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Decoherence as phase diffusion
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We show that the decoherence of a superposition of two coherent states of the electromagnetic field in a
cavity may be interpreted as a phase-diffusion process.

PACS number~s!: 42.50.Lc, 42.50.Ar, 03.65.Bz
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I. INTRODUCTION

Since the beginnings of quantum mechanics, the class
limit of this theory has been the source of intense deb
Einstein considered a fundamental problem the ‘‘inexiste
at the classical level of the majority of states allowed
quantum mechanics,’’ namely those involving the coher
superposition of two or more macroscopically separated
calized states@1#. Schrödinger emphasized a similar point i
his famous ‘‘cat paradox’’@2#. The lack of nonlocal observ
ables with matrix elements between those two localiz
states has been proposed as the reason for not obse
interference effects stemming from the coherent superp
tion @3#. More recently, the role of decoherence in t
quantum-classical transition has been emphasized@4#. The
unavoidable interaction of the system under considera
~‘‘small system’’! with a reservoir produces, in a very sho
time ~decoherence time!, an entanglement between each
the distinct classical states of the small system and ortho
nal states of the reservoir. This entanglement eliminates
interference between those classical states, for any mea
ment involving only observables of the small system~even if
these observables are nonlocal!. In this process, and as far a
only the ‘‘small system’’ is concerned, the quantum sup
position is turned into a statistical mixture, for which all th
information on the system can be described in class
terms, so our usual perception of the world is recover
Grasping this process is important not only for understand
the quantum-classical transition, but may eventually be u
ful for applications that require keeping coherence in me
scopic or macroscopic systems, such as quantum comp
tion @5#.

Recent experiments with trapped ions@6# and cavity QED
@7# have demonstrated the possibility of measuring the
herence between distinguishable localized states of a sys
and, furthermore, have allowed the monitoring of the de
herence process in real time@7#, thus allowing the testing o
decoherence theories@4,8#. In these experiments, quantu
superpositions of coherent states~associated either with th
center-of-mass motion in the ion trap experiment or with
electromagnetic field in the cavity QED experiment! are gen-
erated. They can be represented in the following form:

1

N0
~ ua0&1eic0ua0eiu&), ~1!

wherec0 andu are arbitrary constant phases andN0 is the
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normalization factor. The quantityd52ua0sin(u/2)u deter-
mines the distance between the two coherent states in p
space and is a measure of the macroscopicity of the sys
The density matrix associated with Eq.~1! is

r̂5
1

N0
2 ~ ua0&^a0u1ua0eiu&^a0eiuu1eic0ua0eiu&^a0u

1e2 ic0ua0&^a0eiuu!. ~2!

The time-dependent behavior of this density matrix may
obtained by solving the corresponding master equation, a
assuming a specific form for the coupling with the reserv
@4,8#. Quite generally, one shows in this way that the non
agonal terms become negligibly small after a time of t
order oftcav/d

2, wheretcav is the energy damping time of th
system. Whend@1, and for timest such thattcav/d

2!t
!tcav ~the last restriction coming from the requirement th
the two coherent states are still approximately orthogona
each other!, the density matrix of the system describes
classical statistical mixture:

r̂→ 1

2
~ ua0e2gt/2&^a0e2gt/2u1ua0eiue2gt/2&^a0eiue2gt/2u!,

~3!

whereg is the energy damping rate.
A peculiar feature of the transition from Eqs.~2! to ~3! is

that it corresponds, whenua0u@1 ~so thatN0
252), to replac-

ing a0 by a0exp(2gt/2) and randomizing the phasec0 in
Eq. ~2!. This heuristic procedure is sometimes given a phy
cal interpretation, through the statement that the interac
of the system with the reservoir leads to the randomization
this phase. However, to the best of our knowledge, there
not been, up to now, an explicit derivation of this fact. C
decoherence be interpreted as the diffusion of a quan
phase? Would this interpretation be valid for all times,
only if the two coherent states are almost orthogonal? If t
interpretation could be done, the state of the system would
represented at all times by the pure state

1

Nt
~ ua&1eicuaeiu&), ~4!
©2000 The American Physical Society03-1
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wherea5a0exp(2gt/2), and the phasec would be consid-
ered as a dynamical variable, evolving from its initial val
through a diffusion equation. HereNt is the normalization
factor.

In this paper we show that it is indeed possible to deriv
Fokker-Planck equation for the phase distribution, throu
out the evolution of the state. This equation, which becom
a diffusion equation foruau@1, corresponds to a particula
realization of the system’s evolution, under continuo
monitoring of the reservoir. Since this monitoring represe
a continuous retrieval of information on the interaction w
the reservoir, the system remains in a pure state of the f
~4!, but the quantum phase undergoes a random walk
cess. This dynamical evolution is obtained by deriving a s
chastic Schro¨dinger equation@9# corresponding to the as
sumed measurement scheme. The average over m
realizations reproduces the results obtained from a ma
equation treatment.

It is not our purpose in this paper to propose a realis
experiment, but rather to show through agedankenexperi-
ment that it is indeed possible to interpret the decohere
process as stemming from quantum phase diffusion, and,
thermore, that this interpretation must be associated wi
specific realization of the process, corresponding to a c
tinuous monitoring of the reservoir. In the next section
give a detailed description of the measurement scheme u
consideration. In Sec. III we derive a Fokker-Planck eq
tion for the quantum phase, and show that the results
tained from the master equation are retrieved. Our con
sions are summarized in Sec. IV.

II. A MODEL FOR THE CONTINUOUS MEASUREMENT
OF THE RESERVOIR

We consider for definiteness that the state~1! corresponds
to an electromagnetic field in a cavity, and take for simplic
the special case of Eq.~1!, corresponding tou5p. We as-
sume that the field losses are due solely to the transmis
of the field outside the cavity. The transmission coefficien
Ag, g51/tcav being the damping rate for the field intensi
in the cavity. The field emerging from the cavity can
monitored by means of the balanced homodyne detec
scheme shown in Fig. 1. The positive-frequency part of
outgoing field is associated withAgâ, whereâ is the anni-
hilation operator for one photon. This field is combined in
beam splitter with a classical field, the complex numberAgm

FIG. 1. Homodyne detection of the outgoing field.
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being associated with its positive-frequency part. We assu
that this classical field is in phase quadrature with the coh
ent stateua0&, and with the amplitude much larger thana0,
that is

m5 ixa0 , x real,x@1. ~5!

At the beam splitter 50% of the field intensity is transmitt
and 50% is reflected, so that the fields emerging from it
the detectorsD1 andD2 are

Ag

2
~m1â!→D1 ,

Ag

2
~m2â!→D2 . ~6!

In this way, the dissipation process is reduced to the de
tion of photons by any of the two detectors.

One should remark at this point that it is essential for o
analysis to have the classical field in quadrature with
cavity field. Otherwise, a pure phase diffusion process wo
not be obtained, as the following discussion will show. T
homodyne measurement allows a constant phase relation
tween the two fields, which would not be true for a hete
dyne detection.

Before proceeding with the calculation of the evolution
the field state under this continuous monitoring, let us sh
that this process is consistent with a master equation of
Lindblad form @10#, which may be written as

ṙ̂5
i

\
@r̂,H0#1L@ r̂~ t !#, ~7!

where r̂ is the reduced density operator for the field insi
the cavity,H0 is the Hamiltonian governing the free evolu
tion of the field mode,

L@ r̂~ t !#5(
m

~Ĉmr̂Ĉm
† 2 1

2 $Ĉm
† Ĉm ,r̂%! ~8!

is the Lindblad operator, associated with the losses, and$.,.%
denotes an anticommutator. For a mode of the field inter
ing with a zero-temperature reservoir, one has only one
eratorĈ15Aga. Nevertheless, another operator may be
troduced without changing the master equation: ifm is a
complex number, we insertĈ25Agm into Eq. ~8!. Clearly,
the contribution from thisc number vanishes identically, s
the master equation remains invariant. We now replace
jump operatorsĈ1 andĈ2 by the two operatorsĈ18 andĈ28
defined by

Ĉ185
Ĉ21Ĉ1

A2
5Ag

2
~m1â!,

Ĉ285
Ĉ22Ĉ1

A2
5Ag

2
~m2â!. ~9!
3-2
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This transformation, which also leaves the master equa
invariant, allows one to associate a Lindblad operator w
each detector in the homodyning scheme displayed in Fig
In other words, the dissipation process can be descr
equivalently either through the direct absorption of photo
from the cavity mode~operatorĈ1) or through the detection
of photons by the detectorsD1 and D2 ~operatorsĈ18 and

Ĉ28). This implies that the continuous monitoring of the d
tections in the two detectors depicted in Fig. 1 correspond
a particular unfolding of the master equation~7!. Therefore,
the average over all the realizations~corresponding to all the
possible sequences of detections byD1 andD2) will neces-
sarily reproduce the results stemming from the master eq
tion @9#. We show in the next section that this unfoldin
corresponds to describing the decoherence process in t
of a quantum phase random walk. We also show explic
that the master equation result is recovered after avera
over many realizations.

III. QUANTUM PHASE RANDOM WALK

We go back now to the description of the continuo
monitoring scheme. We assume that at some given insta
time t the state of the system is~the interaction picture is
used throughout!

uF~ t !&5
1

Nt
~ ua&1eicu2a&), ~10!

with N t
2/2511cosc exp(22uau2), and wherec and a are

functions oft. Apart from a normalization constant, the a
tion of each operatorĈm8 on the state~10! may be written as

Ĉ18uF&→ua&1
m2a

m1a
eic0u2a&,

Ĉ28uF&→ua&1
m1a

m2a
eic0u2a&. ~11!

These actions stand for the quantum jumps~‘‘clicks’’ of the
detectors! associated with the detection process@9#.

On the other hand, between two detections, the amplit
of the field evolves under the nonunitary operator@9#

expS 2t(
m

Ĉm
8 †Ĉm

8/2D 5exp~2gumu2t/2!exp~2gtâ†â/2!,

~12!

which is equivalent to exp(2gtâ†â/2) after renormalization.
This amounts to setting

a5a0exp~2gt/2!. ~13!

The increase of the probability of having no photons in
cavity, resulting from this decay, is a consequence
the information gained from the fact that no detection
made@9#.

The evolution of the field under continuous monitorin
can thus be described as a smooth exponential decay o
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coherent state amplitude interrupted by a succession of q
tum jumps represented by the operators~9!.

Becausem is in phase quadrature witha0, and sincea
5a0exp(2gt/2), we may set

m2a

m1a
5ei e, ~14!

wheree is a real phase. Therefore, the action of the opera
Ĉm8 on the state~1! amounts to adding or subtracting a fact
e from the phasec0. Sinceumu@uau, it follows that e!1.
The phasec is no longer a constant, it is now a dynamic
phase that evolves in time following a one-dimensional r
dom walk with initial conditionc(0)5c0.

The photon detection rate for each of the two detector
given by

dpm /dt5^F~ t !uĈ8m
†Ĉm8 uF~ t !& ~m51,2!, ~15!

whereuF(t)& is given by Eq.~10!.
From Eqs.~9!, ~10!, and~15! it is easy to see that

dp1 /dt5
g

2
umu21

g

N t
2 @ uau2~12cosce22uau2!

1since22uau2~ma* 2m* a!#, ~16!

dp2 /dt5
g

2
umu21

g

N t
2 @ uau2~12cosce22uau2!

2since22uau2~ma* 2m* a!#. ~17!

One should note that the detection rate in each detect
different and this difference is proportional to the sine of t
phase difference betweena and the classical fieldm. If m
was in phase with the outgoing fielda, the detection rate in
both detectors would be the same.

In view of the results found in Eqs.~16! and~17!, we may
write the following equation for the probabilityP(c,t) of
having a certain value of the phasec at a given timet1dt:

P~c,t1dt!

5^F~c2e,t !uĈ18
†Ĉ18uF~c2e,t !&dtP~c2e,t !

1^F~c1e,t !uĈ28
†Ĉ28uF~c1e,t !&dtP~c1e,t !

2F12(
m

^F~c,t !uĈm8
†Ĉm8 uF~c,t !&dtGP~c,t !.

~18!

Using Eqs.~15!, ~16!, and~17! and umu@ua0u, it is straight-
forward to obtain from Eq.~18! an equation for the time
evolution ofP(c,t), after neglecting terms independent ofx,
3-3



f

t

fo
e-

xi-
de-

e-

hes
this

le,

en-
of

i-

of

re-
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]P~c,t !

]t
5

G

2
@P~c2e,t !1P~c1e,t !22P~e,t !#

12gxe22uau2ua0u2e2gt/2

3Fsin~c2e!

N 2
t,2e

P~c2e,t !

2
sin~c1e!

N 2
t,1e

P~c1e,t !G , ~19!

whereNt,6e is the normalization factor ofuF(c6e,t)&. In
the equation above, we have introduced the variableG, given
by

G5gua0u2x2, ~20!

which corresponds to the total jumping ratedp1 /dt
1dp2 /dt in leading order inx2. On the right-hand side o
Eq. ~19! one may expand any function ofF(c6e) in the
following way, sincee!1:

F~c6e,t !.F~c,t !6
]F~c,t !

]c
e1

1

2

]2F~c,t !

]c2
e21O~e3!.

~21!

Replacing this expansion into Eq.~19! we find

]P~c,t !

]t
5

e2G

2

]2P~c,t !

]c 2

14egxe22uau2ua0u2e2gt/2
]

]c F sinc

N t
2

P~c,t !G .

~22!

Now, sincee!1,

ei e.11 i e1O~e2!

5
ixegt/221

ixegt/211

.11
2i

xegt/2
1O@1/~x2egt!#, ~23!

and thereforee.2e2gt/2/x, that is, in this limite is twice the
amplitude ratio between the decaying measured field and
classical field. This result is valid for all values ofa0 and for
all times.

We have derived, therefore, a Fokker-Plank equation
the quantum-phase distribution function, with tim
dependent diffusion and drift coefficients:
06380
he

r

]P~c,t !

]t
52gua0u2e2gt

]2P~c,t !

]c 2

18ge22uau2ua0u2e2gt
]

]c F sinc

N t
2

P~c,t !G .

~24!

In the limit of uau@1, when the coherent states are appro
mately orthogonal to each other, the equation above
scribes a pure diffusion, as the drift term vanishes ase22uau2.
Equation~24! also shows that the diffusion coefficient b
comes very small whent@1/g. In this limit the two coherent
states strongly overlap, and the field in the cavity approac
the vacuum state. The process cannot be considered in
limit as purely diffusive.

In order to solve Eq.~24! and find a distribution for the
probability of having a certain phasec in a given time we
can do the following change of variables:

Q~c,t !5
N 0

2

N t
2

P~c,t !. ~25!

It is straightforward to see that, after this change of variab
we change Eq.~24! into a purely diffusion equation,

]Q~c,t !

]t
52gua0u2e2gt

]2Q~c,t !

]c2 . ~26!

This equation can be solved by removing the time dep
dence of the diffusion coefficient through another change
variables. We introduce a new variableT5 f (t), such that
dT/dt5exp(2gt), which implies thatT5@12exp(2gt)#/g
~choosing for simplicity the same time origin forT and t).
The diffusion equation becomes then:

]Q~c,T!

]T
52gua0u2

]2Q~c,T!

]c2 . ~27!

The well-known solution of this equation, subject to the in
tial conditionQ(c,0)5d(c2c0), is given by

Q~c,t !5
exp@2~c2c0!2/8gua0u2T#

ua0uA8pgT
, ~28!

which implies that we have, for the actual probability
finding a certain value of the phasec in a time t,

P~c,t !5
N t

2

N 0
2

exp$2~c2c0!2/8ua0u2@12exp~2gt !#%

ua0uA8p@12exp~2gt !#
.

~29!

We use now this result to calculate the density matrix cor
sponding to a statistical mixture of state~10! with distribu-
tion P(c,t) for the phasec. Using Eq.~29! we get

K eic

N t
2L 5E P~c!

eic

N t
2

dc5
e22ua0u2(12e2gt)eic0

N 0
2

~30!
3-4
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and

K 1

N t
2L 5

1

N 0
2

, ~31!

so that we obtain foruF&^Fu the same expression which
found by solving explicitly the master equation forr̂ @8#,

r̂5
1

N 0
2 @ ua0e2gt/2&^a0e2gt/2u1u2a0e2gt/2&

3^2a0e2gt/2u1e22ua0u2(12e2gt)~eic0u2a0e2gt/2&

3^a0e2gt/2u1e2 ic0ua0e2gt/2&^2a0e2gt/2u!#. ~32!

IV. CONCLUSION

We have shown that for a quantum superposition of
herent states, it is indeed possible to interpret decoheren
the diffusion of the quantum phase between the two state
long as the overlap of the two coherent states can be
glected.

Since such an interpretation amounts to considering
state as a pure state of the form~4!, it is not surprising that it
should correspond to a specific realization of the dissipa
process, in which all the photons leaking out of the cavity
detected. We have shown indeed that a phase diffusion
cess occurs if there is a continuous monitoring of the leak
field via homodyne detection, with a local oscillator fie
which is in quadrature with the field to be measured.

Of course, this is by no means the only process leadin
phase diffusion. Other reservoir models, in which the fi
leaking is replaced for instance by atomic reservoirs@11#,
could also lead to similar results. A simple example of
alternative procedure to the one described in this pape
obtained by replacing the homodyning field in Eq.~5! by
another one which, while still in phase quadrature with
cavity field, is proportional toa instead ofa0. Of course all
these different models for single realizations must lead to
same final expression~32!. This multiplicity of equivalent
realizations corresponds to the multiple possible ways of
.
e

k

a
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folding the master equation which describes the dissipa
process. One should stress that by considering the evolu
of the system under continuous measurement, one is ab
represent the state of the system at each instant of time
pure state, with a phase which undergoes a diffusion proc
described by a Fokker-Planck equation. The evolution of
system when no monitoring is made can also be describe
course by a Fokker-Planck equation, obtained directly fr
the master equation~7!, by introducing a phase-space repr
sentation of the density operator. In this case, however,
system cannot be represented by a pure state~cf. @12#!.

One should note that the study of the evolution of
Schrödinger catlike state under a stochastic Schro¨dinger
equation has also been undertaken by Garraway and Kn
@13#. They have displayed a localization of the Schro¨dinger
cat in one of the two coherent states, after some steps o
evolution, and also under homodyne detection of the out
ing field. The difference from our procedure is quite simp
those authors do not require the classical homodyning fi
to be in phase quadrature with the field in the cavity,
assumed in the present case. This fact prevents each ‘‘cli
from being interpreted as a change in a quantum phase
the other hand, their scheme leads to a change of
‘‘weight’’ of each coherent state, which leads to the localiz
tion phenomenon in phase space. Our requirement of ha
the classical and the cavity fields in quadrature also imp
that a heterodyne measurement is ruled out. This kind
measurement also leads to a quantum state diffusion e
tion @9,14#, but it does not yield a pure phase diffusion lik
the present scheme.
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