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Experimental determination of entanglement with a
single measurement
S. P. Walborn1, P. H. Souto Ribeiro1, L. Davidovich1, F. Mintert1,2 & A. Buchleitner3

Nearly all protocols requiring shared quantum information1—
such as quantum teleportation2 or key distribution3 —rely on
entanglement between distant parties. However, entanglement is
difficult to characterize experimentally. All existing techniques
for doing so, including entanglement witnesses4,11,12 or Bell
inequalities5, disclose the entanglement of some quantum states
but fail for other states; therefore, they cannot provide satisfactory
results in general. Such methods are fundamentally different from
entanglement measures that, by definition, quantify the amount
of entanglement in any state. However, these measures suffer from
the severe disadvantage that they typically are not directly acces-
sible in laboratory experiments. Here we report a linear optics
experiment in which we directly observe a pure-state entangle-
ment measure, namely concurrence6. Our measurement set-up
includes two copies of a quantum state: these ‘twin’ states are
prepared in the polarization and momentum degrees of freedom
of two photons, and concurrence is measured with a single, local
measurement on just one of the photons.

The functional relation between an entanglement measure and the
state to be characterized is typically complicated and nonlinear. Even
worse, many measures rely on operations that cannot be
implemented in laboratory experiments for fundamental reasons:
they do not preserve the positivity of general quantum states. That is,
these operations would spoil the statistical interpretation of quantum
mechanics and thus cannot be realized in any physical system. In
particular, this holds for the most commonly used measures, namely
concurrence7 and negativity8. Thus, it is necessary to measure a
complete set of observables, reconstruct the system state, and
eventually evaluate them. This—although possible and successfully
implemented9,10 for relatively small systems—becomes virtually
impossible with larger systems because the number of observables
to be measured grows exponentially with the number of entangled
subsystems. On the other hand, one might expect that a property like
entanglement, which is believed to constitute one of the most
remarkable differences between classical and quantum systems,
should have signatures that can be observed directly. And indeed,
there is a proposal13 to directly observe concurrence by replacing the
underlying unphysical operation by some physical approximation.
This, however, requires a rather involved experimental set-up, and
has not been realized yet.

Here, we report the direct experimental observation of an
entanglement measure, namely concurrence7

C ¼ jkW*jjy^jyjWlj; jy ¼
0 2i
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originally defined in terms of the second Pauli matrix jy and the
complex conjugate kW*j of the original state kWj. The problems that
arise owing to the unphysical operation of complex conjugation in
equation (1) are overcome here with a generalization of concurrence14

to systems of arbitrary finite dimensions, which, if restricted to
qubits, is equivalent to the original concurrence. In this case the
nonlinear dependence on the system state—that constitutes a funda-
mental property of any entanglement measure—is taken into account
by considering a twofold copy of the state in question. Indeed, it has
been shown that any mth degree polynomial function of a density
matrix r can be measured on an m-fold copy of r (ref. 15). More
precisely, the concurrenceC of an arbitrary state jWl can be defined as
C ¼ 2

ffiffiffiffiffiffi
PA

p
; where PA ¼ kWj^kWjAjWl^jWl is the probability of

observing the two copies of the first subsystem in an antisymmetric
state, that is, a state that acquires a phase shift of p upon exchange
of the constituents, and A is the corresponding measurement
operator. In particular, no measurement needs to be performed on
either copy of the second subsystem—though, in general, detections
on the second subsystem can be used to trigger detectors for
measurements on the first subsystem.

In our specific set-up, shown in Fig. 1, we created two copies of a
bipartite quantum state using a photon pair obtained by spon-
taneous parametric down-conversion, where the polarization and
momentum degrees of freedom each store one copy of the state jWl,
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Figure 1 | Experimental set-up for the measurement of entanglement using
two copies of the quantum state. Photon pairs that bear entanglement in
two different degrees of freedomwere created by pumping two type-I LiLO3

crystals with a 200mW HeCd continuous-wave laser (442 nm). Double-
square apertures (1mm £ 1mm squares, 2mm centre to centre separation)
placed 1m from the crystal face are used to select distinct spatial modes a
and b. Detectors D1 and D2 use 1.4mm circular and 1 £ 5mm rectangular
detection apertures, respectively. Both were equipped with interference
filters (full-width at half-maximum, 10 nm). HWP, half-wave plate; QWP,
quarter-wave plate; PBS, polarizing beam splitter; LC, cylindrical lens; POL,
polarization filter. CNOT, controlled-not. H and V indicate horizontal and
vertical polarization.

1Instituto de Fı́sica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil. 2Department of Physics, Harvard University, Cambridge,
Massachusetts 02138, USA. 3Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany.
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respectively16,17. That is, both copies required for our measurement
are carried by the same photon, which significantly facilitates the set-
up, as a measurement on only a single photon will be necessary. In
fact, any required measurement can be realized efficiently with linear
optics only18,19.

Entangled polarization states were prepared by pumping two
perpendicular nonlinear crystals with a continuous-wave laser
beam20. The additional help of half- and quarter-wave plates placed
in the path of both the pump beam and the entangled photons
eventually allows us to prepare arbitrary pure polarization states.
Moreover, owing to momentum conservation, entanglement
between the momentum degrees of freedom can also be achieved
using apertures to select well-defined momentum modes16,21; and the
whole range of momentum states can be generated with neutral
filters, phase plates and beam splitters that combine different
momentum modes17.

With these two degrees of freedom, the entire system of two
photons has polarization states spanned by jHli, jVli (i ¼ 1, 2 labels
the two photons) and momentum states spanned by jali and jbli.
Upon identification of the momentum state jali as the equivalent of
the polarization state jHli and analogously for jbli and jVli, one can
prepare two copies of an arbitrary input state jWl, one stored in each
degree of freedom.

As outlined above, the concurrence of jWl is determined by the
probability of observing the first photon in the antisymmetric state

jw2l¼
1ffiffiffi
2

p ðjHljbl2 jVljalÞ ð2Þ

where we have dropped the index ‘1’, as from now on all consider-
ations will concern only the first photon. As count rates rather than
probabilities are accessible in laboratory experiments, we also need to
count events corresponding to the detection of the remaining Bell
states:

jwþl¼
1ffiffiffi
2

p ðjHljblþ jVljalÞ ð3aÞ

jf^l¼
1ffiffiffi
2

p ðjHljal^ jVljblÞ ð3bÞ

The probability PA, which determines concurrence, is then given by
the count rate for the observation of jw2l normalized by the sum of
the count rates for all four Bell states.

The central building block for this Bell-state measurement in our
specific experimental set-up was a polarization-sensitive Sagnac

interferometer containing two cylindrical lenses, as depicted in
Fig. 1. The interferometer is used to perform a polarization-
dependent rotation of the momentum modes, which is equivalent to
a controlled-not (CNOT) operation. Input photons are first incident
on a polarizing beam splitter, which transmits H-polarized photons
and reflects V-polarized photons, so that H- and V-polarized photons
propagate in opposite directions within the interferometer, and leave
through the same exit port. An optical lens system, consisting of two
150 mm focal length cylindrical lenses, was rotated by 458 in the
transverse plane with respect to the propagation direction of the
H-polarized photons. The individual lenses were aligned at þ458 and
2458. As each photon suffered three mirror reflections while propa-
gating between the lenses, it was necessary to invert the orientation of
one of them. The lenses were placed in a confocal arrangement, so
that each lens was a distance of 150 mm from the double square
aperture, and also 150 mm from the central mirror of the inter-
ferometer, forming a confocal imaging system with a magnification
factor of one. The image formed by a cylindrical lens is inverted with
respect to one transverse direction only, so that a lens aligned at ^458
forms an image that is rotated ^908 with respect to the object.
Because H- and V-polarized photons counter-propagate within the
interferometer, they encounter the lens oriented at different angles
(^458), so that the resulting image corresponding to H-polarized
photons is rotated by 908, while the image corresponding to the
V-polarized photons is rotated by 2908, resulting in a relative
difference of 1808. In the image plane, the Sagnac interferometer
with the nested cylindrical lenses performs the so-called CNOT
operation, where the momentum state evolves conditioned on the
polarization—if the photon is vertically polarized, jal evolves to jbl
and vice versa; otherwise the momentum states remain unchanged.
In reality, both the momentum states encounter an additional
rotation by 908, which can easily be accounted for by simply rotating
our coordinate system. The operation of a similar CNOT gate was
characterized in ref. 22. The crucial benefit of the CNOToperation is
that it transforms the Bell states such that the momentum and
polarization states factorize:

CNOTðjw^lÞ ¼ 1=
ffiffiffi
2

p
ðjHl^ jVlÞjbl¼ j^ ljbl ð4aÞ

CNOTðjf^lÞ ¼ 1=
ffiffiffi
2

p
ðjHl^ jVlÞjal¼ j^ ljal ð4bÞ

Figure 2 | Count rates. Experimentally obtained count rates of the Bell-state
measurement (see equations (2) and (3)) on the twofold copy of input
states aj01l þ bj10l with a, jaj ¼ 0.71 ^ 0.02, b, jaj ¼ 0.53 ^ 0.01,
c, jaj ¼ 0.35 ^ 0.01, and d, jaj ¼ 0.99 ^ 0.03.

Figure 3 | Experimental values of concurrence. Data points, directly
measured concurrence for states aj01l þ bj10l as function of jaj with error
bars due to poissonian statistics. The excellent agreement with the

theoretical value C ¼ 2jaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 jaj

2
p

(shown as the solid line) confirms the
precision of the described measurement set-up.
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Thus, observing a photon with j2l polarization and momentum jbl
after the CNOT is equivalent to observing the state jw2l before
the CNOToperation, and analogously for the other Bell states. Thus,
the final measurement simply consists of detecting j^l polarized
photons in the modes a and b. This can easily be carried out with two
detectors positioned in the paths of modes a and b, and additional
half-wave plates and polarization analysers to discriminate the
different polarizations. In particular, it should be emphasized that
the four possible measurement results are the outcomes of a single
measurement only.

In our experiment we measured the concurrence of states aj01l þ
bj10l with varying coefficients a and b. These states are particularly
well suited, as the entire measurement protocol works perfectly, even
for imperfect copies with different relative phases—which signifi-
cantly relaxes the precison required during the preparation process.
The coefficients a and b of the polarization and momentum degrees
of freedom were varied by rotating the half-wave plate in the pump
beam and shifting the apertures defining the momentum modes of
photon 2, respectively. Figure 2 shows the experimental count rates
for observations of the Bell states as defined in equations (2) and (3)
for four different states with decreasing entanglement from Fig. 2a to
Fig. 2d. Experimentally obtained concurrence C is depicted in Fig. 3
as a function of the varying coefficient a. The black dots show the
experimentally obtained values, with error bars due to poissonian
count statistics. The theoretical value of C ¼ 2jabj ¼ 2jaj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 jaj

2
p

is plotted as a solid line and agrees virtually perfectly with the
experimental observations. In particular, the maximum value
C ¼ 1 is obtained for jaj ¼ 1=

ffiffiffi
2

p
; which provides additional experi-

mental evidence for the purity of the input states.
Our work shows that it is possible to directly assess entanglement

properties with few—in this case only one—local measurements.
Whereas state reconstruction and subsequent mathematical deter-
mination of entanglement is a viable and successfully demonstrated
option for systems with few constituents, more efficient approaches
are required for large objects. Our present experiment gives a proof of
principle that indeed it is possible to circumvent the highly inefficient
state reconstruction, and reliably characterize the entanglement
properties of an unknown quantum state.
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11. Häffner, H. et al. Scalable multiparticle entanglement of trapped ions. Nature
438, 643–-646 (2005).

12. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438,
639–-642 (2005).

13. Horodecki, P. Measuring quantum entanglement without prior state
reconstruction. Phys. Rev. Lett. 90, 167901 (2003).
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