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We show that regularization of pumping leads to large photon-number noise reduction in one- and
two-photon micromasers, and is much more important than in macroscopic lasers and masers. Our cal-
culations are based on a step-by-step microscopic approach and are compared to results obtained from a
pumping-statistics-dependent master equation, which is shown not to be entirely reliable in the micro-
maser case. Although noise reduction and the discrepancies betwen the two approaches are more impor-
tant for monokinetic beams, they are still relevant when a 10% velocity dispersion is allowed.
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I. INTRODUCTION

Recent developments in cavity quantum electrodynam-
ics have provided new tools for the investigation of the
interaction of matter and radiation. Thus, the injection
of beams of Rydberg atoms into superconducting cavities
has rendered possible the realization of new kinds of
masers, operating at very low thresholds, down to at
most one atom at a time inside the cavity [1,2]. These de-
vices have been called micromasers, and have allowed the
testing of very basic models in quantum optics, displaying
a variety of interesting phenomena, closely related to the
quantum nature of the radiation field.

In particular, the field statistics in micromasers may be
quite different from that of macroscopic lasers and
masers [3,4]. Indeed, the field produced in these devices
has been predicted [3,4] to be sub-Poissonian for a wide
range of parameters and this has been experimentally
confirmed [5]. For other parameters, the field may be
strongly super-Poissonian and the photon distribution
may have two or more peaks [3,4], thus characterizing a
multistable behavior of the system.

In the experiments made so far, the incoming beam of
excited atoms obeys with a very good approximation a
Poissonian distribution with respect to the arrival times.
On the other hand, it has been recently put into evidence
that the statistics of the pumping may play an important
role in the behavior of lasers and masers [6—8]. By inject-
ing the atoms in a regular way, instead of the usual Pois-
sonian distribution, one may obtain a substantial noise
reduction in these devices. One might expect that even
more important quieting should result in micromasers,
due to their microscopic nature, and the stepwise atom-
by-atom excitation of the field. If this is true, one would
be able, by regularizing the incoming atomic flux, to get
even narrower field distributions in these devices.

In the present paper we analyze the role of pumping
statistics in one- and two-photon micromasers, and show
that it is indeed possible to further reduce the variance of
the field generated by these devices. In fact, due to their
highly nonlinear nature, a reduction of the pumping noise
may sometimes produce an increase of the photon-
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number uncertainty, which results from the appearance
of multiple peaks of comparable magnitude in the
photon-number distribution, as the pumping statistics is
changed.

Other discussions presented so far in the literature on
the micromaser case [7,9] have been based on a
pumping-statistics-dependent master equation [7]. This
approach makes a continuous approximation of the step-
wise excitation mechanism, and requires therefore that
the number of atoms and photons involved is sufficiently
high (it could be termed in this sense a mesoscopic ap-
proach). Although this is certainly justified for usual
(macroscopic) lasers and masers, this is not necessarily
true for micromasers, where one deals frequently with a
few atoms and photons.

This fact has prompted us to make a comparison be-
tween the microscopic atom-by-atom numerical solution
and the mesoscopic master equation approach, thus
checking its validity in this case [10]. We show that large
discrepancies may indeed occur even if we allow a veloci-
ty dispersion in the atomic beam. They are more impor-
tant precisely in the regions where the system is more
sensitive to pumping statistics.

We start our work with a detailed analysis, in Sec. II,
of the approximations involved in the derivation of the
pumping-statistics-dependent master equation, as done
by Bergou et al. [7], and extend this treatment to two-
photon degenerate lasers and masers. In Sec. III we
present the microscopic model for micromasers with
Poissonian or regular pumping, obtaining recursion rela-
tions for the populations in both cases. In Sec. IV we dis-
cuss the numerical results, obtained from the stepwise
microscopic approach, and check the validity of the cor-
responding calculations based on the master equation. In
Sec. V we summarize our conclusions. '

II. THE MASTER EQUATION APPROACH

Lasers and masers may be modeled [11] by a flux of
atoms being injected into a cavity resonant with a transi-
tion a —b between two atomic levels. The atoms start in-
teracting with the cavity in the excited state |a ), the dis-
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tribution of injection times defining the pumping statis-
tics.

We assume that the cavity damping time is much
larger than the interaction time between each atom and
the cavity, which allows one to neglect the losses when
considering any individual atomic evolution. The cumu-
lative effect of the losses is then added a posteriori,
through the usual reservoir terms in the master equation
[11]. Although frequently adopted in laser theory, the
separate treatment of the losses is not generally justifiable
for micromasers. This point will be further examined at
the end of this section.

Let us consider then an atom arriving at the cavity at -

time #;. The change in the reduced field density operator
p> due to the passage of the ith atom, may be written as

P(ti+1)=MP(ti) s (2-1)

where M is a superoperator which depends on the atom-
field dynamics and on the initial condltlons for each
atom.

We will be interested mainly in the populations,
Ty =pyy, in the Fock (photon-number) representation.
From Eq. (2.1), and considering that the atom arrives in
the cavity in the excited state, we get [3,4] (we adopt the
convention that 7, =0 whenever N <0)

TN+ ) =1 =By oy () +Bymy - £1;) (2.2)

where {=1 (2) for the one-photon (two-photon degen-
erate) micromaser, while

By +1=sin’Q, VN +1t;, (2.3)
for the one-photon micromaser, and
AN +F2)N+1) . ,2N+3)Q2
By 2= ~Line (2.4)
(2N +3)? 2A

for the two-photon degenerate micromaser. In Eq. (2.4),
Q,. is the one-photon Rabi frequency for the transition
between the initial excited state |a ) and an intermediate
state |c¢ ) nearly halfway between the initial and the final
states, with a detuning A with respect to that halfway
point. The «cavity is tuned to a frequency
o=(E,—E_)/#, and A is chosen so as to enhance the
two-photon transition probability, while at the same time
keeping mnegligible the resonant omne-photon cascade
la)—lc)—|b). We have assumed for simplicity that
|Q,. =10, where Q, is the one-photon Rabi frequen-
cy between states |c ) and |6 ). This condition is actually
verified, with very good approximation, in the experi-
ments made so far [2].

Bergou et al. [7] have shown that, if for the sake of
concreteness one imagines ‘a regular flux of atoms going
at a rate R through an excitation region, right before
entering the cavity, and if p is the probability that each
atom be excited in that region from the atomic ground
state to the lasing excited state |a ), then the total change
in the field reduced density operator, from an arbitrary
time ¢ =0 to a final time ¢, is

p(t)=[1+p(M —1)1%(0), (2.5)
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where the excited atoms are supposed to contribute in-
dependently (no cooperative effects). As the parameter p
varies from 1 to 0, one goes continuously from the regu-
lar pumping (p =1) case to the Poissonian pumping re-
gime (p —0; R — oo; ¥ =pR finite).

If the number of injected atoms K =Rt is large enough
so that it may be treated as a continuous variable, we
may write, as in Ref. [7], for the coarse-grained derivative
of p(1):

bLp 7 _
A pln[l-i—p(M 1]p(e), (2.6)
where
" RAt>>1, 2.7)

so that several atoms cross the cavity during At, and
r =Rp is the average rate of excited atoms entering the
cavity. This approximation is valid as long as

RAt|In[1+p(M —1)]] <1, (2.8)

which is the condition for p(¢) not to change much dur-
ing the time interval A¢. Since (2.7) must also hold, we
see therefore that Eq. (2.8) is valid onmnly for
|p (M —1)| << 1 and we may thus expand Eq. (2.6) as

éﬂzpzr[(M—1)-—%p(M—1)2]p(t) . (2.9)
As shown in Ref. [7], higher-order terms in this expan-
sion do not contribute to the diffusion coefficient.

——Losses are added to the rate equation in the usual way

[11]:

Lp=-—- (NT+1)(2apa —a ap—pa fa)

20

+—2—Q—NT(2a pa—aa p —paa fy,
where a'(a) is the creation (annihilation) operator for a
photon with frequency w, Q is the quality factor of the
cavity, and Ny is the mean photon number for a cavity in
equilibrium at temperature 7. From now on we set
N;=0 for simplicity. Using Egs. (2.2), (2.9), and (2.10),
we get the population rate equation for the micromaser:

(2.10)

7'rN=r( _BN+§1TN+BN7TN—§)
+121"_[ "B%H—;"TN’HE%V +BNBN+£)TN —¢

_BNBN—gﬂ'N—zg]

[(N+1)7TN+1_N7TN] 5 (2.11)

cav

where £=1 (2), t.,, =Q /w, and the gain coefficients By , ¢
are given by Eq. (2.3) [Eq. (2.4)] for the one- (two-) pho-
ton maser. For p —0,

TN =t =By emy tTByTN -¢)

[(N+1)7TN+1—N7TN] > (2.12)

cav

which is the Scully-Lamb equation [10,11] for Poissonian
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pumping.

Starting from Eq. (2.11), we can derive, as done in Ref.
[7], the rate equations for the mean photon number and
variance:

(M) =¢r{ay)—p(N) ,

(3)=2rLayAN) +rE ey —pBy s Bysas)
cav {2+ cav N
where AN =N — (N} and
P)=By+¢ 1+§(BN+§_BN+2§) (2.14)
The steady-state solution is
(N)=¢(Ngay)
<2>=i£<N>+gNex<AaNAN) (2.15)

p €x

EX By +Br+ag) »

where Aay=ay—{ay ) and Nex Pt eay-

We proceed now to an approximate evaluation of the
steady-state mean photon number and variance, follow-
ing the procedure of Ref. [7]. If the population distribu-
tion has a peak at some value N we may expand

83N+g

BN+§=BZV+§+_-_67V_— N'(N _N) s
a8 ' (2.16)
BN+2§=6N+C+ a;’v—'_g _(N ‘i"g—ﬁ) .

The derivatives of the gain coefficients 8 will be propor-
tional to Gmtm/ N N for the one-photon micromaser
and to @y, /N, for the two-photon micromaser, where
0. and @y, are scaled time variables defined by

eint = VNex ‘Qab tint ’

) 2.17)

‘pint=2Nex Aac Lint +
Therefore, up to first order in 6,,,/1 NN (for the one-

photon micromaser) and in ¢, /N,, (for the two-photon
micromaser) we have

(N) =§Nexa7v"(0) ’

. 2 (2.18)
(N
(2)——~— —£<N J ,
1 BN+§ 2 Nex
where
B
By e=ENex afj\}*é . (2.19)

For {=1, Eq. (2.18) reduces to the expression found in
Ref. [7], while for £=2 we get a result similar to the one
found in Ref. [9]. In terms of the normalized mean pho-
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ton number n =(N)/({N,,) and the normalized vari-
ance 0 =(X)/{N ), we have then, for the regular (sub-
script R) and Poissonian (subscript P) pumping cases:

np =np =aN(0) s

Rl S

UR= s (2.20)
BN+§ 2 2
_ 1 ,1+§
O'P"—T_—:_ 7
Bﬁ+g

Therefore, in this approximation, the mean photon num-
ber does not depend on the pumping statistics, wh11e for
the variances we have

OR

p e (2.21)

The largest noise reduction will occur if ng =1 and there-
fore it is limited to £ () for one- (two-) photon masers.

The above expressmns should be modified when ap-
plied to a laser, in order to take into account the finite
atomic lifetime in this case. The gain coefficients should
then be averaged over the probability that the atoms have
not spontaneously decayed from the lasing levels. As-
suming that both levels have the same lifetime, and that
the laser is well above threshold, so that the atomic life-
time is small compared to the average Rabi frequency, all
gain coefficients B will be averaged to 1. In this situation,
we have

—_ =1 .
RrR=Hp=~5

op=1; o05p=0.75 (for the one-photon laser) ; (2.22)

o0p=1.5; oz=1 (for the two-photon-laser) .

It is interesting to remark that for the two-photon micro-
maser there are values of the interaction time such that
the gain coefficient is practically constant, independent of
the photon number N. Thus for ¢,,,=2N,, 1 the Rabi an-
gle is always an integer multiple of 7 and the atoms leave
the cavity with the highest probability (almost one for
N >1) of being deexcited (a “opaque cavity”), the gain
coefficient being in this case

4N +2)N+1)
(2N +3)

which is indeed =1 for large N (already for N =1 it is
equal to 2¢). This means that the value of (N ) builds up
in this case to a value close to 2N, (n=1), its highest
possible value (each atom leaving then two photons in the
cavity). The corresponding values of oy and o may be
easily calculated from Eq. (2.15):

By +¢= : (2.23)

np=np=1,

UP=1.5 s UR=O.5 5

(2.24)

yielding a noise reduction factor oz /o p,=1/3, the max-
imum possible reduction allowed by the approximate for-
mula (2.21).

Another peculiar result is obtained when ¢, , is an odd
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multiple of N 7. In this case the gain coefficient be-
comes also practically independent of N, and equal to %
of the value it has in the case of a “opaque cavity”’: the
atom has then a probability ~1 of leaving the cavity in
its lowest state. In this sxtuatlon the cavity becomes
“semiopaque” or “semitransparent” to the atoms and we
obtain the same results for n and o as for the laser [Eq.
(2.22)].

One should be careful however when applying the ap-
proximations (2.6) and (2.16) to a micromaser, specially
in situations when the number of photons is very small.
A similar remark applies to the separate treatment of the
gain and loss terms. One expects, however that, if N, is
large enough and if randomness is introduced in the in-
teraction time through a velocity dispersion, the granular
character of the system should not play an important
role, and Eq. (2.6) should be approximately valid. In fact,
as N>>1 and the velocity distribution gets wider, one
should recover the results for a laser well above the oscil-
lation threshold, since the gain coefficients also average
to + in this case.

It is easy to verify explicitly that the limiting results
(2.22) hold in this case. The velocity dispersion can be
taken into consideration by averaging the gain
coefficients with respect to the interaction-time distribu-
tion [3,4]. For a Gaussian distribution of interaction
times (which corresponds to a Gaussian velocity distribu-
tion if the variance Av <<7), analytlcal results are easily
obtained:

—2462 (N+1)/N,,
By+1= F{l—e e

Xcos[28,,,V (N +1)/N. 1} (225

for the one-photon micromaser and

_ 1
Nex

LN + 1By g1~ (N H1—EBy_(Jmys1-¢} -

If N >>1 we may expand Eq. (2.28) in powers of 1/N. If
the initial state of the field is the vacuum, values of N
much larger than N, will never contribute to the above
expression, and it is then easy to show that the right-hand
side of Eq. (2.28) is at most of the order of 6,,/N
(@int/Ney) in the one-photon (two-photon) micromaser
case. So long as these quantities remain small, condition
(ii), and consequently also condition (i), are satisfied, and

the independent treatment of gain and losses is then

justified.

If randomness is introduced in the interaction time, as
a velocity dispersion, for example, the gain coefficients 3
approach the value 1 as the velocity spread increases (the
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By, ,= 2N DN +1)
N2 ON+3)
— 2 2
X {1— 2892 [(2N +3)/(4N )]
Xcos[@(2N +3)/(2N )]} (2.26)

for the two-photon micromaser.

In Egs. (2.25) and (2.26) A, and Ag;, stand for the
variances of 0, and ¢,,,, respectively. If these two quan-
tities become much larger than one, it is easy to see that
the corresponding gain coefficients will have a value =1,
and we get then the same results for ny, np, oz, and op
as obtained for the laser [Eq. (2.22)].

We turn now to a detailed consideration of the approx-
imation involved in the separate treatment of the gain
and loss terms. This would be justifiable under two con-
ditions: (i) this separation should be possible for the in-
teraction of each individual atom with the cavity field,
that is, during the interaction time t,; (ii) when consider-
ing the field density operator, after the passage of K
atoms,

e M M(r)pl0)
2.27)

p(t)=eLAtK_1M(‘r)eLAtK_2M('r) o

where At; is the time interval between atoms (i +1) and
i, one should be able to commute the exponential factors

~ through the operators M (7).

~Condition (i) should hold only if the commutator of
Lt;,, with M is negligible. On the other hand, condition
(ii) requires that the commutator or Lz, with M be negli-
gible (considering ¢,, as a typical value of A¢;). This last
condition is more siringent than the first one, since
i <ty for micromasers.
“ We show now that, for a sufficiently large atomic flux,

" these commutators may indeed be neglected. As L and

M couple only populations among themselves, we can re-
strict ourselves to the diagonal elements of the commuta-
tor,

{(N+1)By—e=By+1-)Tn 41— EBN—¢TN—¢

(2.28)

[

same will be true for the laser highly above threshold). In
this case, even for small values of N, the corresponding
commutator will be of the order of 1/N,,, so it may be
safely neglected for N, >>1. The same result holds for
the “opaque” and “semiopaque” cases discussed in Sec.
II for the two-photon micromaser, since the gain
coefficients are also independent of N in those situations.
As mentioned above, in order to fulfill just condition
(i), milder requirements are necessary, since the relevant
commutator in this case, [#;,,L,M]p, is obtained by mul-
tiplying the above one [Eq. (2.28)] by the factor t;,, /¢,
which is always smaller than one in micromasers. This
will be the situation in the microscopic approach,



44 ROLE OF PUMPING STATISTICS IN MICROMASERS

presented in the next section, where the independence be-
tween gain and losses will be assumed only. during the in-
teraction of each atom with the cavity field.

II1. THE MICROSCOPIC APPROACH

The master equation (2.6) should be valid as long as
|p(M —1)| << 1. For the Poissonian case this -condition
is trivially satisfied, while for regular pumping (p =1) it
means that the change of the field due to the passage of a
single atom is small. This may be not the case in micro-
masers, where the field intensity may be very weak.
Furthermore, in this case the approximations used in Sec.
II for getting the values of {N') and (2 ) may not be val-
id anymore, since they are based on the hypothesis that
the steady state is described by a peaked distribution cor-
responding to a large average photon number. In this
sense, we may say that we have developed in Sec. II a
mesoscopic treatment. :

We turn now to a different approach, truly microscop-
ic, which may be applied to study the statistics of the
field for micromasers in very weak field situations, down
. to zero photons inside the cavity. Our aim is to analyze
the behavior of both the average photon number and the
variance as the pumping statistics is changed from regu-
lar to Poissonian. In this process, we will be able to as-
sess the validity of the mesoscopic treatment.

Taking into consideration the losses, the change in the
reduced density operator for the field due to the passage
of the ith atom is given by [3,4]

plt; o )=e"YMp(1,) (3.1)

where At;=t; ,;—t; and L is given by Eq. (2.10).

In writing Eq. (3.1) we assume that the damping time
teay =0/ of the radiation in the cavity is much larger
than the interaction time t;,, of each atom with the cavity
field, and treat again the dissipation process as indepen-
dent of the field-atom interaction (according to the dis-
cussion at the end of Sec. II, the precise condition for this
to be possible is less strict in the microscopic treatment
than in the mesoscopic one, specially if ¢;,, <<t,.). Other-
wise, the present approach differs from the one presented
in the previous section by the fact that we do not make
any continuous approximation. Instead, we calculate
directly from Eq. (3.1), thus finding in a stepwise way the
field populations at any instant of time.

Starting from Eq. (3.1), we derive now expressions for
the steady-state populations for both the Poissonian and
the regular pumping case.

A. Poissonian pumping

If the injected atoms are excited according to a Pois-
sonian statistics, with an average rate r, the distribution
of time intervals A¢; between successive atoms is given by
rexp(—rAt;). The statistical average of Eq. (3.1) over
this distribution yields the change in the mean field densi-
ty operator [3,4],

pltw)=(1—L/r)"Mpls,) , (3.2)

from which we get the following relation for the photon
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populations:

TN ) =0 By 4 () +Bymy —¢(t;)
1

+
NCX

(N + Dy (8 )= Naylt; 1],

(3.3)

where N, =rt,, and we have suppressed the overbar to
simplify the notation.

The set of Egs. (3.3) allows the calculation of the time
evolution of the populations step by step. In the limit of
large r (small average time intervals between two con-
secutive atoms), Eqgs. (2.12) and (3.3) are equivalent. For
the steady state we have

+1
ﬁN_l..éﬂTN_‘ NN—' (3.4)

ex

_ N
7TN+1*BN7TN—g__N Ty -
. ex

For the one-photon micromaser these relations yield
directly an explicit expression for the N-photon popula-
tion [3]: .

NY¥ w-p
Ty ==y ng B; . (3.5)

One may notice from this expression that if for some
N =N, we have BNo =0 (which corresponds to an integer

number of turns of the atomic Bloch vector, as the atom
crosses the cavity), then all higher-N populations will
vanish. One says then that N =N, corresponds to a trap-
ping state [12]. In the limit of negligible damping
(Q— ), the photon population will concentrate on
these values of N, giving rise to Fock states. For zero
damping, these solutions are however only marginally
stable (stable from the left and unstable from the right),
each trapping state attracting all the population between
itself and its nearest left neighbor. For finite damping,
trapping states leave still their signature, being
transformed into the extrema of the population distribu-
tion. For very low damping, and as the interaction time
between the atom and the cavity field is modified (by
changing, for instance, the atomic speed), that distribu-
tion may display very sharp peaks (reminiscent of the
zero-dissipation Fock states),sometimes associated with
very low populations. In this case, the average number of
photons decreases abruptly, so the corresponding curve
as a function of ¢, displays sharp holes, at precisely the
same points where the variance becomes very small [12].

For the two-photon micromaser ({=2), we may use
directly the recursion relation (3.4) to get numerically the
steady-state population. Explicit expressions in terms of
continued fractions may also be found [13]. A detailed
discussion of the dynamical effects of trapping states for
one- and two-photon micromasers has been presented in
Ref.[14].

B. Regular pumping

To find the population change in the case that the in-
coming atoms arrive in the cavity at a regular rate
r=1/t,, we first diagonalize the superoperator L. The
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action of L on a density operator in the photon-number

representation is given by

[talplyy+1=LDNp(Dy ,

where we used the convention that repeated indices are
summed, p([)y =py y+; and

LI =(1/N VN (N +D8Y ., —(N+1/2)8¥7.
3.7

(3.6)

For each I we can find the right, |vy ), and left, (w;|,

eigenvectors of the operator .L(I), belonging to the eigen-

values ' .
Ae=—(k+1/2)/N,, . (3.8)

The components of these eigenvectors in the photon-
number basis are given by

‘ 172
k! i
— 1V <
(Nlv )= . (k —N)! [N!(N-H)!] » N=k
0, N>k,
" (3.9)
ik 1 NUN +I) S
(v =1 e —mn T » N2k
0, N<k .

The right and left eigenvectors defined above have been
normalized so that {wy |v,.) =8, and satisfy the closure
relation.

Using Egs. (3.7)-(3.9), we can easily find the change in
population after the passage of one atom:

1TN(l'+t )_ _SNEO—]%'&(I S)jrj+N(t),

(3.10
where

Ty=(1=By )Ty +Bymy—¢ , (3.11)

and 8=1/N,,. The steady-state populations satisfy Eq.
(3.10) with the left-hand side replaced by 7 (independent
of #). The resulting expression is quite different in form
from the one obtained for Poissonian pumping. In fact, it
couples the (N —&) population to all higher-N popula-
tions. In order to use this expression for numerical calcu-

lations, in the case of one-photon micromasers, we set

7y, =0 for some sufficiently large Ny, and calculate the
lower-N populations starting from an arbitrary value for

TNy—15 which is later found out by means of the normali-

zation condition. This approach is actually quite natural
for one-photon micromasers, when a trapping state is
found for some N =N, since the populations then vanish
for N > N,. These trapping states correspond, also in the
regular-pumping case, to the zeros of the gain function
By. Indeed, one sees from (3.10) and (3.11) that the popu-
lations 7y, N > Ny—&, get decoupled from the lower-N
populations, if By =0. o

For the two-photon micromaser, this approach does
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not work since after setting 1TN0=0 one would need to
specify the values of both TNy —1 and TN,—2 in order to

be able to calculate all lower-N populations.

We adopted therefore an alternative method for finding
numerically the steady state in this case: we used the
dynamical relation (3.10) to calculate the time evolution

~of the populations, starting from the vacuum state, and

checking for the attainment of the asymptotic values.
This procedure was applied also to the one-photon micro-
maser, and compared to the calculation based on the
steady-state equation, thus allowing us to check that both
methods lead to the same results in this case.

IV. NUMERICAL RESULTS

We present now the results of the numerical calcula-
tions based on the formalism developed in Sec. III, and
compare them to those obtained from the p-dependent
‘master equation (2.11). Our results will be presented as
functions of the reduced interaction times, 8;, for the
one-photon micromaser and ¢;,, for the two-photon mi-
cromaser, as defined in Sec. II, Eq. (2.17). We expect that
large differences between the behavior of masers and mi-
cromasers should appear for small values of N, and for
interaction times such that the field statistics may be
dominated by a low-N trapping state [12,14] (or,
equivalently, by a low-N peak in the photon-number dis-
tribution), so that N is much smaller than the greatest
possible value of the mean photon number, given by {N,,
(each atom releases then { photons in the cavity).

According to the discussion in the previous section, for
low dissipation this will happen whenever the atomic
Bloch vector makes an integer number g of turns as the
atom crosses the cavity:

VN 1 =1q (4.1)
VNCX
for the one-photon micromaser and
2N +3
Pint™ gar 4N =mq . 4.2)

for the two-photon micromaser, with N, of the order of
one. These equations allow therefore an easy estimate of
the approximate positions of the maxima of the photon-
number distribution (for zero dissipation, they allow the
precise determination of the trapping states).

_.We first present the results for the one- and two-
photon micromasers within the formalism of Sec. IIL
Next we compare these results with those obtained from

the master equation (2.11).

A. One-photon micromaser

In Fig. 1 we display the results for the steady-state nor-
malized mean photon number n =(N ) /N,, for regular
(ng) and Poissonian (np) pumping, in the case that
N.,=49 and for a monokinetic beam. This particular
choice of N, was made in order to render immediate the
(approximate) identification of the photon-number distri-



IR

1.0 T

Np—Ng

-0.4 +
0.0 20 40 6.0

T T T T T

8.0 ®int/7T

FIG. 1. One-photon micromaser. Normalized mean photon
number ny for regular injection and the difference np—ny be-
tween the normalized photon numbers for regular and Poissoni-
an statistics at steady state, as functions of the reduced interac-
tion time 6;,. N, =49 and Av=0.0 (monokinetic atomic
beam).

bution peaks [cf. Eq. (4.1)].

The singular behavior of the field as a function of the
interaction time is quite apparent. Both ny and np suffer
abrupt changes around values of the interaction time for
which new dominating peaks show up in the photon-
number distribution. Furthermore, when these peaks
occur for low values of N (N <<N,, ), the difference be-
tween ny and np becomes very large. Except for a small
region around the oscillation threshold, ny is usually
larger than np. Large differences occur throughout the
whole studied interval of 8;,,, as can be seen in Fig. 1.
This variation in the average photon number is associated
with the p dependence of the gain coefficient, explicitly
displayed in Eq. (2.14), and which cannot be neglected in
this case, due to the low values of N.

We expect that these differences should disappear
when we introduce randomness in the system. In Fig. 2
we show the same variables in the case that the beam has
a Gaussian velocity distribution with a variance Av equal
to 10% of the mean velocity 5. We see that the large
differences between np and np, do not disappear near
0;nt=2m, where they correspond to about L of np, while
for most other values of 0, the difference becomes very
small, in agreement with Eq. (2.20).

In Fig. 3 we display, for a monokinetic beam, the
steady-state value of the normalized variance o =3 /{N)
for regular pumping, o 3, and the ratio of the steady-state
normalized variances for regular and Poissonian pumping
(ogr /op). We notice again an extremely singular behav-
ior. The quick alternance between sub-Poissonian and
super-Poissonian statistics is a consequence of the fact
that the field is successively dominated by only one or
more population peaks. Figure 3(b) makes it clear that
regularization of the pumping may result not only in
large noise reduction (as much as ~85%), much beyond

ROLE OF PUMPING STATISTICS IN MICROMASERS

7791

1.0 T T T — T r

Np—Ng 1

—-0.4 T T T T T T v
0.0 2.0 - 4.0 6.0 8.0 ®'Lnt/7T

FIG. 2. One-photon micromaser. Same as Fig. 1 for a veloci-
ty dispersion Av =0.17.

that predicted by the mesoscopic treatment [Eq. (2.21)],
but also in noise amplification. This happens because the
very shape of the distribution is affected by the pumping
statistics: the relative heights of the population peaks de-
pend on the statistical parameter p, so that, for some in-
teraction times, setting p =1 (regular pumping) results in
the reduction of the dominance of one of those peaks and
the consequent increase in the field variance.

The behavior displayed in Fig. 3 is however not very
realistic, since it corresponds to a monokinetic beam. In
Fig. 4 we display the same variables for a Gaussian veloc-
ity distribution with a 10% velocity spread (Av/7=0.1),
which corresponds approximately to a Gaussian distribu-
tion of interaction times with the same spread. We see
that for small interaction times (8,,,/7 <5) the normal-
ized variances oz and op are still very singular, with a
general behavior quite different from the one predicted by
Eq. (2.20). As before, either noise reduction or
amplification may be obtained in this region of 8,,, as one
goes from Poissonian to regular pumping. Maximum
noise reduction is obtained for 6,,~27, where
ogr/0p=~1/4. For large interaction times (8, /7> 6),
the variances behave as predicted in Sec. II for a laser
well above threshold [Eq. (2.22)], since for large 9, the
gain coefficient B approaches 1 [cf. Eq. (2.25)]: we get
then the usual Poissonian result for Poissonian pumping,
and a noise reduction of 25% for regular pumping.

From these results we see that the regularization of the
pumping preserves the singular behavior of the average
photon number, which was studied in Ref. [12] for a
Poissonian pumping.

B. Two-photon micromaser

As opposed to the one-photon device, the two-photon
degenerate micromaser displays a remarkable symmetry
with respect to the interaction time: the gain coefficients
By +¢ are periodic functions of the normalized interaction
time @;,, with period 47N . Furthermore, they are sym-
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metric with respect to 27N,,. The scaled variables » and

o will therefore exhibit the same symmetries, and this is

clearly displayed in Figs. 5 and 6 (our calculations for
the two-photon micromaser have been made for
N, =15).

In Fig. 5 we display the steady-state results for np and
np. From Eq. (2.20), we expect np ~np. This is not true
in general as we can see in Fig. 5(b). As we increase the
interaction time and therefore ¢, the average photon
number for regular pumping, np, starts to build up before
the average photon number for Poissonian pumping, #p.
This means that the oscillation threshold is lowered as
the pumping is regularized. This effect is related to the
first-order phase transition behavior of the two-photon
micromaser: at threshold, the population distribution has
two peaks of equal heights, one of them at N =0. The ex-
act value of @, for which this sitwation is attained is
however sensitive to the pumping statistics. For the one-
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FIG. 3. One-photon micromaser. Steady-state normalized
photon-number variances o (regular statistics) and op (Pois-
sonian statistics) as functions of the reduced interaction time
Oi: (@) og; (D) og /Op. N =49 and Av=0.0.
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photon micromaser, a second-order phase transition anal-
ogy holds for the oscillation threshold, and the gradual
increase of the average photon number as one goes above
threshold turns out to be much less sensitive to the statis-
tics of the pumping. The behavior of nz and np close to
threshold for the two-photon micromaser is clearly
shown in the inset of Fig. 5(b): the threshold value of @;,,
for regular pumping is in this case about 20% below the
value corresponding to Poissonian pumping. This may
be probably the easiest experimental check of our model.
The sharp decrease of the average number of photons
at @y, =207, 40w, and 607, shown in Fig. 5(a), is associat-
ed with the dominance of a population peak around
N =0, corresponding to the periodic attainment of the
bellow-threshold situation. The sharp depressions at
@int =287 and 327 are associated with the dominance of
population peaks around N =6 (the population distribu-
tion for these values of @;,, was studied in Ref. [14]). The
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0.4 1
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0.0 2.0 4.0 6.0

T =
8O 0/

FIG. 4. One-photon micromaser. Same as Fig. 3 for a veloci-
ty dispersion Av =0. 17.
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sharp peak at ¢;,,=(27N,)=307 corresponds to the
“opacity” of the cavity [14] discussed in Sec. II: each
atom delivers then practically all of its energy to the cavi-
ty. We have in this case n =~ 1 as predicted.

The “semiopaque” case discussed in Sec. II is also
displayed in Fig. 5. For @;,=157 or 457 (odd multiples
of N,), the atom has a probability of ~ 1 of leaving the
cavity in its lowest state, and n ~%. The overall tendency
of the average photon number to increase as the pumping
is regularized is also quite clear in this case: even after
the threshold for Poissonian pumping, ngz may become
up to 50% larger than np. '

In Fig. 6 we display the results for o3 and oz /op. As
in the one-photon case, Eq. (2.20) does not describe
correctly the variance in regions where low-N population

TR
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FIG. 5. Two-photon micromaser. Steady-state normalized
mean photon numbers ny (regular statistics) and np (Poissonian
statistics) as functions of the reduced interaction time @;,: (a)
ng; (b) np—ng. In the inset we show the behavior of ny and np
near the oscillation threshold. N, =15and Av=0.0.
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peaks dominate. In these cases, as the pumping statistics
is changed from Poissonian to regular, a noise reduction
much larger than that predicted by Eq. (2.21) may occur.
Noise reduction is specially effective for a “opaque cavi-
ty” (@ =30m), where 0, /o p=1/3, as predicted by Eq.
(2.24), and for the operating points ¢;,,=~287 and 32,
which have been already singled out in the above discus-
sion. For these two points, we get a large noise reduc-
tion, with o g /o p=0.24. Very large noise reduction also
occurs near the semiclassical threshold, as can be seen in
the inset of Fig. 6(b), where oy /0 p reaches a low value
of =0.11 at @;,,~0.59, and at the corresponding symme-
trical region near ¢,,,=4wN,. This large noise reduction
is related to the dependence of the threshold on the
pumping statistics, as discussed Dbefore. Noise
amplification also occurs for the two-photon micromaser,

O-R T T T T T T T T T
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16.0
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0.0 JL J\‘
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FIG. 6. Two-photon micromaser. Steady-state normalized
photon-number variances o (regular statistics) and op (Pois-
sonian statistics) as functions of the reduced interaction time
@it (@) og; (b) g /0p. In the inset we show the behavior near
the oscillation threshold, N,, =15 and Av=0,0,



7794

as shown in Fig. 6, and it is due, as in the one-photon mi-
cromaser case, to the p dependence of the relative heights
of the population peaks.

We consider now that the atomic beam has a Gaussian
velocity distribution, with a 10% spread as before. The
results for » and o are displayed in Figs. 7 and 8,
differing appreciably from the approximate expression
(2.20) only in the region where ¢@,,, is small. We notice
that it is still true that ny starts to build up before np.
Very large noise reduction occurs as before near the semi-
classical threshold, reaching the vaiue o /0 p=0.09 at
@ine=0.63. For @, > 1.57, maximum noise reduction is
obtained for ¢y~ 3.5, where o /0 p~0.56. For larger
values of @, we get o /0p~2/3 and n =1, as predict-
ed by Eq. (2.22).

C. Comparison with the p expansion

As expected, the master equation (2.11) is not able to
reproduce the results obtained from the microscopic
equations of Sec. III, specially if the atomic beam is
monokinetic and low-N population peaks become impor-
tant. We have compared the results obtained numerically
from the p expansion [Eq. (2.11)] with those discussed be-
fore (corresponding to the microscopic approach), both
for the one-photon and the two-photon micromaser. For
a monokinetic beam we found that the disagreement is
very large in the whole region of 6, (¢;,), specially in
regions where low-N population peaks dominate. The
discrepancy between the two approaches remains impor-
tant even when a velocity dispersion of the order of 10%
is allowed.

In Figs. 9 and 10 we show, for velocity dispersions of
0.5% (Av/9=0.005) and 10% (Av/5=0.10), the rela-
tive differences R, and R, between the results for the
mean photon number and the normalized variance, re-

1.0 ——————— T T

0.0 T T T T T

00 20 40 60 80 @n/T

FIG. 7. Two-photon micromaser. Steady-state normalized
mean photon numbers ny (regular statistics) and np (Poissonian
statistics) as functions of the reduced interaction time @j.
N, =15and Av=0.17.
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spectively, as obtained from the microscopic approach
and from the first-order p expansion, normalized to the
microscopic results. Discrepancies are larger for small
average interaction times, since in this case the absolute
dispersion in interaction times is also small (for a given
percentual dispersion). For the same reason, the results
are quite independent of the percentual dispersion, in the
region of small interaction times.

For the one-photon micromaser, as it is shown in Fig.
9(a) [Fig. 10(a)], the discrepancies are very large for a ve-
locity dispersion of 0.5% and may reach values that are

" larger than 40% (300%) for the mean photon number

(normalized variance). For a dispersion of 10%, R, and
R, become much smaller, but R, may still reach values
as a large as 22%.

For the two-photon micromaser [Figs. 9(b) and 10(b)],
the discrepancies in the region of small interaction times
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FIG. 8. Two-photon micromaser. Steady-state normalized
variances o'p (regular statistics) and o p (Poissonian statistics) as
functions of the reduced interaction time Pt (@) og; ()
or/0p. Nx=15and Av=0.17.
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are still very large for both velocity dispersions, reaching
values larger than 30% (200%) in the mean photon num-
ber (normalized variance). These high values occur in a
region around the oscillation threshold [displayed as an
inset in Figs. 9(b) and 10(b)] where the photon distribu-
tion is characterized by two peaks of about equal heights
and therefore a large variance. This implies a large sensi-
tivity to approximations, since at threshold a small
change in the relative heights of the two peaks implies a
large change in the variance. Furthermore, just below
threshold the average photon number is very small, thus
invalidating the use of the first-order p expansion.

Out of this region, the values of R, are not so large,
but R, still reach values larger than 50% (25%) for a ve-
locity dispersion of 0.5% (10%). One might think that
the large values of R, for @, small is a reflection of the
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FIG. 9. Regular pumping. Relative difference R,
=(N,, —]V,,)/JT/',,, between the steady-state mean photon num-
bers calculated using the microscopic approach (N,,) and the
first-order p expansion of the master equation (N,), as a func-
tion of the reduced, interaction time, for Av =0.0057 (solid line)
and for Av=0.107 (dashed line): (a) one-photon micromaser
(N..=49); (b) two-photon micromaser (N, =15)—the inset

displays the region around the oscillation threshold.
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"large values of R,,. This is not the case: we have checked

this possibility by calculating the discrepancies in the
variances (not normalized to the photon number) and
found them to be also extremely large.

One should also remark that the master equation
(2.11), based on an expansion in powers of the statistical
parameter p, is not well suited to treat the initial evolu-
tion of the micromaser for a regular injection of atoms,
since convergence of the expansion in this case is assured
only for large photon numbers [4], while very small pho-
ton numbers are involved in the beginning of the process.

V. CONCLUSIONS

We have presented a microscopic model to discuss the
photon statistics of the one- and two-photon micromaser
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FIG. 10. Regular pumping. Relative  difference

R,=(0,—0,)/0, between the steady-state normalized vari-
ances calculated from the first-order p expansion of the master
equation (o, ) and the microscopic approach (o, ), as a function
of the reduced interaction time, for Av=0.0057 (solid line) and
for Av=0.0050 (dashed line): (a) one-photon micromaser
(Nx=49); (b) two-photon micromaser (N,,=15)—the inset
displays the region around the oscillation threshold.



7796

with regular atomic injection, and have shown that the
variance of the field may be substantially decreased, with
respect to the Poissonian case, much more than for mac-
roscopic lasers and masers. This means that the highly
singular behavior of micromasers at low temperatures,
reminiscent of the zero-dissipation trapping states [12,14]
is greatly enhanced when the excited atomic beam is in-
jected in a regular way. Even though this effect is much
more important for monokinetic beams, large noise
reduction may still occur even in the presence of a veloci-
ty spread of about 10%. Another important result con-
cerns the behavior of the average photon number near
the semiclassical threshold, for the two-photon micro-
maser: regularization of the pumping leads to lower
values of the oscillation threshold.
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QOur results make also clear that care must be taken
when applying a master equation approach to the
regular-pumped micromaser. For monokinetic beams,
and in situations where small photon numbers are in-
volved, the microscopic method leads to field variances
which are quite different from those obtained via the
master equation treatment. Even for a velocity spread of
10%, the discrepancy between the two approaches may
attain very large values.
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