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We realize an experimental implementation of one step of a quantum random walk at the single-photon
level. After a single step, it is already possible to observe the difference between the quantum and classical
random walk. The single photon is obtained using twin photons from parametric down-conversion, in which
the detection of one photon of the idler prepares a single-photon state of the signal. We used two different
experimental setups, one based on an interferometer and a second using a birefringent crystal. The physical
process behind these effects is the spatial reshaping of the single-photon wave packet, which is the spatial
analog of the time reshaping observed in tunneling experiments.
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I. INTRODUCTION

In the simplest case of a classical random walk, a coin is
tossed and, depending on the outcome, a walker makes one
step to the left or to the right, each with 50% probability.
After one iteration, the walker is �� away from the initial
position. This simple model has been proven to be very use-
ful in the description of many physical processes. The quan-
tum version of the random walk has been introduced by Aha-
ronov, Davidovich, and Zagury �1�, and the subject has been
investigated by several authors �2–5�. Quantum random
walks have been proposed as efficient subroutines for
quantum-computing algorithms �2�. A quantum random walk
works in much the same way as the classical case, with the
difference characterized by the possibility of quantum inter-
ference between the probability amplitudes for the walker to
make a step to the right and to the left. Because of interfer-
ence, the displacement of a quantum walker can be very
different from the classical case.

According to Ref. �1�, the walker could be a quantum
particle like an atom or a photon, and the coin might be an
internal degree of freedom like the electronic spin or the
photon polarization. Let us associate the position distribution
of the walker with the photon configuration-space wave
packet, and the coin with the polarization of the photon. In a
step of the quantum walk algorithm, the photon undergoes
some interaction depending on the polarization. For instance,
in a birefringent crystal the photon wave packet is displaced
�due to spatial walk-off� depending on its polarization state.
If coherence is preserved, the total photon state evolves to an
entangled state in which the configuration-space photon
wave packet is entangled with polarization. An interesting
consequence of this entanglement is that projection onto cer-
tain polarization states may cause the center of the photon
wave packet to be strongly displaced �6�. This displacement
can be much larger than the classical step �1�. Large dis-
placements of the field amplitude distribution can also be
obtained with classical waves, and this was indeed demon-
strated experimentally with a laser �7�. In this context, the
possibility of using classical-optics systems to simulate

quantum walks �4,5,8� and other results of quantum compu-
tation has been extensively discussed in the literature �9–16�.

The physical process behind the difference between clas-
sical and quantum versions of the random walk is the reshap-
ing of the photon wave packet. This is the spatial analog of
the time reshaping that occurs in tunneling experiments
�17,18�, which investigate the tunneling of a single-photon
wave packet through a one-dimensional photonic band-gap
material. The results show a temporal displacement of the
peak of the photon wave packet, as though it had traveled
with a speed larger than c, the speed of light in vacuum. This
effect was clearly explained in terms of the reshaping of the
photon wave packet by interference. In the context of quan-
tum mechanics, the reshaping involves the concept of weak
measurement �19�, also demonstrated with classical optics
�7�. The relationship between photon tunneling and weak
measurements was pointed out by Steinberg �17�.

In this work we present an implementation of a one-step
quantum walk at the single-photon level and observe the
reshaping of the single-photon wave packet, which leads to
an average displacement that can be much larger than the
single classical step. In Sec. II we quickly review the theory.
Detection of the idler photon in a twin-photon down-
conversion process leads to the preparation of a one-photon
state for the signal beam. This photon goes through either a
Sagnac interferometer �Sec. III� or through a birefringent
crystal �Sec. IV�. Detection of the signal-photon polarization
�the coin� in a convenient state leads to the reshaping of the
photon wave packet and the large displacement of its center.
We also point out, in Sec. V, the close connection between
the reshaping of the photon wave packet in time and spatial
domains. Finally we present our conclusions in Sec. VI.

II. THEORETICAL BACKGROUND

As mentioned before, the position distribution of the
walker is associated with a single-photon configuration-
space wave packet ��x ,y ,z�= �x ,y ,z ���, and the coin states
�V� and �H� to the vertical and horizontal transverse linear
polarizations states, respectively.

Let us assume that the photon is initially prepared in the
state ���= ����coin� where �coin�=cV�V�+cH�H�. Without loss
of generality, cV and cH are taken to be real and positive.*phsr@if.ufrj.br
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After one step �� in the x direction, the quantum-walk al-
gorithm transforms the initial state into an entangled state:

��� → cV��−��V� + cH��+��H� , �1�

where �x ,y ,z ����=��x�� ,y ,z�. The “flip of the coin” is
implemented by projecting this state onto some polarization
basis. For the linear polarization directions � and �+� /2, the
final wave packet of the walker is, respectively, and up to a
normalization factor,

cH��x + �,y,z� + cV�tan ����x − �,y,z� �2�

or

cH�tan ����x + �,y,z� − cV��x − �,y,z� . �3�

For an appropriate choice of �, the position distribution of
the walker and its average may be quite different from what
we would expect classically. For example, if � is much less
than the width of the initial wave packet, and the result of the
coin flipping is sin ��H�−cos ��V�, a displacement

�x = −
cV + cH tan �

cV − cH tan �
� �4�

of the wave packet may occur with negligible deformation
�1�, as long as ��x� is much smaller than the width of the
initial wave packet. As pointed out in �1�, by choosing
tan �= �1+��cV /cH, we obtain �x�−2� /� if ����1. There-
fore it is possible to have ��x�	�. The probability of mea-
suring the polarization at this angle � depends on the initial
state and decreases with �.

III. EXPERIMENTAL REALIZATION
WITH A SAGNAC INTERFEROMETER

The experimental setup is sketched in Fig. 1. A diode laser
oscillating at 405 nm pumps a 5 mm thick lithium iodate
nonlinear crystal. Type I spontaneous parametric down con-
version �SPDC� produces vertically polarized signal and
idler twin beams. The idler beam is sent through a 0.5 mm
diameter pinhole and a 10 nm bandwidth interference filter
centered around 810 nm, and is then detected. The signal

beam propagates through the half-wave plate HWP1 and is
prepared in the initial state

��� = ����
�V� + ��H�� . �5�

The amplitudes 
 and �, taken as real, satisfy 
2+�2=1.
The signal photon goes through a Sagnac-like interferom-

eter, which implements the coin tossing based on polariza-
tion. This interferometer is quite versatile and has been used
to implement quantum channels in the investigation of the
dynamics of entanglement �20�. The H component is trans-
mitted through the input polarizing beam splitter �PBS�, per-
forming a round trip inside the interferometer in the counter-
clockwise direction. The V component is reflected and
performs a round trip in the opposite direction. Glass plates
G1 and G2 are inserted in the paths of V and H modes,
respectively, so that the optical path difference is kept bal-
anced within the coherence length of the signal photon. By
tilting one of these plates, it is possible to adjust the phase
difference. To implement the polarization-dependent dis-
placement of the photon path in the x direction, the H and V
polarization paths inside the interferometer should not coin-
cide. However, they are close enough to assure a high stabil-
ity of the interferometer. Modes H and V are coherently re-
combined at the output beam splitter. For each arm of the
interferometer, we define z as the propagation direction, x as
the corresponding transverse direction on the plane of the
interferometer, and y as the direction orthogonal to this plane
�which corresponds to y=0�. The alignment of the interfer-
ometer assures that H and V modes are recombined at the
output with a small relative displacement. This implements
one step of a polarization-dependent single-photon walk:

��x,0,z��
�V� + ��H�� → 
��x − �,0,z��V�

+ ���x + �,0,z��H� , �6�

where 2� is the net separation between the centers of H and
V wave packets in the direction x and is small in comparison
to the transverse width of ��x ,0 ,z�= �x ,0 ,z ���, which is
Gaussian in our experiment.

Detection of the transverse position of the signal photon is
performed, after projection onto some linear polarization,
implemented with the half-wave plate HWP2 and the polar-
izing beam splitter �PBS�. Depending on this projection, dif-
ferent displacements of the center of the wave packet are
possible. Projection onto H polarization results in a shift −�,
while projection onto V polarization results in a shift �, just
like in the classical random walk. More interesting outcomes
are obtained when the final state is projected onto a linear-
polarization state corresponding to an angle � in between H
and V. Then the probability that the photon is detected in the
position �x ,0 ,z� is given by

P��x,0,z� = N �
 sin ���x − �,0,z� + �� cos ���x + �,0,z��2�,
�7�

where N is a normalization factor. Notice that this projection
results in interference between the wave packets associated
with the H and V components of the state given in Eq. �7�.

In our experiments, the quantum-correlated signal and
idler beams are generated by an intense Gaussian pump

FIG. 1. �Color online� Sketch of the experiment with a Sagnac
interferometer. NLC is nonlinear crystal, HWP1 and HWP2 are
half-wave plates, G1 and G2 are glass plates, PBS is a polarizing
beam splitter and IF means interference filter. There are detection
apertures before detectors DET1 and DET2.
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beam; but the signal and idler beams, taken independently,
do not propagate as Gaussian beams. However, as we per-
form coincidence detections in which the idler detector with
a small pinhole acts as a trigger while the signal is scanned,
the coincidence rate follows the pump beam Gaussian profile
�22�. Therefore ��x ,0 ,z� in Eq. �7� is given by

��x,z� =
A0

��z�
exp	 − x2

�2�z�
exp	− ikz − ik
x2

2R�z�
+ i�z�
 ,

�8�

where A0 is a real normalization constant, ��z� is the beam
width at propagation plane z, R�z� is the radius of curvature
of the wave front, and �z� is the Gouy phase �24�. Using Eq.
�8� in Eq. �7�, we obtain

P��x,z� = N� A0

��z��
2
2 sin2 � exp	− 2

�x − l�2

�V
2�z� 


+ �2 cos2 � exp	− 2
�x + l�2

�H
2 �z� 


+ 2 cos�kTx + ��
 sin � exp	−
�x − l�2

�V
2�z� 


�� cos � exp	−
�x + l�2

�H
2 �z� 
� , �9�

where kT=2kl /R�z� and � is the phase due to the optical path
difference between H and V components. In principle �V�z�
=�H�z�, however, in practice we have observed small differ-
ences between them, probably due to slightly different
propagations of the H and V modes.

As it is seen in Eq. �9�, the wave-front curvature is very
important in the process because it gives rise to a phase
modulation. We will use Eq. �9� to fit the interference curves.

Figure 2 shows the measured coincidence count rates

when the signal detector is scanned along the transverse x
direction. Projections onto polarizations H�0°�, V�90°�, �
=40°, and �=50° are shown. All curves are initially fitted
with Gaussians in order to determine the position of their
peaks and the widths for H and V curves. From the Gaussian
fits we obtain a classical step ��0.04 mm and displace-
ments �x�50°��0.7 mm and �x�40°��0.4 mm, corre-
sponding to displacements of about 18�� and 10��, re-
spectively. The direction of the displacement is determined
by which one of the Gaussians dominates the interference. It
is possible to control the displacement by adjusting the ex-
perimental parameters, so that 
 sin �= �1+��� cos �, where
� is real and ����1. The spatial phase modulation due to the
wave-front curvature also influences the displacement, when
the spatial frequency kT is not small enough.

Finally, the curves were fitted with Eq. �9�, using the am-
plitudes, peak position and widths of the H and V Gaussian
fitted curves, and leaving kT and � as free parameters. The
results were kT�0.5 mm−1 and ��3.4 rad for the adjusted
polarization angle of �=40° and kT�0.5 mm−1 and �
�2.9 rad for the adjusted polarization angle of �=50°. The
�=40° and �=50° curves are results of the interference be-
tween two propagating Gaussian wave packets. There is
some disagreement between measurements and the fittings
for these curves, in the region above 5.5 mm. This is prob-
ably due to background noise and in any case does not in-
validate our conclusions.

IV. EXPERIMENTAL REALIZATION
WITH BIREFRINGENT CRYSTALS

Figure 3 shows the experimental setup for the implemen-
tation of quantum random walk using a birefringent crystal.
A He-Cd laser, oscillating at 442 nm, pumps a 5 mm long
lithium iodate crystal. The pump laser is horizontally polar-
ized and a type I SPDC interaction �23� takes place in the
nonlinear crystal, so that vertically polarized photons are
produced. The idler photon is sent directly to detection in a
single-photon counting module �SPCM�, through a broad-
band infrared filter. The detection wavelength is centered
around 884 nm. The signal photon propagates through a half-
wave plate �HWP�, so that the coefficients 
 and � of its
polarization state can be controlled, before it is sent to a 10
mm long lithium iodate birefringent crystal. The crystal is
tilted, and because H and V polarizations experience differ-
ent refractive indices, the refraction angles are different for
each polarization. Therefore after the first crystal there is a
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FIG. 2. �Color online� Experimental results for the interferom-
eter setup. Black squares correspond to projection onto V��=90°�,
blue up triangles to H��=0°�, red down triangles to �=40°, and
green circles to �=50°. Solid lines are fittings to Gaussians for H
and V and to Eq. �9� for �=40° and �=50°. Error bars are obtained
considering a Poissonian counting statistics. For the �=40° and �
=50° curves, the error bars are smaller than the symbol.

FIG. 3. �Color online� Sketch of the experiment with birefrin-
gent crystals. NLC means nonlinear crystal, HWP stands for half-
wave-plate, PBS is a polarizing beam splitter, and F is a broadband
infrared filter.
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vertical shift and the propagation path followed by mode H
is slightly higher than V. In practice, care must be taken in
order to preserve the coherence between H and V compo-
nents. Propagation through the birefringent crystal also sepa-
rates the wave packets in the longitudinal direction, making
them temporally distinguishable. We compensate this separa-
tion using a second crystal of the same length and its optical
axis rotated 90° with respect to the first one. In this way it is
possible to compensate the longitudinal separation preserv-
ing the transverse separation between H and V components.
After propagation through the second crystal, the photon is
sent to a polarization analyzer and detector. A SPCM detec-
tor is used, with a 10 nm bandwidth interference filter, cen-
tered around 884 nm.

Figure 4 shows the measured coincidence count rates
when the signal detector is scanned along the vertical direc-
tion. Projections onto polarizations H��=0°�, V��=90°�, and
�=39° are shown. The projections are implemented with
HWP2 and PBS. All experimental curves are initially fitted
with Gaussian functions. The separation between the peaks
of the distributions for H and V is 2��0.01 mm, while the
peak of distribution obtained for �=39° is displaced by �x
�0.7 mm from the mean position between H and V. The
interference curve is then fitted with Eq. �9�, using the am-
plitudes, peak position, and widths of the H and V Gaussian
fitted curves, and leaving kT and � as free parameters. The
results were kT�0.45 mm−1 and ��3.4 rad for the ad-
justed polarization angle of �=39°. The results are in good
agreement with the measurements.

In this case it is worth noting that this remarkable relative
displacement of about 140 times the classical step size would
not be observable without the spatial phase modulation due
to the wave-front curvature. The increase in the coincidence
count rate in the region of the peak of the reshaped wave
packet is due to this modulation. In other words, if the same
experiment were realized using a wave front with kT→0, the
probabillity of detecting a photon with such a large displace-

ment would be extremely small. Similar effects have recently
been observed in the context of weak measurements �21�. If
it is convenient, the wave-front curvature can be controlled
through the pump beam, in the case of our setup with twin
photons �22�.

V. ANALOGY WITH RESHAPING IN TIME

Displacements larger than the step size are a consequence
of the interference process, which reshapes the single-photon
wave packet in an analogous fashion as in photon tunneling
experiments �17,18�. In order to demonstrate this, let us con-
sider the propagation of a photon wave packet through a
Fabry-Perot interferometer in the time domain, as sketched
in Fig. 5. Suppose that the input and output mirrors have the
same amplitude transmission t and reflection r coefficients.
The output field has a contribution that comes from the trans-
mitted component of the wave packet given by t2E��� and
contributions coming from one round trip, corresponding to
internal reflection and subsequent transmission given by
t2r2ei�E��1�, where � is the phase and �1 is the time delay
accumulated after one roundtrip, and so on. Therefore the
output field is given by ET= t2�E���+r2ei�E��+�1�
+r4e2i�E��+2�1�+¯�.

The resulting interference is illustrated in Fig. 6. The
larger Gaussian corresponds to the direct transmission com-
ponent of the wave packet. Its peak gives the time reference
which is the same as if the wave packet would have propa-
gated without the cavity. The smaller Gaussian is the result
of the interference between the transmission components,
calculated keeping terms up to r34. Time is in arbitrary units
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FIG. 4. �Color online� Experimental results for measurements
with a birefringent crystal. Squares correspond to coincidences for
projections onto H��=0°�, triangles correspond to V��=90°�, and
circles correspond to 39°. Solid lines correspond to fittings to Gaus-
sians for H and V curves and to Eq. �9� for �=39°. Error bars are
obtained considering a Poissonian counting statistics. For the �
=39° curve, the error bars are smaller than the symbol.

FIG. 5. Propagation through a Fabry-Perot interferometer.
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FIG. 6. Temporal reshaping of the wave packet in a Fabry-Perot
interferometer. The solid line corresponds to the amplitude of the
directly transmitted wave packet and the dashed line corresponds to
the wave packet reshaped by interference.
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�a.u.�. It is seen that for r=0.99, t=0.14, and �=�, the trans-
mitted field is a Gaussian displaced 3.47 a.u. toward the fu-
ture, given that the input wave packet has a width of 20 a.u.
The reshaping of the wave packet produces, in this case, the
counterintuitive effect of displacement to the future. While
for this system the displacement results from interference
between many wave packets, in the spatial case the same
effect results from interference between only two wave pack-
ets and thus leads to a simple understanding of the underly-
ing physical process. In addition, it is very easy to measure
the corresponding spatial displacement, while in the time do-
main a Hong-Ou-Mandel interferometer �25� is required for
high-precision measurement of temporal displacements of
single photons.

VI. CONCLUSIONS

One step of a quantum random walk is implemented at the
single-photon level. The walker is associated with the photon

transverse spatial distribution, while the coin is represented
by the polarization. Even after only one step, it is possible to
observe the difference between the classical and the quantum
walk. Projection onto certain polarization states results in a
large interference of the two spatial components of the pho-
ton state. As a consequence, the “walker” makes a step much
larger than the classical step. It is possible to extend the walk
to a larger number of iterations. Our experiment may be
considered as the spatial analog of photon tunneling in the
time domain. However, here the reshaping of the photon
wave packet results in a spatial rather than a temporal dis-
placement.
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