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When an initially entangled pair of qubits undergoes local decoherence processes, there are a number of
ways in which the original entanglement can spread throughout the multipartite system consisting of the
two qubits and their environments. Here, we report theoretical and experimental results regarding the
dynamics of the distribution of entanglement in this system. The experiment employs an all optical setup
in which the qubits are encoded in the polarization degrees of freedom of two photons, and each local
decoherence channel is implemented with an interferometer that couples the polarization to the path of each
photon, which acts as an environment. We monitor the dynamics and distribution of entanglement and
observe the transition from bipartite to multipartite entanglement and back, and show how these transitions
are intimately related to the sudden death and sudden birth of entanglement. The multipartite entanglement
is further analyzed in terms of three- and four-partite entanglement contributions, and genuine four-qubit
entanglement is observed at some points of the evolution.
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Introduction.—In one of his landmark papers,
Schrödinger characterized entanglement in terms closely
related to the modern notion of information [1]. According
to him, for an entangled system, “best possible knowledge
of a whole does not include best possible knowledge of
its parts.” In the same vein, decoherence processes can be
attributed to the loss of information of a quantum system to
the environment with which it gets entangled [2]. For a
composite system in an entangled state, the initial entan-
glement, or “information of the whole,” can be distributed
throughout the system and environment in a number of
ways. Depending on the initial state and on the specific
interaction with the environment, the redistribution of the
entanglement can give rise to phenomena like the entan-
glement sudden death (ESD) [3,4] and entanglement
sudden birth (ESB) [5]. In this Letter, we address the
question of what happens with the entanglement in the
interval between ESD and ESB.
For an initial bipartite entangled state where one sub-

system interacts with the environment, genuine tripartite
entanglement may arise in the form of a Greenberger-Horn-
Zeilinger [6] or W type [7] of state, including the
environmental degrees of freedom [8,9]. Here, we exper-
imentally study two entangled qubits, each one coupled to
its local environment. This configuration gives rise to a
much richer dynamics, as compared to the tripartite case
[8,9], allowing for the detailed study of the ESD and ESB
processes and the emergence of genuine four-partite
entanglement. The qubits are encoded in the polarizations
of two photons, while the decoherence is implemented by
optically coupling the polarization to the spatial mode,
which plays the role of the environment. Performing
quantum state tomography of the complete four-partite
system, we analyze the entanglement as a function
of the amount of decoherence applied to the system. We

observe both ESD and ESB, and the redistribution of the
entanglement from bipartite to tri- and four-partite forms.
We also present a theory based on monogamy relations that
provides appropriate multipartite entanglement quantifiers.
Monogamy inequalities and residual entanglement.—

The monogamy inequality in N-qubit systems reads [10]

C2
ijj1;j2;…;jN−1

≥ C2
ij1 þ C2

ij2 þ " " " þ C2
ijN−1

; ð1Þ

where the tangle C2
AjB measures the bipartite entangle-

ment between A and B. If A and B are sets of qubits,
then C2

AjB ¼ inffjϕlihϕlj;plg
P

l2pl½1 − trðρlAÞ2', where ρlA ¼
trBðjϕlihϕljÞ, and the pure states jϕli are the possible
decompositions of ρAB as

P
lpljϕlihϕlj. If A and B

represent single qubits (A ¼ i, B ¼ j), CAjB is the
concurrence [11]

Cij ¼ maxf0;Γg; ð2Þ

where Γ¼
ffiffiffiffiffi
λ1

p
−

ffiffiffiffiffi
λ2

p
−

ffiffiffiffiffi
λ3

p
−

ffiffiffiffiffi
λ4

p
and the λi’s are the eigen-

values (in decreasing order) of ρijðσy ⊗ σyÞρ(ijðσy ⊗ σyÞ.
In addition, for 2N-qubit systems and partitions 2∶2N − 2,
it was shown that [12]

C2
ii0jj1;j01;…;jN−1;j0N−1

≥
XN−1

m¼1

C2
ijm þ C2

ij0m
þ C2

i0jm
þ C2

i0j0m
; ð3Þ

whenever the reduced density matrix ρii0 is a rank-two
matrix.
We now analyze the monogamy relations in a four-qubit

system composed of two open systems S1 and S2 and their
respective environments E1 and E2. We assume that the
initial state is

jΨð0ÞiS1S2E1E2
¼ jψð0ÞiS1S2 j0iE1

j0iE1
; ð4Þ
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with jψð0Þi an entangled state, and that the evolution has
the form

jΨðtÞi ¼ US2E2
ðtÞUS1E1

ðtÞjΨð0Þi: ð5Þ

With these assumptions, direct calculation shows that
ρS1E1

ðtÞ and ρS2E2
ðtÞ are rank-twomatrices during thewhole

evolution; we thus apply Eq. (3) and write the (positive)
residual entanglement for the bipartition S1E1jS2E2 as [12]

RS1E1jS2E2
≡C2

S1E1jS2E2
−C2

S2E1
−C2

S1E2
−C2

S1S2
−C2

E1E2
: ð6Þ

Equation (1) gives the residual entanglement for the most
unbalanced bipartition

Ri ≡ C2
ijjkl − C2

ij − C2
ik − C2

il; ð7Þ

where i; j; k; l ¼ S1; S2; E1, and E2. The residual entangle-
ments encode multipartite (rather than bipartite) entangle-
ment. In particular, for a pure three-qubit state, Ri becomes
independent of i and coincides with the three-tangle [13]:

τijk ¼ C2
ijjk − C2

ij − C2
ik: ð8Þ

Since Eq. (5) involves local unitary transformations, the
entanglement between systems ðS1E1Þ and ðS2E2Þ remains
constant; thus, C2

S1E1jS2E2
is conserved and equals the initial

entanglement E2
0 ≡ C2

S1S2
ð0Þ.

Experimental setup.—The experimental setup is shown
in Fig. 1. The system qubits are encoded in the polarization
of two photons, produced with type-I spontaneous para-
metric down-conversion [14]. The environment is repre-
sented by the spatial mode (path) of each photon, initially in
the state j0iE. Ideally, the initial two-photon state is

jΨi ¼ ðαj0iS1 j0iS2 þ βj1iS1 j1iS2Þj0iE1
j0iE2

; ð9Þ

where j0iS and j1iS represent the horizontal and vertical
polarizations of the photons, respectively. Each photon is
directed to optical interferometers that implement a unitary
transformation modeling the interaction between the polari-
zation Si and the spatial mode Ei. A second interferometer,
wave plates, and a polarizing beam splitter (PBS) are used
to perform full state tomography on the polarization and
path degrees of freedom of each photon. We briefly
summarize the role of each interferometer, as complete
details are given in Refs. [8,9].
The interferometers have calcite beam displacers [BDs,

modified beam displacers (MBDs)] to separate horizontal
and vertical polarization components. A half wave plate
(HWP), with rotation angle θp, controls the amount of
decoherence. As θp varies, the spatial mode one populates
according to the map:

j0iSj0iE → j0iSj0iE;

j1iSj0iE →
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
j1iSj0iE þ ffiffiffiffi

p
p j0iSj1iE; ð10Þ

where p ¼ sin2ð2θpÞ. This transformation corresponds to
the amplitude damping channel when the environments are
traced out. The second interferometer and the polarization
optics shown in the light green rectangles of Fig. 1 serve
to perform complete tomography of the polarization and
spatial mode using 256 different settings of the HWPs and
quarter-wave plates (QWPs) [8,9,15]. That is, we perform
complete four-qubit tomography, allowing us to reconstruct
the total four-partite state and to completely analyze the
evolution of entanglement as p varies.
Distribution of entanglement.—In order to analyze

the ESD, the ESB, and the entanglement redistribution,
we create photons in the state (9) with α≃ ffiffiffiffiffiffiffiffi

1=7
p

and
β≃ ffiffiffiffiffiffiffiffi

6=7
p

, with purity 0.82 and fidelity 0.9. Both photons
are sent to the interferometers, which implement amplitude
damping channels as in Eq. (10). The parameters pi are
varied so that p1 ¼ p2 ¼ p. The evolved state is

jΨðpÞiS1S2E1E2
¼ 1ffiffiffi

7
p j0000iþ

ffiffiffi
6

7

r
½ð1 − pÞj1100i

þ pj0011iþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − pÞ

p
j1001i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − pÞ

p
j0110i': ð11Þ

Figure 2 shows the entanglement for different p obtained
from full quantum state tomography. The entanglement
between S1 and S2 (red squares) decays monotonically until

FIG. 1 (color online). Experimental setup: An ultraviolet laser
pumps a nonlinear BBO crystal, and two photons are produced
via parametric down-conversion. Both photons are directed to
separated nested interferometers. The first interferometers (light
red rectangles) have a BD and a MBD. These implement the
decoherence channels, as in Refs. [8,9]. The optical elements in
the light green rectangles serve to perform tomographic mea-
surements on the polarization and path degrees of freedom
simultaneously.
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it disappears (ESD) at pESD ¼ 0.34) 0.04. This value is
close to the theoretical one jα=βj ¼

ffiffiffiffiffiffiffiffi
1=6

p ≃ 0.4. The
discrepancy can be attributed to the fact that pESD is
jα=βj for pure states, while the experimental states are
slightly mixed. At pESB ¼ 0.67) 0.05, bipartite entangle-
ment reappears, but now swapped to the environment
qubits [5]. This result is close to the theoretical value
1 − jα=βj≃ 0.6 for pure states. The inset of Fig. 2 shows
the evolution of Γ [see Eq. (2)]. Note that ΓE1E2

(blue
circles) is negative for p < pESB, thus corroborating that
the entanglement between E1 and E2 is null before the
ESB. Similarly, after the ESD, ΓS1S2 also becomes negative.
The values of C2

S1E2
and C2

S2E1
are nearly 0 during the

evolution and are not shown. Black diamonds indicate the
residual entanglement in Eq. (6), with C2

S1E1jS2E2
calculated

in the lower-bound approximation [8,16]:

C2
S1E1jS2E2

≥ ½CfLBg
S1E1jS2E2

'2 ¼ 2½trðρÞ − trðρS1E1
Þ'; ð12Þ

with ρ the complete density matrix. The theoretical
predictions for the experimental results are given by the
curved shaded regions in Fig. 2. The curves that limit the
shaded regions from below correspond to the theoretical
evolution [Eq. (10)] of the initial experimental state found
at p ¼ 0, for higher values of p. The curves that limit
from above correspond to theoretical evolution of the initial
state obtained by evolving back the experimental final state
found at p ¼ 1, for lower values of p. In the absence of
experimental imperfections, these curves would coincide.
Therefore, the shaded areas represent regions where the

experimental points can be considered compatible with the
theory.
For pESD ≤ p ≤ pESB, no qubit-qubit entanglement con-

tributing to Eq. (6) is observed, and in agreement with the
theoretical result in Ref. [17], the residual entanglement
RS1E1jS2E2

reaches its maximum value. Thus, the entangle-
ment changes its nature along the evolution. At p ¼ 0, it is
exclusively bipartite between S1 and S2. In the transition
interval (dark green region) p ∈ ð0; pESDÞ, bipartite and
multipartite entanglement coexist. Between pESD and pESB
(light green region), the entanglement is entirely multipar-
tite, and after another transition interval (p ∈ ðpESB; 1'),
the evolution ends up with the initial bipartite entangle-
ment, but now involving E1 and E2.
Further decomposition of the multipartite

entanglement.—An explicit decomposition of RS1E1jS2E2

in terms of well-identified multipartite entanglements is
needed to provide detailed information regarding the
distribution of entanglement. We first use Eqs. (7) (applied
to i ¼ S1; E1) and (6) to write

RS1E1
¼ E2

0 þ 2C2
S1E1

− ðC2
S1jS2E1E2

þ C2
E1jS1S2E2

Þ; ð13Þ

where we defined RS1E1
≡ RS1E1jS2E2

− ðRS1 þ RE1
Þ. Since

RS1E1
is a linear combination of residual multipartite

entanglements, it must be possible to express it in terms
of nonbipartite entanglement contributions only. To achieve
this, we first use Eq. (5) and observe that jΨðtÞi can
be obtained by applying US2E2

to the intermediate state
US1E1

ðtÞjΨð0Þi. As stated below Eq. (5), ρS2E2
has rank two;

hence, at this stage, the problem is that of a three-qubit [S1,
E1, and ðS2E2Þ] system in a pure state, and in which only S1
and E1 interact. In this case, one multipartite entanglement
arises, corresponding to the three-tangle in Eq. (8) with the
qubit i being S1, j being E1, and k being the effective two-
level system ðS2E2Þ. We denote this quantity as τS1E1ðS2E2Þ.
Because of the invariance of entanglement under local

operations, τS1E1ðS2E2Þ remains unaffected when US2E2
acts

on US1E1
ðtÞjΨð0Þi, so the final state jΨðtÞi has a multi-

partite entanglement τS1E1ðS2E2Þ whose value is independent
of US2E2

. On the other hand, according to Eq. (13), RS1E1

depends only on the reduced density matrices ρS1E1
, ρS1 ,

and ρE1
and consequently represents a multipartite entan-

glement that does not depend on US2E2
either. Since

τS1E1ðS2E2Þ and RS1E1
are both independent of US2E2

, we
can compute them, assuming that US2E2

¼ I. In this case,
E2 remains in its ground state, ðS1S2E1Þ remains in a pure
state, and thus, τS1E1ðS2E2Þ is given by the three-tangle
τS1S2E1

corresponding to the three-qubit state calculated
with Eq. (8). As for RS1E1

, we notice that with US2E2
¼ I,

we can apply the decomposition (8) to C2
S1jS2E1E2

¼
C2
S1jS2E1

, to C2
E1jS1S2E2

¼ C2
E1jS1S2 , and to E2

0 ¼ C2
S1E1jS2E2

¼
C2
S2jS1E1

, thus obtaining RS1E1
¼ −τS1S2E1

¼ −τS1E1ðS2E2Þ.
From the definition of RS1E1

, we arrive at

FIG. 2 (color online). Experimental entanglements versus p,
the evolution parameter. C2

S1S2 is plotted in red squares and C2
E1E2

in blue circles. Black diamonds represent the residual entangle-
ment of Eq. (6), in the lower-bound approximation. The areas are
theoretical predictions (see the text). The inset shows the
evolution of Γ [see Eq. (2)].
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RS1E1jS2E2
¼ RS1 þ RE1

− τS1E1ðS2E2Þ: ð14Þ

Decomposition of the Ri allows us to express RS1E1jS2E2
in

terms of more explicit multipartite entanglement contribu-
tions. This can be accomplished considering that if ρS2E2

is
a rank-two matrix, so that the subsystem ðS2E2Þ can be
considered as single qubit, and the complete system
S1E1ðS2E2Þ is in a pure state, then we can use Eq. (8)
and write

C2
ijjkl ¼ C2

ijjðklÞ ¼ C2
ij þ C2

iðklÞ þ τijðklÞ

¼ C2
ij þ C2

ik þ C2
il þ τikl þ τijðklÞ; ð15Þ

where in the second line, we used Eq. (1) and denoted with
τikl the corresponding residual entanglement. The underline
distinguishes the reference qubit and stresses the fact that
τikl is not necessarily invariant under a permutation
of indices that involves i, as is τijk in Eq. (8). In fact,
τikl coincides with τijk only when ikl is in a pure state.
Comparison of Eqs. (7) and (15) leads to

Ri ¼ τikl þ τijðklÞ; ð16Þ

an expression that allows us to compute the tripartite
entanglement τikl of the mixed state ρikl as

τikl ¼ C2
ijjkl − ðC2

ij þ C2
ik þ C2

ilÞ − τijðklÞ: ð17Þ

Equations (14) and (16) and the analogous equation that
results from the latter by substituting 1↔2 lead to

RS1E1jS2E2
¼ 1

2
½τS1S2E2

þ τS2S1E1
þ τE1S2E2

þ τE2S1E1
þ τS1E1ðS2E2Þ þ τS2E2ðS1E1Þ': ð18Þ

We now analyze our experimental data regarding Ri.
Direct calculation shows that for the state (11) τS1E1ðS2E2Þ ¼
τS2E2ðS1E1Þ ¼ 0 for all p, whence Ri ¼ τikl. Figure 3 shows
the experimental results for τikl of Eq. (17) taking the values
of C2

ijjkl in the quasipure approximation [18]. We also
compute τijðklÞ in the quasipure approximation and verify
that τijðklÞ ≤ 0.03 for all ijðklÞ, so that the experimental
τījk ≃ Ri. The theoretical predictions, curves (dashed lines)
shown in Fig. 3, are calculated for pure states. In this case,
we can directly compute the three-tangles in Eq. (17) for
the state in Eq. (11) taking different values of p. In addition,
for the present interaction between Si and Ei, it can be
shown that τS1S2E2

¼ τS2S1E1
and τE1S2E2

¼ τE2S1E1
. We can

see that, within the error bars, τS1S2E2
(red circles) and

τS2S1E1
(black diamonds) coincide, in agreement with these

predictions. The same goes for τE1S2E2
(blue squares) and

τE2S1E1
(magenta stars). Moreover, in all maxima, the

experimental states have smaller τikl than those predicted
for pure states (dashed lines). This is related to the impurity

of the experimental states and to the fact that τikl is computed
from the experimentally reconstructed states in the quasi-
pure approximation, which is a lower bound for this quantity
[18]. Notice that τS1S2E2

reaches its maximum nearly at
pESD, and analogously, τS1S2E2

reaches its maximum nearly
at pESB.
Previously, we showed that the evolved state possesses

tripartite entanglement in the form τikl. The emergence of
genuine four-partite entanglement is demonstrated using
the fidelities Fjψi ¼ hψ jρjψi of an experimental state ρ
with respect to a genuine multipartite entangled state jψi,
as witnesses of multipartite entanglement. In particular, ρ is
genuinely four-partite entangled if Fjψi > O, where O is

FIG. 3 (color online). Three-tangles τijk in the quasipure app-
roximation versusp. Red circles represent τS1S2E2

, black diamonds
τS2S1E1

, blue squares τE1S2E2
, andmagenta stars τE2S1E1

. The dashed
lines are a theoretical prediction for pure states.

FIG. 4 (color online). Fidelity with respect to the Dicke state
jDi versus p. The line is the theoretical evolution of the
experimental initial state.
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the maximal overlap between jψi and all the biseparable
states [19]. We note that the states in Eq. (11) look
very similar to the state jDi ¼ 1=

ffiffiffi
6

p
ðj0000iþ j1111iþ

j0011iþ j1100iþ j0110iþ j1001iÞ, which is a Dicke
state with the second and fourth qubits flipped [20].
Moreover, FjDi > 2=3 is sufficient to witness genuine
four-partite entanglement [19]. The fidelities FjDi for our
experimental states are shown in Fig. 4. The experimental
points (red squares) are in good agreement with the
fidelities between jDi and the theoretical evolution of
the initial (experimental) state. Furthermore, in the interval
p ∈ ½0.27; 0.73', the fidelities exceed 2=3, demonstrating
the presence of genuine four-partite entanglement.
Conclusions.—We presented an experimental investiga-

tion of the spread of entanglement from two entangled
qubits to their local environments, which is quite challeng-
ing for other physical systems, since, in general, the
environmental degrees of freedom are unaccessible. We
observed the transition of bipartite ↔ multipartite entan-
glement along the evolution and showed that ESD occurs
when the entanglement becomes completely multipartite,
whereas ESB occurs when the entanglement ceases to be
completely multipartite and gets redistributed in bipartite
form. We believe that this is the first experimental dem-
onstration of ESB. We also presented a novel decompo-
sition of the residual entanglement that allowed us to
analyze our results in terms of well-identified three- and
four-partite entanglement contributions. Furthermore, we
used the fidelity as a witness of multipartite entanglement
to demonstrate the emergence of a genuine four-partite
entangled state during the evolution. Our results represent
a significant step towards a deeper understanding of
decoherence processes and the distribution of entanglement
in multiqubit systems.
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