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We derive a general expression for the linewidth of inhomogeneously broadened traveling-wave gas lasers,
without any assumption on the relative magnitude of the atomic and field decay constants, and for several types
of atomic pumping statistics, ranging from Poissonian to regular. For small inhomogeneous broadening, an
important linewidth narrowing occurs in the bad-cavity limit. This effect disappears, however, in the large
inhomogeneous broadening limit~Doppler limit!.

PACS number~s!: 42.50.Dv, 42.50.Lc, 42.55.2f, 42.65.Sf

The quantum-limited linewidth of a fully inverted single-
mode laser with on-resonance homogeneously broadened
medium was originally derived by Schawlow and Townes in
Ref. @1# as

DnST5
k

2I 0
, ~1!

wherek is the cold-cavity loss rate andI 0 is the intracavity
intensity of the laser light in units of number of photons.
However, the result of Schawlow and Townes is valid only
for a good-cavitylaser for which the decay rategab of the
atomic polarization is much larger than the cavity loss rate
k. In the last few years there has been a certain revival of
interest about the quantum limitations on the laser linewidth
in the so-calledbad-cavityregime where the above assump-
tion is not valid.

This interest is related to recent developments in semicon-
ductor @2# and gas@3# microlasers that operate in the bad-
cavity regime. On the other hand, several authors@4–7# have
generalized the theory of Schawlow and Townes for both
good- and bad-cavity regimes. These generalized theories
predict the appearance of an additional factor in the line-
width formula equal to@gab /(gab1k/2)#2. While for good-
cavity lasers (k/2!gab) this factor reduces to unity, it can be
very small for bad-cavity lasers (k/2@gab), leading to the
quenching of the linewidth. This theoretical prediction was
recently experimentally confirmed by Woerdman and col-
laborators@8#.

The theories in Refs.@4–7# are applicable only for a ho-
mogeneously broadened laser medium. In the experiment
@8#, however, the inhomogeneous broadening was of the
same order of magnitude as the homogeneous one. Hence a
natural question appears about the influence of the inhomo-
geneous broadening on the quantum-limited linewidth in the
bad-cavity regime. The standard textbook theories~see, for
example, Ref.@9#! of inhomogeneously broadened lasers do
not give the answer to this question since they are valid only
for good-cavity lasers.

In this paper, we solve the linewidth problem by extend-
ing the theory of quantum fluctuations in lasers with on-
resonance homogeneously broadened media developed in
Ref. @6#. This theory is applicable for lasers with any relative
magnitude of the atomic and cavity decay rates. Moreover, it
allows for variable atomic pumping statistics, ranging from
Poissonian to completely regular one. The aim of the present
paper is to generalize this theory for inhomogeneously
broadened media and to evaluate the quantum-limited line-
width for both good- and bad-cavity regimes.

For the sake of simplicity we shall assume that~i! we
have a singletraveling-wavecavity mode, so that the spatial
hole burning effect is absent, and~ii ! the laser frequency is
tuned to the center of the symmetrical atomic line, so that
there is no frequency pulling.

Thus, we consider a laser medium consisting of moving
two-level atoms that interact with a single traveling-wave
cavity mode~Fig. 1!. When the atoms move, they see an
electric field with shifted frequency due to the Doppler ef-
fect. Each individual atom has its own resonance frequency
va determined by the value of its velocity component along
the laser mode axis. The frequency distribution function
r(va) of atoms over the resonance frequencies is obtained
from a Maxwell-Boltzmann velocity distribution@9,10#,

FIG. 1. Level scheme with frequencies, pump and decay rates.
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r~va!5
1

Ap

1

Dva
expF2

~va2v0!
2

Dva
2 G , ~2!

with the Doppler widthDva equal to

Dva5v0A2kT

Mc2
, ~3!

whereM is the atomic mass andT is the gas kinetic tem-
perature.

To incorporate the Doppler effect into the theory we shall
separate the atoms into individual groups with different reso-
nance frequenciesva . Within each group we shall consider
the macroscopic atomic populationsN a(t,va) of the upper
and N b(t,va) of the lower level, and polarization
M(t,va). These individual quantities now play the role of
the spectral densitiesof the corresponding collective vari-
ables that are obtained by integration over all groups, so that

N a~ t !5E
2`

`

dvaN a~ t,va!, ~4!

similar equations holding for other atomic variables.
Thec-number Langevin equations for these spectral den-

sities of atomic variables and for the laser field is a straight-
forward generalization of the corresponding equations from
@6#

Ṅ a~ t,va!5Rr~va!2gaN a~ t,va!2g@A* ~ t !M~ t,va!

1M* ~ t,va!A~ t !#1F a~ t,va!, ~5a!

Ṅ b~ t,va!52gbN b~ t,va!

1g@A* ~ t !M~ t,va!1M* ~ t,va!A~ t !#

1F b~ t,va!, ~5b!

Ṁ~ t,va!52@gab1 i ~va2v0!#M~ t,va!

1gD~ t,va!1F M~ t,va!, ~5c!

Ȧ~ t !52Fk

2
1 i ~vc2v0!GA~ t !1gM~ t !. ~5d!

HereD(t,va)5N a(t,va)2N b(t,va) is the spectral den-
sity of the atomic population difference;A(t) is ac-number
stochastic variable corresponding to the laser field operator
inside the cavity; for a chosen~normal! ordering of operators
~see Ref.@6# for details! and zero temperature of the external
thermal reservoir the corresponding Langevin force in the
equation forA(t) vanishes;ga , gb , andgab are the decay
rates of the atomic populations and polarization, respec-
tively; k/2 is the cold-cavity decay rate, the corresponding
cold-cavity mode frequency isvc ; v0 is the lasing fre-
quency;g is the coupling constant of the atom-field interac-
tion. As mentioned above, we shall assume that the laser
frequency is tuned to the central frequency of the atomic
frequency distribution functionr(va) as written in Eq.~2!.

The functions F m(t,va), m5a,b, or M, are the
c-number Langevin forces for the respective atomic vari-

ables. Having vanishing mean values and Gaussian statistics,
these functions are completely described by their second-
order correlation functions:

^F m~ t,va!F n~ t8,va8!&52Dmn~va!d~va2va8!d~ t2t8!.
~6!

The diffusion coefficientsDmn for the on-resonance homo-
geneously broadened medium were calculated in Ref.@6#.
The new coefficientsDmn(va) in Eq. ~6! are obtained from
Dmn upon replacing the collective atomic variables by their
corresponding spectral densities:

2Daa~va!5ga^N a~ t,va!&1R~12p!r~va!

2g@^M* ~ t,va!A~ t !&1^A* ~ t !M~ t,va!&#,

~7a!

2Dbb~va!5gb^N b~ t,va!&

2g@^M* ~ t,va!A~ t !&1^A* ~ t !M~ t,va!&#,

~7b!

2Dab~va!5g@^M* ~ t,va!A~ t !&1^A* ~ t !M~ t,va!&#,
~7c!

2DMM~va!52g^M~ t,va!A~ t !&, ~7d!

2DM*M~va!5~2gab2ga!^N a~ t,va!&1Rr~va!,
~7e!

2DbM~va!5gb^M~ t,va!&. ~7f!

Here the angle brackets denote the quantum mechanical
mean value of the corresponding variables. A point worth
comment is the modification of the first diffusion coefficient
Daa(va), which depends on the pumping statistics of the
atomic medium~distribution of time intervals for the succes-
sive atomic excitations!. This statistics is determined by the
parameterp, 0<p<1, and can vary from a Poissonian dis-
tribution of excited atoms, whenp50, to a completely regu-
lar one, whenp51. Writing the corresponding term in
Daa(va) asR(12p)r(va), we assume that the parameterp
is the same for different atomic groups. Clearly,R is now the
total pumping rate averaged over all groups. It is easy to
show that if the pumping is Poissonian for the totality of
atoms, independently of their resonance frequencies, then it
will also be Poissonian for each frequency group. On the
other hand, regular pumping of the inhomogeneously broad-
ened atoms would require an incoherent pumping mecha-
nism with the bandwidth larger than the inhomogeneously
broadened linewidth, so that each group is pumped with the
same degree of regularity and independently of all other
groups. Although this is not an easy experimental endeavor,
we keep herepÞ0 for the sake of generality.

Setting the time derivatives to zero in Eqs.~5a!–~5d! and
dropping off the Langevin forces we arrive at the steady-
state mean values for the atomic spectral densities. In what
follows these steady-state values will be identified with a
zero subscript. They are conveniently expressed in terms of
four dimensionless parameters:
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~i! The dimensionless intensityI5I 0 /I s of the laser field
inside the cavity, whereI s is the homogeneous saturation
intensity,

I s5
gab

2g2
gagb

ga1gb
, ~8!

~ii ! The dimensionless pumping rater5R/Rth , where
Rth is the homogeneous threshold pumping rate,

Rth5
gabgak

2g2
, ~9!

~iii ! The dimensionless atomic detuningx5(va
2v0)/gab , and ~iv! the dimensionless inhomogeneous
broadening widtha5Dva /gab .

We shall also use the dimensionless frequency distribution
functionw(x) instead ofr(va):

w~x!5
1

Ap

1

a
exp@2x2/a2#, *2`

` dxw~x!51. ~10!

The steady-state spectral densities of atomic variables in
terms of these parameters are

N a0~x!5
Rw~x!

ga
F 11x2

11I1x2
1

ga

ga1gb

I

11I1x2G ,
~11a!

N b0~x!5
Rw~x!

ga

ga

ga1gb

I

11I1x2
, ~11b!

M0~x!5
Rw~x!

ga

gA0

gab

12 ix

11I1x2
, ~11c!

where we have assumed the steady-state field amplitude
A0 to be real.

Equations ~11a!–~11c! express the steady-state atomic
variables in terms of the yet unknown dimensionless inten-
sity I of the laser field. To determine this intensity itself we
may replaceM0(x) given by Eq.~11c! into Eq. ~5d! for the
steady-state field amplitude:

k/21 i ~vc2v0!5
g2R

gagab
E

2`

`

dxw~x!
12 ix

11I1x2
. ~12!

Sincew(x) is an even function, the imaginary part of the
integral vanishes providingvc5v0 . Thus, as mentioned
above, there is no frequency pulling in our model. The real
part of Eq.~12! gives us the equation forI :

r E
2`

`

dx
w~x!

11I1x2
51. ~13!

For the Gaussian functionw(x), given by Eq.~10!, this in-
tegral can be evaluated analytically, yielding

r5
av

Ap

exp@2v2/a2#

erfc@v/a#
, ~14!

where v5A11I , and erfc(z) is the complementary error
function,

erfc~z!512
2

Ap
E
0

z

dtexp~2t2!. ~15!

While in general the transcendental equation~14! for I (r )
can be solved only numerically, two limiting cases allow for
simple analytical results.

For v/a@1 we recover the homogeneous solution,
I (r )5r21. It is worth noting that the conditionv/a@1 can
be satisfied not only for a small inhomogeneous broadening,
a!1, but also for intermediate values ofa but large dimen-
sionless intensityI . In other words, the important parameter
is nota itself buta/v5Dva /(gabA11I ) which is the ratio
of the Doppler width to thepower broadenedhomogeneous
width.

Another limiting case is the opposite one of very large
inhomogeneous broadening,v/a!1, i.e., the so-called Dop-
pler limit. In this case the approximate solution of Eq.~14! is

I ~r !5
pr 2

a2 21. ~16!

In contrast to the homogeneous case the intensity increases
now quadratically with the dimensionless pumping rate. Set-
ting I (r ) to zero we find the threshold value ofr in the
Doppler limit asr th5a/Ap. It is linearly proportional to the
Doppler widthDva . The behavior ofI (r ) for several differ-
ent values ofa is shown in Fig. 2.

To investigate the small fluctuations of the laser field and
atomic variables around the steady-state solution we split
each of the four variables$N a ,N b ,M,A%[Q into a sum
Q(t)5Q01dQ(t) of a large steady-state valueQ0 and a
small fluctuationdQ(t). Performing the Fourier transform of
the time-dependent fluctuating terms,

FIG. 2. Stationary dimensionless intensityI as a function of the
pump parameterr for different values of the inhomogeneous broad-
ening; the uppermost curve~broken! corresponds to the homoge-
neous case,a50; then in descending ordera52.5,5,10,25, and
100; dotted line is the approximate solution given by Eq.~16!.
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dQ~V!5
1

A2p
E

2`

`

dtexp@ iVt#dQ~ t !, ~17!

we arrive at a linear algebraic system of four complex equa-
tions,

~ga2 iV!dN a~V,x!52gA0@dM~V,x!

1dM* ~2V,x!#

2g@M0dA* ~2V!

1M0* dA~V!#1F a~V,x!,

~18a!

~gb2 iV!dN b~V,x!5gA0@dM~V,x!1dM* ~2V,x!#

1g@M0dA* ~2V!1M0* dA~V!#

1F b~V,x!, ~18b!

@gab~11 ix !2 iV#dM~V,x!

5gD0~x!dA~V!1gA0dD~V,x!1F M~V,x!, ~18c!

2 iVdA~V!52k/2dA~V!1g*2`
` dxdM~V,x!.

~18d!

Further, we split each of the four complex fluctuations into
their real and imaginary parts,dQ(V)5dXa(V)

1idYa(V), a5a,b,M,A, which correspond to the fluctua-
tions of the amplitude and phase quadrature components.
Here we shall be concerned with the fluctuation spectrum of
the phase quadrature of the laser field,

^dYA~V!dYA~V8!&5d~V1V8!~dYA
2 !V , ~19!

which is related to the linewidth of the laser. The correspond-
ing fluctuation spectrum of the amplitude quadrature, related
to the photocurrent noise spectrum under direct detection of
the laser light, will be discussed elsewhere. The spectral den-
sity (dYA

2 )V in the low-frequency limitV is related as fol-
lows to the laser linewidthDn:

~dYA
2 !V5I 0Dn/V2, ~20!

whereI 0 is a steady-state intracavity field intensity. The typi-
cal low-frequency divergence of (dYA

2 )V as 1/V2 is a mani-
festation of phase diffusion under steady-state laser opera-
tion.

Incidentally, because of the detuning in Eq.~18c! for the
atomic polarization, the amplitude and the phase fluctuations
become coupled, in contrast to the case of the on-resonance
homogeneous medium~see Ref.@6#!. This implies that the
expression for the phase fluctuationdYA(V) is more com-
plicated and contains all the atomic fluctuation forces. Luck-
ily, for the calculation of Dn we need to know only
dYA(V) in the low-frequency limit, which brings about a
rather significant simplification:

2 iVdYA~V!5F2k/21
g2

gab
E

2`

`

dx
D0~x!~12 iV/gab!

~12 iV/gab!
21x2 GdYA~V!1gE

2`

`

dx
~11I !jM~x!2xxM~x!

11I1x2

2g2A0E
2`

`

dx
x

11I1x2 FF a~x!

ga
2
F b~x!

gb
G . ~21!

Here we have splitted the Langevin forces into real and
imaginary parts asF a(V,x)5ja(V,x)1 ixa(V,x), and
have introduced a shorthandF a(x)5F a(V50,x).

Using Eq. ~21!, and the diffusion coefficients of the
Langevin forces from Eqs.~7a!-~7f!, the linewidthDn, as
given by Eq. ~20!, can be calculated in a straightforward
way. Quite amazingly, the final result looks very simple,

Dn5
k

2I 0
S g

g1k/2D
2F11

1

2

ga

ga1gb
I ~11c!

1
1

2

gb

ga1gb
I S 12

1

2
pD ~12c!G , ~22!

where we have introduced a new parameterg asg5gab /c
to make the result look more similar to the homogeneous
case@6#.

All the information about the inhomogeneous broadening
is now contained in a single coefficientc, which is defined as
follows,

cE
2`

`

dx
w~x!

11I1x2
5E

2`

`

dx
w~x!

11I1x2
11I2x2

11I1x2
. ~23!

For the Gaussian distribution function given by Eq.~10! this
coefficient can be evaluated analytically and is equal to

c5
2

Ap

v
a

exp@2v2/a2#

erfc@v/a#
2
2v2

a2 . ~24!

Equations~22! and ~24! are the main results of this paper.
Before going into their detailed discussion we would like to
compare the linewidthDn given by Eq. ~22! with the
Schawlow-Townes linewidthDnST from Eq. ~1!. The differ-
ence is given by the two additional factors in Eq.~22!, in
curly and square brackets, respectively. The first one is al-
ways smaller or equal to unity and will be called thequench-
ing factor as it leads to a decreasing of the linewidth. The
second one, on contrary, is always bigger or equal unity and
will be called theenhancement factor.

53 1123QUANTUM-LIMITED LINEWIDTH OF A BAD-CAVITY LASER . . .



Let us first consider, as we did for the steady-state solu-
tion, the homogeneous and the Doppler limits. In the homo-
geneous limit,a50, we havec51. This is easy to see from
Eq. ~23!, taking into account that fora50 the atomic fre-
quency distribution becomes thed function, w(x)5d(x).
For the linewidthDn in this limit we recover the result from
@6#

Dn5
k

2I 0
S gab

gab1k/2D
2F11

ga

ga1gb
I G . ~25!

The quenching factor is determined by the ratio of the cavity
loss rate to the polarization decay rate,k/2gab , and becomes
very small in the bad-cavity regime,k/2gab@1. The en-
hancement factor in the homogeneous limit is due to incom-
plete inversion of the laser medium and depends on the the
ratio of the relaxation constants of the upper and lower lev-
els,ga /gb . When this ratio is small, the lower atomic level
is almost empty@see Eqs.~11a!, ~11b!# and the enhancement
factor is equal to unity. Thus, for the fully inverted good-
cavity laser the linewidthdn from Eq. ~25! coincides with
the Schawlow-Townes linewidthDnST from Eq. ~1!.

In the opposite Doppler limit,a5`, we havec50, as
follows from Eq.~24!, and the linewidthDn

Dn5
k

2I 0
F11

1

2
I2

1

4
p

gb

ga1gb
I G . ~26!

The quenching factor becomes unity in the Doppler limit,
i.e., the line narrowing due to the bad-cavity effects disap-
pears. This is the first important conclusion of our theory:
large inhomogeneous broadening leads to suppression of the
atomic memory effects in the linewidth. We should mention
here that Benkert, Scully, and Su¨ssmann@11# have come to a

similar conclusion regarding the influence of the inhomoge-
neous broadening on theshort-time scaleevolution of the
laser phase. However, this short-time scale behavior has no
influence on the linewidth and is only visible in the far wings
of the optical spectrum.

The enhancement factor in the Doppler limit is also dif-
ferent from the homogeneous case. It provides two intensity-
independent contributions to the linewidthDn given by the
second and third terms in the square brackets. The first con-
tribution is positive but now independent of the relaxation
constants of the atomic levels, i.e., of the degree of inversion.
The third term contains the statistical parameterp, i.e., de-
pends on the pumping statistics. This is the second important
result of our theory: the influence of the pumping statistics of
the atomic medium on the linewidth of the inhomogeneously
broadened laser. Such an influence is absent for the on-
resonance homogeneous laser. The physical reason for this
effect is the coupling between the amplitude and the phase
fluctuations through the detuning between the laser fre-
quency and the resonance frequencies of the individual
atomic groups. As was first pointed out by Golubev and
Sokolov @12#, such coupling is also present in the off-
resonance homogeneous medium, and brings about a similar
influence of the pumping statistics on the laser linewidth.

The statistics-dependent term in Eq.~26! brings a nega-
tive contribution into the enhancement factor, which is maxi-
mum for regular pumping statistics,p51, and long lifetime
of the upper level,ga!gb . In this optimum case the third
term cancels out half of the second.

Figure 3 shows the dimensionless linewidth, defined as
Dñ52I sDn/k, as a function of the inverse dimensionless
intensity 1/I , for different values of the inhomogeneous
broadening. Two features of these curves are worth pointing
out. The first one is the linear asymptotic behavior of
Dñ(1/I ) for small dimensionless intensities. The slope of
these asymptotic lines depends, among other parameters, on
the inhomogeneous broadening, and can be found from Eqs.
~22!, ~24!, by making a Taylor expansion of the quenching
and enchancement factors up to the first order in the dimen-
sionless intensityI . The second feature of these curves is
that all of them start from the same point of the homoge-
neous linewidth for very large dimensionless intensity

FIG. 3. Dimensionless linewidthDñ52I sDn/k as a function of
the inverse dimensionless intensity 1/I for different values of the
inhomogeneous broadening; the topmost curve is for the Doppler
limit, a51000; then in descending order,a525,10,5,2.5; the bro-
ken line is for the homogeneous limit,a50; ga /gb5100,
k/2gab52.

FIG. 4. Dimensionless linewidthDñ as a function of the inho-
mogeneous parametera; ga /gb5100,k/2gab52, I51.
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I→`. Hence, for nonzero inhomogeneity, there is always
some region of intensitiesI where the linewidth shows non-
linear dependence on 1/I . Such an effect would be interest-
ing to observe experimentally. Unfortunately, as follows
from Fig. 3, it takes place for rather high dimensionless in-
tensities, which are experimentally hard to achieve.

Figure 4 illustrates the dependence of the dimensionless
linewidth Dñ on the inhomogeneity parametera for fixed
intensity I .

In conclusion, we have obtained an analytical expression
for the linewidth of an inhomogeneously broadened laser,
irrespective of the relative magnitudes of atomic and field

decay constants. Especially interesting results are obtained in
the bad-cavity limit, where an important linewidth narrowing
may occur. First experiments@13# performed with high-gain
midinfrared gas lasers, e.g., HeNel53.39mm and HeXe
l53.51mm, operating in the bad-cavity regime and having
gain profiles with comparable homogeneous and inhomoge-
neous widths, show the results that are in very good agree-
ment with the theory presented above.
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