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Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps
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We show that the Wigner function corresponding to an electromagnetic field in a cavity or a vibronic
state of a trapped ion can be directly measured by means of a simple experimental procedure. The
proposed method is insensitive to the relatively low detection efficiency in cavity QED experiments and
yields a direct physical meaning to the Wigner distribution. [S0031-9007(97)02790-7]

PACS numbers: 42.50.Dv, 03.65.Bz, 42.50.Ar, 42.50.Vk
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Phase space representations are very useful in qu
tum mechanics since they allow the calculation of corre
tion functions of operators as classical-like integrals, a
are also helpful for the study of the transition to class
cal physics. The oldest of such representations is due
Wigner [1], who used it as a convenient tool to calcu
late quantum corrections to classical statistical mechan
It was shown by Moyal [2] that the quantum average
a Weyl-ordered (symmetric-ordered) function of the m
mentum and position operators could be expressed a
classical-like average of the corresponding classical fu
tion (in which the operators are replaced byc numbers),
with the Wigner distribution acting as a weight measure
phase space [3]. The uncertainty principle forbids, ho
ever, the interpretation of this function as a probabili
distribution, since it is not possible to determine simu
taneously the momentum and the position of a partic
In fact, it is easy to find examples of states for whic
the Wigner distribution assumes negative values. T
fact may lead to the idea that it does not correspond
any directly measured quantity. Up until now, this no
tion has been upheld by the fact that the different schem
proposed so far to determine the Wigner distribution
a quantum system rely either on tomographic reconstr
tions from data obtained in homodyne measurements [4
or on convolutions obtained by photon counting [6]. It
the purpose of this Letter to show that the Wigner functio
can be directly measured, through a very simple schem
especially suitable to experiments in cavity quantum ele
trodynamics and in ion traps. This is especially impo
tant in view of recent experimental results concerning t
production and detection of coherent superpositions of
calized mesoscopic states [7,8]. In these experiments,
existence of coherence is inferred from partial informatio
obtained about the system. A method yielding more co
plete knowledge onf the quantum states involved wou
be highly desirable. Quantum tomography schemes
determining the vibrational state of a trapped ion we
proposed in [5]. In cavity QED, information on the field
must be obtained from probe atoms, since the highQ of
the cavity and the weak intensities involved do not a
low the direct measurement of the field. A method fo
realizing the “quantum endoscopy” of a field in a cav
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ity, through a beam of probe atoms, was presented in [
While it holds only for pure states, an analog procedu
for trapped ions leads to the quantum endoscopy of
vibrational state, even for mixed states [10]. Other pr
posals for measuring the state of a field in a resona
were discussed in [11]. More recently, a beautiful expe
ment led to the determination of the density matrices a
Wigner functions of various quantum states of motion
a trapped ion [12].

The Wigner function belongs to a general class
phase-space distributions, which for a one-dimensio
harmonic oscillator with annihilation and creation oper
tors â andây can be written as [13]

Wsa, sd ­ Trfr̂T̂ sa, sdg , (1)

where

T̂ sa, sd ­
Z

eajp2apjesjjj2y2D̂sjdp21d2j , (2)

and D̂sjd ­ expsjây 2 jpâd is the displacement opera
tor, with j being a complex number. The operatorD̂sjd
represents the action of a classical current on the fie
It yields the coherent statejjl [14] when applied to the
harmonic oscillator ground state. Note thatW sa, sd is
real whens is real. Fors ­ 0, one obtains the Wigner
distribution, whiles ­ 21 ands ­ 1 correspond, respec-
tively, to theQ and the Glauber-SudarshanP representa-
tions (which allow the calculation of quantum averag
of operators in antinormal and normal order, respective
[3,13,14]). An alternative expression for̂Tsa, sd, very
useful for our purposes, is [13]

T̂sa, sd ­
2

1 2 s
D̂sad

∑
s 1 1
s 2 1

∏âyâ

D̂21sad . (3)

Settings ­ 2i cotf, (1) and (3) become

Wsa, fd ­ 22ieif sinf TrfD̂s2adr̂D̂sade2ifâyâg . (4)

Forf ­ py2 (s ­ 0), we get the Wigner distribution [13]

Wsad ­ 2 Trfr̂D̂sadeipâyâD̂21sadg . (5)

The Q and P representations correspond to imagina
values off in (4).
© 1997 The American Physical Society 2547
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Let us consider first the measurement of the field i
side a cavity, in a typical cavity QED experiment [15
(see Fig. 1). A high-Q superconducting cavityC, contain-
ing the field to be measured (in the microwave region),
placed between two low-Q cavities (R1 andR2 in Fig. 1).
The cavitiesR1 andR2 are connected to the same micro
wave generator, and a dephaser between this generator
R2 allows one to change the relative phaseh between the
fields in R1 and R2. Another microwave source is con
nected toC, allowing the injection of a coherent state i
the empty cavity or the displacement of an already e
isting field, through the operator̂Dsad. This system is
crossed by a velocity-selected atomic beam, such that
atomic transitione $ g is resonant with the fields inR1

andR2, and quasiresonant (detuningd) with the field inC.
Just beforeR1, the atoms are promoted to the highly ex
cited circular Rydberg statejel. As each atom crosses th
low-Q cavities, it sees apy2 pulse, so thatjel ! fjel 1

eihjglgy
p

2, andjgl ! f2e2ihjel 1 jglgy
p

2, with h re-
placed by 0 inR1. The atom interacts dispersively with
the field in cavity C, so that transitionse $ g can be
neglected, but there is a state-dependent energy shif
the atom-field system (Stark shift), which dephases t
field, after an interaction timetint between the atom and
the cavity mode. The dephasings corresponding to
statesjel andjgl are implemented, respectively, by the un
tary operatorsT̂esfd ­ expfifsâyâ 1 1dg andT̂gsfd ­
exps2ifâyâd, wheref ­ sV2yddtint is the one-photon
phase shift, and the Rabi frequencyV measures the cou-
pling between the atom and the cavity mode.

The direct measurement of the Wigner function of th
field in C involves the following steps. One turns on th
microwave source connected toC for some timeDt, so
that the field to be measured gets displaced, its den
operator r̂ being replaced bŷr0 ­ D̂sadr̂D̂21sad. A
probe atom in statejel is then sent through the system
After the atom crossesR1, C, andR2, the entangled atom-
field stater̂atom1field becomes

1
4 fjel kej ≠ sT̂e 2 e2ihT̂gdr̂0sT̂ y

e 2 eihT̂g
y

d

1 jgl kgj ≠ sT̂g 1 eihT̂edr̂0sT̂ y
g 1 e2ihT̂ y

e d

1 terms nondiagonal in atomic spaceg . (6)

FIG. 1. Cavity QED experiment for measuring the Wigne
function of an electromagnetic field in cavityC.
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Finally, the internal state of the atom is detected by two
field ionization detectors (see Fig. 1). This experiment is
repeated many times, starting each run with the same fiel
and the probabilitiesPe and Pg of detecting the probe
atom in statese or g are determined. It is easy to show
that

DP ­ 2Reheish1fd TrfD̂sadr̂D̂21sade2ifâyâgj , (7)

whereDP ­ Pe 2 Pg. If f ­ py2, and the dephasing
is chosen so thath ­ py2, this yields

DP ­ TrfD̂sadr̂D̂21sadeipây âg . (8)

Comparing this expression with Eq. (5), we arrive at the
very simple relation

DP ­ Pe 2 Pg ­ W s2ady2 . (9)

The difference between the two probabilities is therefore
a direct measurement of the Wigner function of the field
inside the cavity. One should note that this method
allows one to choose the region of phase space to b
explored. This is an especially useful feature, since on
has frequently an idea of the region in which the Wigne
function should be concentrated. From (9), one see
immediately that the Wigner function must be bounded
between12 and22, a well-known mathematical property
of W [13], which is given here a physical meaning. Also,
the Wigner function attains negative values wheneve
Pg . Pe.

If the phase shift is different frompy2, one can see
from (7) that by changingh one may detect the real and
the imaginary part ofWsa, fd given by (4). Therefore,
one can measure phase space representations correspo
ing to imaginary values ofs. The connection between
W sa, fd andW sad ; Wsa, py2d can be obtained in the
following way. It is easy to show from (1) and (2) that,
settingt ­ is anda ­ x 1 iy,

i
≠W sx, y, td

≠t
­ 2

1
8

µ
≠2

≠x2
1

≠2

≠y2

∂
Wsx, y, td , (10)

so thatW sx, y, td obeys a free-particle Schrödinger equa-
tion, the parametert playing the role of a time [16]. As
f changes frompy2 to 0, and t changes correspond-
ingly from t ­ 0 to t ­ `, the behavior ofW sa, fd,
illustrated in Fig. 2, is easily understandable in terms o
the development in time of a free wave packet. In par
ticular, the vanishing ofW sa, fd whenf ­ 0 is a direct
consequence of the wave packet spreading. The interfe
ence fringes at the origin, displayed in Fig. 2(a), may be
thought of as resulting from the collision of the two wave
packets which, in Fig. 2(b), are shown flying apart from
the collision region (origin of the phase space). Equa
tion (10) also implies thatW sa, td is connected toW sad
through the free-particle propagator.

An important feature of our scheme is the insensitivity
to the detection efficiency of the atomic counters [of
the order of (40 6 15)% in recent experiments [8] ], as
long asjel and jgl are detected with the same efficiency
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e

FIG. 2. Generalized phase-space distribution for the sta
sja0l 1 j 2 a0ldy

p
2, with ja0j

2 ­ 9. The change of the
one-photon phase shiftf from py2 to 0 is equivalent to
the time evolution of a wave packet in phase space fro
t ­ 0 to t ­ `. (a) f ­ py2, corresponding to the (real)
Wigner distribution (initial wave packet); (b) real part o
W sa, f ­ py4d.

[17]. Indeed, if an atom is not detected after interactin
with the cavity mode, the next atom will find a field
described by the reduced density operator obtained fr
(6) by tracing out the atomic states:r̂00 ­

1
2 sT̂gr̂0T̂ y

g 1

T̂er̂0T̂ y
e d. The value ofDP for this second atom is then

DP ­ 2
1
2

Reheih TrfsT̂gr̂0T̂ y
g 1 T̂er̂0T̂ y

e dT̂ y
g T̂egj ,

(11)

which reduces to (7), sincefT̂g, T̂eg ­ 0.
The measurement accuracy does depend, however

the detector’s selectivity, that is, the ability to distinguis
between the two atomic states. Another possible sou
of error is the velocity spread of the atomic beam, whic
would produce an uncertainty in the anglef and in the
angles of rotation inR1 andR2. For a 1% velocity spread
and for average photon numbers of the order of 10, o
calculations show that the distortion inDP is at most
equal to 0.05 (the corresponding distortion inW is at most
equal to 0.1), in the relevant region of phase space, so t
the measured distribution is practically undistinguishab
from the true one. In fact, the insensitivity of the
proposed scheme to the detection efficiency allows
passive selection of atomic velocity (only the atom whic
goes through the detectors at the right time after excitati
is detected).

We show now how a similar procedure could be applie
to measure directly the Wigner function of the vibrationa
te
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state of a trapped ion. The relevant level scheme is
shown in Fig. 3. Statesj # l and j " l correspond to two
metastable ground-state hyperfine sublevels (2S1y2, with
F ­ 2, mF ­ 22, andF ­ 1, mF ­ 21, respectively),
separated bȳhvHF . The ion is trapped in a harmonic
potential, and the vibrational levels associated with each
electronic statej # l and j " l are also sketched in Fig. 3.
We consider for simplicity a one-dimensional center-of-
mass motion, with frequencyv, which can actually be re-
alized by proper alignment of the laser beams [7]. States
j # l and j " l are coupled by a stimulated Raman transition
via two optical fieldsA andB (wave vectors$kA and $kB),
detuned byD from the electric dipole transitions (cou-
pling strengthsg1 and g2) from j # l and j " l to a third
level a (2P1y2, F ­ 2, mF ­ 22). When the frequency
difference between these two beams is tuned nearvHF

(“carrier beams”), there are Rabi oscillations between
the internal statesj " l and j # l. The Rabi frequency de-
pends, however, on the vibrational state. For a Fock stat
jnl, it is given by [18,19]Vn ­ V0f1 2 sn 1

1
2 dh2 1

1
4 sn2 1 n 1

1
2 dh4 1 Osh6dg, where the Lamb-Dicke pa-

rameterh is the square root of the ratio between the re-
coil energy and the vibrational quantum of energyh̄v,
and V0 ­ 2g1g2yD. Typically, h is of the order of
0.1 2 0.2, so that the term proportional toh4 can be ne-
glected if the relevantn’s are sufficiently small (forh ­
0.1, one should haven , 10 for an error smaller than
2.5%). On the other hand, application of the “displace-
ment beams”B and C, with a frequency difference near
v, is formally equivalent to applying the displacement
operator to the state of motion. BeamC is circularly po-
larized (s2), and does not couplej # l to any virtual2P1y2
state, so that only the motional state correlated withj " l is
displaced. A fourth levelb is used for detecting the elec-
tronic state of the ion (and also for Doppler precooling):
A pulseD resonant with thej # l ! jbl transition leads to
a fluorescence signal if the ion is inj # l, while the absence
of fluorescence implies that the ion is inj " l (for the ex-
periment reported in [7], the detection efficiency is close
to 100%). We assume that the initial state of the system
is r̂system ­ r̂y ≠ j " l k " j, wherery is the density opera-
tor for the center-of-mass motional state. The Wigner

FIG. 3. Trapped ion: relevant level scheme (not in scale).
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function of the field state correlated withj " l is mea-
sured in the following way. One applies first the displace
ment fields, so that̂ry ! r̂0

y ­ D̂sadr̂yD̂21sad. The
next procedure corresponds to the first step of a recen
proposed quantum nondemolition scheme for measuri
the population of the vibrational levels [18,19]. The car
rier fields A and B are applied, with a time durationt
such thatustd ; V0h2ty2 ­ py2 (for the parameters
in [7], one should havet ø 50 ms). This implies that
Vnty2 ­ F 2 spy2dn, whereF ­ sV0ty2d 2 spy4d.
The state of the system becomes

fj " l cossF 2 pâyây2d 1 j # l sinsF 2 p âyây2dgr̂0
y

3 fk " j cossF 2 pâyây2d 1 k # j sinsF 2 pâyây2dg .
(12)

The probabilities of finding the ion inj " l or j # l satisfy

P" 2 P# ­ coss2Fd TrfD̂sadr̂D̂21sadeip âyâg , (13)

and thereforeP" 2 P# ­ coss2FdW s2ady2, yielding di-
rectly the Wigner function. A proper choice ofa leads to
the value of the Wigner function at any point of the phas
space. One should note that a very precise calibration
both the amplitude and the phase of the displacement
been achieved in recent experiments [7].

It is interesting to compare our method with the
procedure described in Ref. [12]. There a cohere
displacementa is also applied to the input motional
state. A resonant exchange between statesj # l jnl
and j " l jn 1 1l is then induced for a timet. For
each timet and eacha the populationP#st, ad of the
state j # l is measured. Ifj # l is the internal state at
t ­ 0, the signal averaged over many measuremen
is P#st, ad ­

1
2 f1 1

P`
n­0 Qnsad coss2Vn,n11tde2gntg,

where Vn,n11 are the Rabi frequencies,gn the corre-
sponding (experimentally determined) decay constan
and Qnsad ­ knjD̂ysadr̂D̂sadjnl is the population
distribution of the displaced state. The dependence
Vn,n11 on n allows the determination ofQnsad from
P#st, ad [12]. On the other hand, fromQnsad one
can calculate the Wigner function, as may be seen
evaluating the trace with respect to the number-state ba
in (5), which leads toW sad ­ 2

P`
n­0s21dnQnsad. In

our method, the induction of Rabi oscillations betwee
j " l and j # l by means of carrier beams can be thought
as leading to the experimental determination of the suP`

n­0s21dnQnsad, and therefore to a direct measuremen
of the Wigner function, at any timet. The fact that
measurements over time intervals are not necessary h
implies that our method is especially useful for system
in which decoherence plays an important role.
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In conclusion, we have shown that it is possible to me
sure directly the Wigner function of the electromagnet
field in a cavity, or the vibrational state of an ion in a tra
Our method can be applied to recent experiments invo
ing the production of “Schrödinger-cat” states of the fie
in a cavity or of the center of mass of a trapped ion, lea
ing to the direct probing of the value of the Wigner func
tion at any point of phase space.
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