZC);C,”)
m
C1 =T (1+7n)a, C, = /Tha'. (26)

-4
x (1—6t2<c;cm>) }wf(r)). (33)
m
In the above equation, the first two terms represent
the possible jumps, each normalized, as in the Monte
Carlo method, and the last term is the no-jump evolution
contribution, normalized with the corresponding prefactor

o . ) that rules out the jumps. From equation (33) one gets for
If an atom enters the cavity in stgte and is detected in

= + _ .
the stateb), the state vector of suffers a ‘quantum jump’, (e D) = ¥+ 80) — W O):
and one photon is added to that system. On the other hand,dy (1)) = { Z [ Cn
a de-excitation inS occurs if an atom which entered |h) "
is detected in the state). The probability of this event
occuring may be calculated by using equations (26) and (22)
or (23); thus, the probability of an excitation (action«d
to occur between andr + 6z is given by:

Using these definitions and relation (16), equation (24) may
be rewritten in the following way:

5 st
[W(r +81)) = [1 -5 ; C,I,Cm] [W(n). (27)

— 1] SN,
ChCn

$
—é > ochen - <CJ,cm>>}|w(r>>. (34)

+ 4. Simulation of the homodyne SSDE
3p1 = St{W()|C1C1|¥(@)).

(28)
We show now that, by a suitable modification of the atomic
configuration, it is also possible to interpret physically the
stochastic Sclidinger equations in terms of continuous
measurements made on atoms which cross the cavity
containing the field. The corresponding scheme is shown
in figure 2: a beam of three-level atoms with a degenerate
lower state (statels andc) crosses the cavity, the field in the
cavity being resonant with a transition between one of the
two lower levels (say, level) and the upper atomic state
while a strong classical field connects the other lower state
with the upper level (one may assume that both fields are
circularly polarized, so that the cavity field cannot connect
a andc, while the strong field does not induce transitions
wheres N1 ands$ N, are equal to one or zero, with probabilities  betweeru andb).

8p1 andsp- for § N, ands N, to be equal to one, respectively. We also assume that the atom is prepared in either a
This may be represented by writing the statistical mean coherent superposition of the two lower levels:

M(8N,) = (C!C,)8t. Also, 8N, 6N, = 8N,8,,. One 1
should note that the instants of time in which the quantum —
jumps occur during the time intervét are irrelevant, since V2

the jump operators can be commuted through the NOJUMD o iy the upper one, following a Boltzmann distribution

evolution, the commutatlonl_pro_ducmfg an overall p.Psse Wh'%h corresponding to a temperatufdor the atoms, which act as
goes away upon renormalization of the state. This can be, rogenoir for the quantum field in the cavity.

easily seen by rewriting the no-jump evolution, during a time In the interaction picture, one can write:
intervaléz; < ét, as an exponential: '

The probability of a de-excitation (action a) during this
time interval is:

8p2 = 5t(‘P(t)|C2TC2I‘I’(t))- (29)
The probabilitiesip; andsp, are very low, so that the joint
probability of having one excitation and one de-excitation
during the same time intervak is negligible. One may
therefore write:

. 5t
[ (r +61)) = chlcgNz[l - ; C,LC,,,] W (). (30)

[Varom) = —=(Ib) *+Ic)), (35)

H = Tigac(ela)(c|+&lc)(al) +hgap(a’|b) (a] +ala)(b]. (36)

5[. 81"
1= S cle,—en( - Ycle. ) + o6
(31)

We assume for simplicity that,. = g.» = g, and that is
real. The time evolution of the wavefunction, to second order
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in the coupling constant is:

H?7?

iHt
2

h

ly(t+ 1)) = [1 - ] lv@®).  (37)

Asinthe previous model, there are two possible quantum

With the above jump operators, and using the expansion
given by equation (13), we show in appendix A that the
joint probability of gettingm, andm, jumps corresponding
respectively to the first and second processes described above
is given by the following expression:

jump processes. The first one corresponds to the atom ()™ ()™
. L o P, (At) = |ex ex
entering the cavity in the coherent superposition of lower ~ 12 = | SXPHe my! PH2 !
states, and being detected in the upper state. After the 1
measurement, the state of the field is given by: x Tr {expﬁ’ [1 + g(mla + mzaT):| o
(b,c—a) __ _Igt 1 + tr
[y +1); =7 (e+a)ly()y.  (38) X |1+ Z(maa” +maa) | expp” (46)
The corresponding probability of detecting an atom where:
in |a), af_te_:r a t|me_|nt§rval5t, starting from the initial iy = T Ate2(1+70).
superposition state, is given by: ”
a2 = T Ate?(m), (47)

g2T2

2

wheren;, = r,8t, r, being the rate of atoms injected in the
superposition of the lower states.

8p1=my (YO +a) e +a)ys@),  (39)

The second jump process corresponds to the atom

entering the cavity in the upper state, and being detected

in the superposition of lower states. Then, the state of the

field after the measurement is:

_ig

e+ )™ = ﬁf@mw(t»f. (40)
The corresponding probability is given by:
g2.L.2
8p2:naT<‘/’f(t)|(8 +a)(e +ah)|y 1), (41)

wheren, = r,8t is the number of atoms which enter the
cavity in statda), during the time intervai:.

At
2
From equations (46) and (47), one can readily fing)
and(m?) fori = 1, 2.
Up to orders—¥2, one finds:

[ata@n + 1) + 2ca(m + 1) + 2ea'n + 7).

p=-

(mi) = wi(1+35(X1)),

2
(m,'

(48)
) = Wi,

with
a+al

2
Going back to the definition af (), one may write:

X1

(49)

S(At) = N(AnpNT(AD), (50)

in terms of a smooth evolution operafgithat preserves pure

This analysis suggests that the quantum jump operatorsgiates, This operata¥ is given by equation (15). with the
corresponding to these two processes should be, respectivelyymp operators,, now given by equations (42). Now, if

C1=T(L+0)(c+a) (42a)
and
C, = VTi(e +a"), (42b)
where
2.2 2.2 2.2
_ . \8&TT m 8T ragt
P=t-rd—>=15%"72 "% 2 (43)

Formally, these jump operators are retrieved by rewriting
the master equation (5) in the following equivalent form:

do; I(1+7)

dr

(Ji+ J2)ps — [(a'a+2sa+e%)pf

In
+pf(aTa +2ca’ + 82)] - 7n[(anr +2ca’ + sz)pf

+ps(aa’ +2sa + &%),
with:

(44)

being associated with the jumps, the operatrbeing now
given by equations (42).

We derive now the stochastic Sédinger equation that
describes the present measurement scheme.

256

we consider a sequence of jumps (of the two kinds, in the
present analysis) and evolutions, the state vector of the field
will evolve according to:

[¥) r(At) = N(At — t,,)C2N (1,
= N(AHCY*CT* 1Y) £(0).

In the last step, in deriving equation (51), we used that
the commutators between the jump operators and the no-
jump evolution produce overall phases, as in the Monte Carlo
evolution given by equation (30).

Now, we considern;, i = 1,2 as a couple of random
variables with non-zero average, and write them as:

- tm—l)Cl e |1//)f(0)
(51)

O
m; = (m;) + AW, ——,

VAt

where the AW; are two real and independent Wiener
increments, with:

(52)

(AW?) = At, i=12. (53)

From equations (51) and (52) and up to ordef/?,
we get the following homodyne stochastic Sadinger
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differential equation (HSSDE) 8 L L B B B B
A" ) (AL = |§) (A1) = ) £(0) B |
r r ! [¥(0))=[3)
= H:— §(1+ﬁ)afa— E(ﬁ)anr 6 =3 B
+2I (X1) (a(1 +ﬁ)+a*ﬁ)] T 5 = -
o :
x At +a'VTRAW, +a/T (1 +ﬁ)AW1}|¢>f(0). (54) 5~ 4T ¢ ! =7
o
At zero temperature, a typical quantum trajectory in this g 3= =—= m— 1
homodyne scheme is as follows: "-
2 - - fiatati - -
(a) If one starts from a coherent state, the quantum jumps ‘ ‘
will only produce a multiplicative factor in the wave - b —_
function of the field, a factor that can be absorbed in ' ‘
the normalization. 0 NN NI N O N N N NI NN AT A
On the other hand, during the ‘no-click’ periods, the 0 0.5 1 1.5 2
nature of the coherent state is preserved, changing only rt

the coherent amplitude, all the way to the vacuum. Figure 3. Quantum jumps for an initial Fock state with= 3, the

This situation has been previously studied [29] in the ;mper of thermal photons being also equal to three. The set-up is
context of the continuous measurement theory of three- the one shown in figure 1.

level atoms and two resonant fields, with the difference
that in that work the number of detections was a
predetermined quantity. However, the net result of the

preservation of the coherent nature of the state of the on th? states O.f the '“°°”"”9 and outgomg atoms. .
field, along the trajectory, is the same. Figure 4 displays two different views of the evolution

(b) If we start with a Fock state, the quantum jumps will of the photon ngmber populaticmn_|2_of an initial coherent
invariably produce a mixture of various Fock states, state. These flgurefs, clearly exk_nblt th(_a dual nature of the
while the waiting or ‘no-click’ periods will only generate ~ SYStém dynamics, with quantum jumps interspersed by non-
numerical factors in front of those Fock states. unitary evolutions. In the displayed realization, the vacuum

component of the state increases until the first quantum jump

occurs. This jump corresponds to the addition of a thermal
photon to the system, leading to the disappearance of the
vacuum component. The second jump corresponds to the
absorption of a photon from the cavity field, leading to the
reappearance of the vacuum state. The combination of the
non-unitary evolution with the quantum jumps finally leads
to a Fock state, which under the action of the reservoir
keeps jumping, in such a way that the photon number
5. Numerical results and localization distribution over a long time span reproduces the Bose—

. i . _Einstein distribution. This process is illustrated in figure 5,
We present now the numerical calculations corresponding which displays the time evolution of th@ distribution for
to the two equations associated with the two measurementthe field, defined for each realization @ = |{a|v)[2/x

schemes discussed above. We consider in these CalCUIationﬁ/herem) is a coherent state with amplitude The initial
the general case in which the temperature of the reservoir isQ distribution is a Gaussian, corresponding to the initial

taken as different from zero. coherent statferg), withag = +/15/2(1+i). Thisdistribution
evolves into the one corresponding to a Fock state, with a
number of photons which keeps jumping around the thermal
We consider first a simple example in which the initial state Valuen = 2, in the same way as shown in figure 3. The
of the system is a Fock state with three photons. We assumeconvergence towards a Fock state admits a simple physical
thatthe temperature of the reservoir corresponds to an averagéterpretation, if the state has a finite number of components
number of photons also equal to three. The correspondingin the Fock-state basis: if one has a sequence of absorbing
evolutions are exhibited in figure 3. The state of the system interactions, so that the field goes to the vacuum state, from
remains a Fock state, with a number of photons which keepsthen on one would have the evolution considered in the
jumping between several values, in such a way that the previous paragraph. The same would happen if no change
average number of photons is equal to three. We have verifiedin the atomic state is detected after a long time, since in
that the probability distribution for the number of photonsis a this case the field also evolves towards the vacuum state.
Bose—Einstein distribution, as long as the observation is doneMore generally, one can see from figure 4 that the photon-
over a sufficiently large time. Our model leads to an obvious number distribution is continually renormalized towards
physical interpretation for this behaviour: as each atom is lower photon numbers, which makes it easier to reach the

detected the photon number jumps up or down, depending

In the finite-temperature case, the situation is more
complex, since there will be also creation of photons, that will
disturb an initial coherent state and produce further mixtures
in the Fock state case.

A more detailed analysis of these various cases is
described in the next section, devoted to the numerical
simulation.

5.1. Quantum jumps evolution
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Figure 4. Two views of the evolution of an initial coherent state (average photon number equal to three), in the quantum jump approach.

The temperature of the reservoir corresponds to a number of thermal photons equal tol0.2: A62 a photon is absorbed by the cavity
mode, while around’s = 3 a photon is lost by the field in the cavity. Before the first jump, the amplitude of the coherent state decreases

exponentially. After some jumps, the state becomes a jumping Fock state.
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Figure 5. Evolution of theQ function, for the quantum jump approach, and an initial coherent stategwith/15/2(1 +i). The
temperature of the reservoir corresponds to a number of thermal photons equal to two. The initial Gaussian, corresponding to a coherent
state, evolves into the distribution corresponding to a jumping Fock state.

vacuum state and, from then on, the sequence of jumping5.3. Analytical proof of localization

Fock states. For th . N - I iol
Of course, this argument holds only if the photon- ~°F th€ quantum jump situation, it is actually possible to

number distribution has a finite number of components in demonstrate analytically that the system evolves in the mean

the Fock-state basis. Nevertheless, we show in section 5,.30Wards a Fock state, for non-zero temperatures.

that this property holds true in general, albeit in an average Ve first define two kind of variances, for an arbitrary
sense. operatoro.

For the Hermitian case:
5.2. Diffusion-like evolution (AO?) = (0% — (0)?, (55)

We consider now the evolution corresponding to the situation
displayed in figure 2. We consider as initial state the same
coherent state as in figuie 5, the reservoir temperature being IAO12 = (0T — (0)(0 = (0))

also the same as befo(e = 2). In this case, the system (56)
evolves according to the HSSDE given by equation (54). =0%0 - (0"ho - o% o) - (0M0),

After some time, theQ function approaches a distorted

Gaussian, with a mild amount of squeezing along the SO that

direction of the axis corresponding to the real parteof (|A0P) = (0"0) — (0")(0). (57)
(figure 6). The centre of this Gaussian keeps diffusing in
phase space, so that after a long time span the time-averaged

and for the non-Hermitian case:

In particular,we are interested in two quantities:

distribution coincides with the Bose—Einstein distribution. 01 = (|Aal?) (58)
Similar localization patterns were demonstrated in [30, 31]. ’
Again our model leads to a physical interpretation of this 05 = (|An|?), (59)

localization phenomenon: it is associated to the coherence ) )
transfer from the applied field to the cavity mode, through that measure the dlstan'ce of the state from being a coherent
the interaction with the three-level atom. or a Fock state, respectively.
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Figure 6. Evolution of theQ function, for the diffusive evolution, and an initial coherent state, witk= /15/2(1 +i). The temperature of
the reservoir is the same as in figure 5. The initial Gaussian, corresponding to a coherent state, evolves into a distorted Gaussian, whose
centre diffuses in phase space.

We start with the quantum jump equation: For the variance of a non-Hermitian operator, we have:
dy) = _]L:de, ol<<|A0|2>>T =d(0"0) - (0)d(0") — (0")d(0)
—d(o"d(0). (64)
-IN“(crc, — (chyc)ly)de
2 Zm:( " CnHCnD1P) After a simple calculation, one gets:
o 2 — _ a0 1
+Z 7T — 1| |¥)8N,, (60) dlA0%) E(H O|°, H])dt
m \y/ChCn —3{la0, cTcyydr
with: . +H|AOPN(CTC)dr — (|AO)SN
M(@Ny) = <Cmcm>dtv (61) (CTOTOCHCTC) _ (CTOTC)(CTOC)
SNyuS Ny = SNySp . (62) + (TN CTO) SN. (65)
We will calculate, using Ito’s rule of calculug); andQ» In the Hermitian case, on the other hand, we get:
forT =0(C =+Ta)andT > 0(Cy = /@ + Dl a, C; = i
Trat). d((A0?)) = —ﬁ<[A02, H))dr — 1({a0?, C'c)ydr

We first develop some general expressions, which will 20 s ot 5
be applied to calculate the above variances. HAONCC)dr — (AO%)SN

(cto?cy(ctcy — (ctocy(ctoc)

d(0) = (dy|O]y) + (¥ [0]dy) + (dy|Oldy) + & - SN. (66)
i N : (ctey(cre)
= _ﬁ<[0’ H])dt = 3({0, C'Chdr +(0)(CTC)dr Now we specialize to several cases:
((CTOC) _ (CTCMO)) (a)_T =0,0=a,C= \FFa, andH = Ea)aTa..
+ (cTC) SN, (63) Using the above general expressions, we write:

and similarly for the case in which several jump operators are d((|Aal?) = [ —T(a'aa’a) — 2T (a'a)a") ()
present.
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+

ala Tt

+F(aTa)( a'a'a

ny
2
(
{

+F +F
) E( ){a) 5(

+

aa a T

)(aT) + E(a aa
2
SN + (a"Y(a)sN
ata) — (atata
(ata)(aTa)

The above results are neither strictly positive or negative,

sowe cannot draw any conclusion; however, for the statistical

mean:

d((|Aal?))
M dr

T'{(AahaTa)(ata Aa)
- (a%a)

><aT)] dt

- aTa)
atal Ya'aa)

aa)(

+ SN. (67)

I'(|Aal?)

<0, (68)

Stochastic Sclidinger equations in cavity QED

a pure Fock state. At a later time and due to the non-zero

temperature, a thermal photon may produce a jump to a
different Fock state, thus leading, as time goes on, to a series
of Fock states, whose statistics will reproduce the thermal

distribution.

In the case of the HSSDE, the proposed damping
mechanism consists of a three-level atomic beam, with a
split ground state, whose population ratio of the upper and
lower levels is given by the Boltzmann factor. The atoms
again cross a lossless cavity, being resonant with the mode
of the field under consideration. A second field is externally
applied, with the same frequency but different polarization,
so that each of the two fields connects the upper atomic
state with a different lower sub-level. If this external field
is a strong classical field, we show analytically that the
stochastic Sclidinger equation describing the behaviour of

s0, in the mean, the system goes to a coherent state, whicht,he guantum field in the cavity corresponds precisely to the

in this case, is the vacuum.

(0)T > 0,0 =a, C1 = V@ +Dla, C, =
andH = hwa'a.

The reader can easily verify, with a little algebra, that,
in this case, neither@Aa|?)) or Md({|Aa|?)) are strictly
negative.

(©T >0,0=a%a,Ci=/@+Dla, Cr=
andH = hwa'a.

In this case, as shown in appendix B(fata)?) is not
negative, bub/d((Aata)?) is:

FﬁaT,

FﬁaT,

Md((AaTa)z) T+ ((Ad'a)a'a)(aa(Aa'a))
dr (ata)
T T T T
_F(ﬁ)((Aaa Jaa')(aa'(Aaa')) <0. (69)

(aaT)
So0Q;, is strictly diminishing in the mean, even&t> 0.

Since Q3 is not, the final state will not necessarily be the

vacuum. Indeed, there is no unique final state in this case. Itis

easy to show from equation (69) tHd{d ((Aata)?)/dt] = 0

if and only if the state of the system is a Fock state. This result

SDE.

The beam is continuously monitored as it exits the cavity.
Numerically, one observes, for low temperatures, that the
state of the field goes to a mildly squeezed state, centred
around a value ok which diffuses in phase space, in such a
way that the time-averaged distribution again reproduces the
thermal state.

Other kinds of stochastic equations can also be modelled
by slightly modified detection schemes. For instance,
a stochastic Sdidinger equation of the heterodyne kind
[11,12] is obtained if the three-level atom is off-resonance
with respect to the cavity and the applied field.
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Appendix A. Derivation of the HSSDE

Here we present the detailed derivation of the HSSDE.

We start from the expansion given by equation (11),
which in the two-jump situation, and neglecting the
commutators between the jump operators and the no-jump

jump approach and the HSSDE, using as an example theeyolution (for the same reason as discussed in the previous

damping of one field mode in a cavity at temperatfire

This field damping mechanism can be modelled as an
atomic beam, whose upper and lower population ratio is given
by the Boltzmann factor, crossing a lossless cavity.

The quantum jump trajectory can be interpreted as a
continuous monitoring of the outgoing two-level atoms,
which are resonant with the cavity mode. We show
both numerically and analytically that this continuous

measurement on the reservoir leads, for each trajectory, to

section), can be expressed as:

e}

p(an= )"

ml,mZ:O

(Al)ml+m2

m1!

S(ANJF?IMp(0). (A1)

mz!
The probability ofm; andm, quantum jumps of the

respective types, is given by:

(At)m1+m2

Pml.mz(At) = I |
nq:ma:

THS(AD T2 IMp(0)}.  (A2)
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The master equation of the field, corresponding to a or, expanding, up te=%/2:

lossless cavity at temperatufe may be written as:
do

r
g =it — ip[afa(l +20) + 2e(L+m)a’

+2¢na. + 7+ 2(1 + 2n)]
r
—E[aTa(l +20) + 2e(1 +n)a + 2¢na’

+ﬁ+82(1+277)]p. (A3)

Therefore, according to the discussion in section 2, one

possible way of writingS (A¢) is:

S(ADp = N(A)pN(ADT, (Ad)
with:
N(Af) = exp{ — @[afa(l +20) +2e(L +n)a’
+2¢7a + 71 + 2(1 + 20)] } (A5)

Using equations (A2) and (A5), we can write:
expp ()™ ] [eXpuz(Mz)mz :|

m1!

+\ M2 my N
xTr[exp(ﬂ/) <1+“—> (1+9) p(1+“—)
& & &

Pml,mz(At) = |: le

x (1 + 9)'"2 exp(ﬂ*’)], (A6)
&
where:
w1 = CAte?(1 +7),
wo = I Ate?n, (A7)
B =~ 2liata(d + 20) + 2[e(1 +m)a + eiia’] + 7).

From equation (A6), we can now calculage;) and
o2 = (m?) — (m;)>upto order(%)g. The result is:

4

2
i) = w1 +—(X1),
(mi) = wi( "'8( 1) (A8)

2
0, = Mi.

Now, we turn to the final step of this calculation, which
yields the time evolution of the state vector.

After repeated jumps and no-jump events, the
unnormalized wavefunction for the field can be written as:

- tm—l)ClN oo |¢f)f(0)a
or, except for an overall phase factor:
%) (A1) = N(ADCHZCy* |y) £(0),

where thetilde (~) indicates that the state vector is not
normalized.

Using equations (A5) and (A9), one can write, up to a
normalization constant:

W) ()
= exp(— F(zAt) {a'a( +7n) + 2[e(1 +m)a" + 8ﬁa]}>

x (1 + “:) (1+2)" w1, 0.

[¥) s (At) = N(At — t,,)CoN (1,

(A9)

(A10)
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. TAt, _ Tﬁ
|¥) r(AL) = [1— 5 (a'a(l+n) +aa'n)
—T'Ate(a(l +7) +aTﬁ)]

x [1 +Zma +mza*>} 1) £(0). (AL1)

We are interested in the — oo limit. In deriving
equation (A11) we consideredlarge, ’Ar ~ ¢~¥2, and
ma, mp, w1, 2 ~ &Y/2,

Now, we consider two random numbers with non-zero
averagen; andmy:

o1
my = {my) + ——=AWy,

“f,E (A12)
ma = (mg) + \/%AWZ,
which satisfy:
(AWD?) = ((AW2)?) = At. (A13)

We notice thatAW; are two independent Wiener
processes.
Finally, equation (A11) can be written as:

Amu"2|1/~;)f(At) = |1Z/)f(At) - W/)f(o)
{ [ - g(l +m)a’a — g(ﬁ)acfr +2r(Xa)(a(1+n)

+ aTﬁ)]At +a'VTHAW,

+a/T(1 +ﬁ)AW1}|w>f<0>.

which is the desired result.

(A14)

Appendix B. Fluctuations

We want to calculate @Aa’a)?) andMd{(AaTa)?).
We do it first in a simple cas& = 0, O = a'a,
C = V/Ta, andH = hwa'a.
d((AaTa)z) = F8t{—(aTaaTaaTa) + 2(aTaaTa)(aTa)
—2(a"a)(ata)(a’a) + (a'aaTa) (ata)}
—(a'aa’a)sN + (a'a)(aa)sN
+<aTaTaaTaa>(aTa) —(atataa)(a’aTaa)

(ata)(a'a)

SN,  (B1)

or:
d{(Aa'a)?) = —Tst{(AdaTa)(AaTa)(AaTa))
—((Aa'a)?)8N

+(aTaTaaTaa)(aTa) —(a%ataa)(a’aTaa)

(ata)(a'a)
Now, we apply the above results to the more interesting
casel > 0,0 =a'a, C; = V@ + Dla, C; = /Thal,
H =Thwa'a:
d((Aata)?) = —-T @+ D ((Aata))(Aata)(Aa'a))dt
—((Ada)?)s Ny

SN.  (B2)



+((aTanraaTa)(aTa) — (a"aata)(aTaaTa))s Ny
(a*a)(a'a)

+Iadi[—(aataa’aat) + 2(aataa’y — (aa")

+2(aa’aa"y(aa) — 2(aa"y(a"a) — (aa"V(aTa)(a a)

+ataata)(aa’y — (aTa)(aTa)(aaT)]

—((Aa’a)?)8N;

+((aaTaaTaaT)(aaT) —(aataa™(aaaa))s N,

(aa*){aa’)

(B3)

(8]
(9]
(10]

[11]
(12]

In the above expression, neither the deterministic or the [13]
stochastic term is definitely non-increasing. But in the mean [14]

it does decrease:

pd@da? o (A oata)ala(adle)
dr (a*a)
oot (gt t
_Fﬁ((Aaa Jaa'){aa'(Aaa')) <0, (B4)
(aa®)
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