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Decoherence as phase diffusion
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We show that the decoherence of a superposition of two coherent states of the electromagnetic field in a
cavity may be interpreted as a phase-diffusion process.

PACS numbds): 42.50.Lc, 42.50.Ar, 03.65.Bz

I. INTRODUCTION normalization factor. The quantity=2|aysin(d/2)| deter-
mines the distance between the two coherent states in phase

Since the beginnings of quantum mechanics, the classicgpace and is a measure of the macroscopicity of the system.
limit of this theory has been the source of intense debateThe density matrix associated with Eq) is
Einstein considered a fundamental problem the “inexistence
at the classical level of the majority of states allowed by
guantum mechanics,” namely those involving the coherent B
superposition of two or more macroscopically separated lo- P~ ﬁ
calized state§l]. Schralinger emphasized a similar point in 0
his famous “cat paradox(2]. The lack of nonlocal observ- +e | ag)(age'’)). 2
ables with matrix elements between those two localized
states has been proposed as the reason for not observin

interference effects stemming from the coherent superposi-l—-ﬂe time-dependent behavior of this density matrix may be

tion [3]. More recently, the role of decoherence in the OPtained by solving the corresponding master equation, after
quantum-classical transition has been emphasi#&dThe assuming a specific form for the c_oupl_mg with the reservoir
unavoidable interaction of the system under consideratioh:8l- Quite generally, one shows in this way that the nondi-
(“small system”) with a reservoir produces, in a very short 2gonal terms become negligibly small after a time of the
time (decoherence timean entanglement between each of Order Oftca,/d”, wheretc,, is the energy damping t|me20f the
the distinct classical states of the small system and orthoga®yStém- Whend>1, and for timest such thatt,,/d"<t

nal states of the reservoir. This entanglement eliminates the tcav (the last restriction coming from the requirement that
interference between those classical states, for any measuf@€ tWo coherent states are still approximately orthogonal to

ment involving only observables of the small syst@wen if ~ €ach other the density matrix of the system describes a

these observables are nonldcah this process, and as far as classical statistical mixture:

only the “small system” is concerned, the quantum super-

position is turned into a statistical mixture, for which all the

information on the system can be described in classicalp— = (|age™ "2 (age™ " +|age'%e™ ") (aqe' e~ 7)),

terms, so our usual perception of the world is recovered. 3)

Grasping this process is important not only for understanding

the quantum-classical transition, but may eventually be use-

ful for applications that require keeping coherence in mesowhere v is the energy damping rate.

scopic or macroscopic systems, such as quantum computa- A peculiar feature of the transition from Eq®) to (3) is

tion [5]. that it corresponds, wheao|>1 (so thatN3=2), to replac-
Recent experiments with trapped id@8 and cavity QED  ing a, by agexp(—t/2) and randomizing the phassk, in

[7] have demonstrated the possibility of measuring the coEq. (2). This heuristic procedure is sometimes given a physi-

herence between distinguishable localized states of a systemal interpretation, through the statement that the interaction

and, furthermore, have allowed the monitoring of the decoof the system with the reservoir leads to the randomization of

herence process in real ting€], thus allowing the testing of this phase. However, to the best of our knowledge, there has

decoherence theorig4,8]. In these experiments, quantum not been, up to now, an explicit derivation of this fact. Can

superpositions of coherent stat@ssociated either with the decoherence be interpreted as the diffusion of a quantum

center-of-mass motion in the ion trap experiment or with thephase? Would this interpretation be valid for all times, or

electromagnetic field in the cavity QED experimeate gen-  only if the two coherent states are almost orthogonal? If this

erated. They can be represented in the following form: interpretation could be done, the state of the system would be

represented at all times by the pure state

(|ao){aro| +|age ) age'| + "o age' *) |

1 ) )
N—0(|ao>+e"/’0|aoe“9>), (1)

1 : .
_ ) —(|a)+e'’|ae'?), (4)
where y, and 6 are arbitrary constant phases axglis the Ny
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Detector being associated with its positive-frequency part. We assume
that this classical field is in phase quadrature with the coher-

\/“{/_2(Ll+a)/r ent statd ), and with the amplitude much larger thag,
that is
\7/2(h-a)
[ — — H m=ixag, xrealx>1. (5)
T |
Cavity Ya Defector At the beam splitter 50% of the field intensity is transmitted
and 50% is reflected, so that the fields emerging from it to
i the detector®, andD, are
FIG. 1. Homodyne detection of the outgoing field. \/g(:“—"a)_’Dl-
where a= agexp(—+t/2), and the phase¢ would be consid-
ered as a dynamical variable, evolving from its initial value v R
through a diffusion equation. Hen, is the normalization 5(n—a)=Dy. (6)
factor.

In this paper we show that it is indeed possible to derive an this way, the dissipation process is reduced to the detec-
Fokker-Planck equation for the phase distribution, thrOUghtion of photons by any of the two detectors.

out the evolution of the state. This equation, which becomes  One should remark at this point that it is essential for our

a diffusion equation fofa|>1, corresponds to a particular analysis to have the classical field in quadrature with the
realization of the system’s evolution, under continuouscavity field. Otherwise, a pure phase diffusion process would
monitoring of the reservoir. Since this monitoring representsot be obtained, as the following discussion will show. The
a continuous retrieval of information on the interaction with homodyne measurement allows a constant phase relation be-
the reservoir, the system remains in a pure state of the forfjyeen the two fields, which would not be true for a hetero-
(4), but the quantum phase undergoes a random walk pratyne detection.

cess. This dynamical evolution is obtained by deriving a sto-  Before proceeding with the calculation of the evolution of
chastic Schrdinger equation9] corresponding to the as- the field state under this continuous monitoring, let us show

sumed measurement scheme. The average over magat this process is consistent with a master equation of the
realizations reproduces the results obtained from a mastelindblad form[10], which may be written as

equation treatment.

It is not our purpose in this paper to propose a realistic PO N -
experiment, but rather to show througtgaedankerexperi- p=zLpHol+LIp(], (7)
ment that it is indeed possible to interpret the decoherence

process as stemming from quantum phase diffusion, and, fu{yhere , is the reduced density operator for the field inside
thermore, that this interpretation must be associated with fhe cavity,H, is the Hamiltonian governing the free evolu-
specific realization of the process, corresponding to a conggn, of thé figld mode

tinuous monitoring of the reservoir. In the next section we

give a detailed description of the measurement scheme under ~ A o
consideration. In Sec. Ill we derive a Fokker-Planck equa- E[p(t)]=z (CmpCTm—%{CTmCm,p}) (8
tion for the quantum phase, and show that the results ob- m

te_uned from the master equation are retrieved. Our conclui-s the Lindblad operator, associated with the losses{ank
sions are summarized in Sec. IV.

denotes an anticommutator. For a mode of the field interact-
ing with a zero-temperature reservoir, one has only one op-

eratorC:1= Jya. Nevertheless, another operator may be in-
troduced without changing the master equationuifis a

We consider for definiteness that the stdtecorresponds ~ complex number, we insef,= yu into Eq. (8). Clearly,
to an electromagnetic field in a cavity, and take for simplicitythe contribution from this number vanishes identically, so
the special case of Eql), corresponding t@= . We as- the master equation remains invariant. We now replace the
sume that the field losses are due solely to the transmissigamp operator<; andC, by the two operator€,’ andC,’
of the field outside the cavity. The transmission coefficient isdefined by
Jy, y=1k,, being the damping rate for the field intensity
in the cavity. The field emerging from the cavity can be . Cy+Cy y R
monitored by means of the balanced homodyne detection Ci= =\ Zuta),

IIl. A MODEL FOR THE CONTINUOUS MEASUREMENT
OF THE RESERVOIR

scheme shown in Fig. 1. The positive-frequency part of the V2
outgoing field is associated witflya, wherea is the anni- A
hilation operator for one photon. This field is combined in a A r:CZ_Cl 2. _a
: : e C (n—a). C)
beam splitter with a classical field, the complex numieg V2 2
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This transformation, which also leaves the master equationoherent state amplitude interrupted by a succession of quan-
invariant, allows one to associate a Lindblad operator withtum jumps represented by the operat(@s

each detector in the homodyning scheme displayed in Fig. 1. Becauseu is in phase quadrature with,, and sincex

In other words, the dissipation process can be described ayexp(—9t/2), we may set

equivalently either through the direct absorption of photons

from the cavity mode{operatorf:l) or through the detection p—a

of photons by the detecto®; and D, (operatorsC; and ata © (14)

C,). This implies that the continuous monitoring of the de-

tections in the two detectors depicted in Fig. 1 corresponds tQheree is a real phase. Therefore, the action of the operators

;geg\t;g?;areuorv‘g:d;ﬂ%htz rtgzi?;?te[ ' ?%iatc')%'ir;rhge;ﬁﬁ’e é,’n on the stat€1) amounts to adding or subtracting a factor
g b 9 € from the phase),. Since|u|>|ea|, it follows thate<1.

possible sequences of detectionsy andD,) will neces- The phasey is no longer a constant, it is now a dynamical
sarily reproduce the results stemming from the master equa—hasfa that evolves 'ngt'me followin ’a one—d'mensyonal ran-
tion [9]. We show in the next section that this unfolding P Ik Vh Ves : ! diti W(; 9 : :
corresponds to describing the decoherence process in terrﬂgr_lr_]hwa h V;”t ém;ua t_con |tt|or;¢( )_h'ﬁo'f the two detectors i
of a quantum phase random walk. We also show explicitly_. € photon detection rate for each ot the two detectors 1S
that the master equation result is recovered after averagirr%iven by

over many realizations.

dpm/dt=(®(t)|C' TCL|D(1)) (m=1,2, (15
1. QUANTUM PHASE RANDOM WALK

We go back now to the description of the continuousWhere|®(t)) is given by Eq.(10).
monitoring scheme. We assume that at some given instant of From Egs.(9), (10), and(19) it is easy to see that
time t the state of the system ishe interaction picture is
used throughouit Y o, , 2ol
dp,/dt= 7 |ul +A7t2[|a| (1—cosye ")

1 .
@)= 7 (|a)+e—a)), (10 )
t +Siﬂ¢/;672|“| (mpa* —p*a)l, (16
with N2/2=1+ cosyexp(—2|a?), and whereys and a are
functions oft. Apart from a normalization constant, the ac-
. g : dp,/dt= 2| |2+ —=[|a|2(1— cosye 2’
tion of each operato€,, on the stat¢10) may be written as P2 5K NZ[ a|“(1—cosye )
t
-, m—a . —olal?
Cilo)=la)+ -~ el -a), —sinyge 2 (pa* — u* a)]. (17)
) uta One should note that the detection rate in each detector is
CHlD)—|a)+ = ae‘ 0| — o). (1)  different and this difference is proportional to the sine of the

phase difference betwean and the classical fielge. If w«
These actions stand for the quantum junffidicks” of the was in phase with the outgoing fiete, the detection rate in

detector associated with the detection proc¢8 both detectors would be the same.
On the other hand, between two detections, the amplitude N view of the results found in Eq¢16) and(17), we may
of the field evolves under the nonunitary operd@y write the following equation for the probabiliti?(,t) of

having a certain value of the phageat a given time +dt:

exp( —t>, €, 1€ 12| =exp( — | n|2t/2)exp — yta'as2),
m

(12

P(y,t+dt)

» =(P(y—e)|CLTCi|O(y—e1))dtP(Y—et)
which is equivalent to exp{yta’a/2) after renormalization.

This amounts to setting (D (Y +e,1)|CHTCHP(Y+e,1))dtP(Y+€,t)
= eI~ N/2). a3 — 1= 2 (@ ()] €4 T D (1) dt | Py,
m
The increase of the probability of having no photons in the
cavity, resulting from this decay, is a consequence of (18)
the information gained from the fact that no detection is
made[9]. Using Egs.(15), (16), and(17) and|u|>|«ay, it is straight-

The evolution of the field under continuous monitoring forward to obtain from Eq(18) an equation for the time
can thus be described as a smooth exponential decay of tlewolution of P(i,t), after neglecting terms independentxof
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IP(4.1)
at

= g[P(tp— e,t)+P(y+e,t)—2P(e,t)]

2
+ Zyxe—Z‘a‘ | a0| 2e— yt/2

sin(¢—e)
WP(([/— e,t)

sin(¢+ €)
— —N 2t'+e P(y+et)

X

: (19

whereA; .. is the normalization factor of® (= €,t)). In
the equation above, we have introduced the variBblgiven

by

I'= ylao/*?, (20

which corresponds to the total jumping ratgp,/dt
+dp,/dt in leading order inx2. On the right-hand side of
Eqg. (19 one may expand any function &f(4*+¢€) in the
following way, sincee<<1:

IF(pt)  LFF(Y 5
F(y*ret)=F(y4,t)* P e+§ e e+ 0O(€°).
(21
Replacing this expansion into EGL9) we find
IP(ht) €T *P(it)
a2yl
d |sinyg
+deyxe 2ol qpl2e M2 — | T p(yt) |
€y ol 50 Nz PO
(22)
Now, sincee<1,
ef=1+ie+O(e?)
ixen2—1
ixen241
2i 2 0t
=1+ xe7"2+0[1/(x e™M], (23

and therefore=2e~""?/x, that is, in this limite is twice the
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IP(,1) ~PPP(t)
;,f =27’|ao|ze Vt—z—al/;ﬂ

a | sinyg
+8ye 2’|y |2e‘7‘—{ P(lﬂ,t)].
° | N?

(24)

In the limit of |«|>1, when the coherent states are approxi-
mately orthogonal to each other, the equation above de-

scribes a pure diffusion, as the drift term vanisheg 28,
Equation(24) also shows that the diffusion coefficient be-
comes very small whet®1/y. In this limit the two coherent
states strongly overlap, and the field in the cavity approaches
the vacuum state. The process cannot be considered in this
limit as purely diffusive.

In order to solve Eq(24) and find a distribution for the
probability of having a certain phasgin a given time we
can do the following change of variables:

Q( t)‘AL%F’( t) (25)
lﬂ, _Ntz 1,0, .

It is straightforward to see that, after this change of variable,
we change Eq(24) into a purely diffusion equation,

dQ(,t) , QYY)
= | e Y —_—.

at E
This equation can be solved by removing the time depen-

dence of the diffusion coefficient through another change of

variables. We introduce a new variable=f(t), such that

dT/dt=exp(—~t), which implies thatT=[1—exp(=)]/y

(choosing for simplicity the same time origin fGrandt).

The diffusion equation becomes then:

aQy,T) FQ(y,T)
aT ayr

27| ag (26)

2ylao|? (27)

The well-known solution of this equation, subject to the ini-
tial conditionQ(#,0)= 8(¢— i), is given by
exl — (¢— o) /8| ao|*T]

|avo| V8T yT '

which implies that we have, for the actual probability of
finding a certain value of the phagein a timet,

Q(y.t)= (28)

NE expl{— (4= 1ho) 18l ao| [ 1—exp( — )]}
Ng | ol VBA[1—exp(— )] '

P(y.t)=

(29

We use now this result to calculate the density matrix corre-

amplitude ratio between the decaying measured field and thoeponding to a statistical mixture of state0) with distribu-

classical field. This result is valid for all values @f and for
all times.

We have derived, therefore, a Fokker-Plank equation for
time-

the quantum-phase distribution function, with

dependent diffusion and drift coefficients:

tion P(y,t) for the phasef. Using Eq.(29) we get

el el e 2adX(1-e Mgivg

(30
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and folding the master equation which describes the dissipation
process. One should stress that by considering the evolution

1 1 of the system under continuous measurement, one is able to
-/\_[tz - /\7(2)' 3D represent the state of the system at each instant of time by a

pure state, with a phase which undergoes a diffusion process

so that we obtain fow the same expression which is described by a Fokke_r-P_Ianqk equation. The evolution_of the
found by solving explicitly the master equation fbl{S] system when no monitoring is made can also be described of
’ course by a Fokker-Planck equation, obtained directly from

the master equatiof¥), by introducing a phase-space repre-
|aoe™ ") (age™ Y + | — age™ "3 sentation of the density operator. In this case, however, the
system cannot be represented by a pure $tdt¢12]).
B ol 24ty - One should note that the study of the evolution of a
X(—age” M2 +e 2ol (e M (gllo] — gy 112) Schralinger catlike state under a stochastic Sdimger
o2l i 2 2 equation has also been undertaken by Garraway and Knight
X (aoe” " +e V0| age™ ") (— age” )], (32) [13]. They have displayed a localization of the Sahinger
cat in one of the two coherent states, after some steps of the
IV. CONCLUSION evolution, and also under homodyne detection of the outgo-
ing field. The difference from our procedure is quite simple:
g?se authors do not require the classical homodyning field
be in phase quadrature with the field in the cavity, as
1ssumed in the present case. This fact prevents each “click”
glected. rom being interpreteq as a change in a quantum phase. On
Since such an interpretation amounts to considering théhe .oth'(,ar hand, their scheme Iea}ds to a change of the
state as a pure state of the fof#), it is not surprising that it lwe|ght of each c_oherent state, which Iead; to the Iocallza_\—
should correspond to a specific realization of the dissipatiOIIlIon phen'omenon In phas_e space..Our requirement Of haylng
process, in which all the photons leaking out of the cavity aréhe classical and the cavity fields in quadrature also implies

detected. We have shown indeed that a phase diffusion prdat @ heterodylne rlnez;surement is ruled OUtaIfh'S. kind of
cess occurs if there is a continuous monitoring of the leaking"€asurement also leads to a quantum state diffusion equa-

field via homodyne detection, with a local oscillator field 10N [9,14], but it does not yield a pure phase diffusion like

which is in quadrature with the field to be measured. the present scheme.
Of course, this is by no means the only process leading to
phase diffusion. Other reservoir models, in which the field
leaking is replaced for instance by atomic reservirg], The authors acknowledge support from Conselho Nacio-
could also lead to similar results. A simple example of annal de Desenvolvimento Ciefito e Tecnolgico (CNPQ),
alternative procedure to the one described in this paper iBrograma de Apoio a Mileos de Excélecia (PRONEX),
obtained by replacing the homodyning field in E§) by  Funda@o de Amparo @esquisa do Estado do Rio de Janeiro
another one which, while still in phase quadrature with the(FAPERJ, and Funda@ Universitaia Jose Bonifacio
cavity field, is proportional tax instead ofeg. Of course all  (FUJB), Brazil, and from the Center National de la Recher-
these different models for single realizations must lead to thehe Scientifiqu§CNRS, France. Laboratoire Kastler Bros-
same final expressiof82). This multiplicity of equivalent sel is unitede recherche de I'Ecole Normale Supere et de
realizations corresponds to the multiple possible ways of unfUniversite Pierre et Marie Curie, assoei@u CNRS.

A_l[
PN%

We have shown that for a quantum superposition of co
herent states, it is indeed possible to interpret decoherence
the diffusion of the quantum phase between the two states,
long as the overlap of the two coherent states can be n
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