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Reconstruction of the state of the radiation field in a cavity through measurements
of the outgoing field
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We establish the relation between the Wigner function of a field emerging from a cavity, determined through
pulsed homodyne tomography, and the phase-space distribution of the original field in the cavity. We show that
the reconstructed Wigner function of the outgoing field is equivalent to generalized phase-space distributions
of the initial cavity field, the original Wigner distribution being obtained when there is perfect mode matching
between the outgoing field and the homodyning pulse.
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[. INTRODUCTION the orthogonal quadrature, ,;». However, it cannot be in-
terpreted as a true probability distribution in phase space:
The characterization of radiation has evolved in receneven though it is real and bounded, it may assume negative
years from the measurement of variances, spectra, andlues. This is not the case, however, for the distributions
photon-number populations to the determination of the fullmeasured so far by the technique of quantum tomography:
quantum state of the field, as described either by the densitjie Wigner functions of coherent and squeezed states are
matrix in the photon-number basis, or by phase-space distrRositive-definite, and therefore these fields can be understood

butions. These distributions allow the calculation of quantun®S classical fluctuating quantities. _ ,
averages of functions of field operators in a classical-like ©On the other hand, recent experiments in cavity quantum
way, as if the operators werenumbers. Different distribu- electrodynamics have led to the realization of states of fields

tions are obtained, depending on the operator orderin C?V't'esl.kWh'CE cor{espond t(')t' negap;/e-vall;led VYlgtnfr
adopted for defining the quantum-classical correspondenc ggr:(r)gjilnl eer-ice)lt-?i:(eens; utggFf?? '1'%”;”3 Fv(\)l(c)kcgta?églzl]s ates
[1]. Of special interest is the Wigner distributig2], which, g ' :

as shown by Moyal3], corr nds to a svmmetrical order- No interpretation in terms of classical fluctuating fields is
as sho y Vioyala], corresponds fo a symme possible in this case. The measurement of the Wigner func-
ing of the field annihilation and creation operators. Indeed

h | of th hod of cal h d tion of these states would then be a quite stringent test of the
the proposal of the method of optical homodyne measureg,antum nature of an electromagnetic field. Procedures for

ment by Yuen and Chaf¥] and Abbaset al. [5] led to the  heasuring the Wigner function of a field in a cavity by de-
measurement of the probability distribution of field quadra-tecting the internal state of atoms which cross the cavity and
tures of propagating radiatidi], from which it is possible, jnteract with the field have been presented by many authors
as shown by Vogel and Riskef7,8], to reconstruct the [16-1§. As opposed to the optical homodyne method, ap-
Wigner function of the field. The homodyning technique cor-propriate for running waves, these proposals do not require
responds to combining, in a beam splitter, the field to behe calculation of integral transforms, and yield in a more
measured with an essentially classical fi€ltbcal oscilla-  direct way the quantum state of the field. Recently, following
tor” ), which could be eventually a pul$6,9], and detecting the proposal in Refl17], the Wigner function for a single-
the difference in photon counting between two detectorphoton field was measured at the origin of phase sph@e
placed at the two outgoing ports of the beam splitter. Thidts value is negative, thus exhibiting the nonclassical nature
difference is proportional to a generalized quadrature of thef this state.

field along a direction in phase space determined by the rela- Measurements of quantum states of cavity fields must be
tive phase between the local oscillator and the field to benade in a time short compared with the decoherence time,
measured. The reconstruction is made by applying, to thevhich in the case of Schdinger-cat-like states is of the
probability distributions of generalized quadratures of theorder of the cavity dissipation time divided by the distance
field for several directions in phase space, an integral trangsetween the two states in phase spaoeghly of the order
form introduced by RadofL0], which is the basis of medical of the average number of photons in the stafes the field
tomography. This quantum reconstruction technique, knowieaks into the environment, the quantum characteristics of
as quantum tomography, has been successfully demonstratétk state are washed out. While it is still possible to recon-
in recent experiments,11], which resulted in the mapping struct the original state of the field in the cavity after it has
of the Wigner functions of coherent states, squeezed statestarted to decal20], the requirements on the precision of the
as well as incoherent superpositions of coherent states, sueteasurement increase as dissipation has more time to act on
as phase-diffused, amplitude-diffused, and chaotic ligB].  the state. On the other hand, since coherence is leaked into
The Wigner distribution can be thought as a joint distributionthe environment, it should be possible to reconstruct the state
for the field quadratures: when integrated with respect to onef the field in the cavity by measurements made on the out-
of the quadratures,, it yields the probability distribution of going field. In order to understand this process, it is useful to
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consider a simple model in which the losses correspond to Il. THE MODEL

the leaking of the intracavity field through a partially trans-

mitting mirror. A special case, in which the environment was We consider a one-dimensional optical cavity of size
replaced by a single harmonic oscillat@nother cavity, located in the regio—L,0] and such that, for fields in a
coupled to the first one through a wavegujdeas consid- certain range of frequencies one of its mirrors, locates at
ered in Ref[21]. In this paper we consider a continuum of =—L, is ideal (perfecy with reflectivity r,=1, while the
field modes coupled to the cavity mode, and discuss the dedther, located at=0, is almost perfect, having a reflectivity
termination of the Wigner function of the field inside the r2=1. In the limit where both mirrors are perfeet,=r,
cavity through homodyne measurements made on the outgo=1. the normal modes of the cavity and of the external
ing field. Of course, in a real experiment, the dissipation ofworld are independent. _

the intracavity field cannot be attributed solely to the trans- For @ perfect cavity;=r,=1) we may define a set of

mission of the field to the space outside the cavity. FurtherdiScrete numerable modes inside the cavity and an indepen-
more, diffraction losses, by far the most important Iossdem set of continuous outside modes that are independent.

mechanism, result in a wide distribution of very few outgo—xvf dconhsmrier:[ fﬁ; Sc'inl;pl'c'tyi’nalOW'?/'mﬁn;'gnfl 21 dOdﬁ:’ IW'th
ing photons, which are therefore very difficult to detect, and €lds characterized by a single wave number and singie po
larization, and propagating outside the cavity along a single

the process cannot be mimicked by a partially transmittin%irection. As a matter of fact, for the internal modes, the

mirror. A 5|mp_le model h_elps, however, to answer SOmM&,ave number just characterizes the mode under consider-
questions of principle, motivated by the two different possi-

ation, which does not have to be one dimensional. On the

bilities of measuring the quantum state of a field: eitheryhar hand, one should note that, for the external modes, the

through homodyning, for running fields, or through atomic 5ne_gimensional model can actually be justified in terms of
measurements, as proposed for cavity fields. How preciselye paraxial approximation, so long as the beam propagates
can we determine the initial state inside the cavity by meaprimarily in one direction and has a bandwidth much less
suring the Wigner function of the traveling pulse? How doesthan its central frequendg]: the transverse contributions are
this distribution relate to the one corresponding to the field integrated over the detector surface.
inside the cavity? What is the best choice for the homodyn- The internal modes are associated with discrete field an-
ing field? What happens when another choice is made? Catihilation and creation operatofa;} and{a{} satisfying the
the complete quantum state of the field inside the cavityyommutation relatiorf ,al]:(sjk, while the annihilation
always be recovered, independently of the form of the hoand creation operators associated with the external modes
modyning pulse? form a continuous set labeled by the corresponding frequen-
In order to answer these questions, we relate in this papaies ( and obeying the commutation relations
the Wigner function of the outgoing field, obtained through[b(Q),b"(Q")]=8(Q—Q’). The independence of the field
quantum tomography via pulsed homodyne detection, wittmodes implies thafa, b(Q)]=[a,,b"(Q)]=0. The field
the Wigner distribution of the intracavity field. The spirit of operators inside and outside the cavity should obey the
this work is the same as the one of the seminal paper bproper boundary conditions and in the limit of a perfect cav-
Collet and Gardinef22], which related the time and normal- ity they are given, in the Schdinger picture, by
ordered correlation functions of the outgoing field with the
analogous functions for the intracavity field, thus allowing
one to express the measured outside spectrum in terms of ho; o
correlation functions of cavity-mode operators. The model EcalX) =2 Te (@tapsin(wx/c), ()
adopted here is actually closely related to the one in that ! 0
reference. In this work, however, we establish the relation
between the full quantum state of the field inside the cavity
and the information gathered on the outside field through the Eext(x):J /ﬂ[b(ﬂﬂ—bT(Q)]sin(Qx/c)dQ, )
homodyning technique. e
In the model here considered, the radiation field is de-
scribed by two kinds of field operators, corresponding re-
spectively to the intracavity mode under consideration andvherew;=jwc/L, j=1 ..., andc is the velocity of light.
the continuum of modes outside the cavity. The cavity mode We assume that the cavity finesse is high enough, al-
is coupled to the external modes through a phenomenologthough finite(so that the mode width is much smaller than
cal linear interaction. The model is described in detail in Secthe mode separatignand that the initial field is in one of the
Il. The evolution of the field inside and outside the cavity isinternal modes, with frequenay.,,. The finite transmissiv-
determined in Sec. IlIl. In Sec. IV we show that a homodyneity of the mirror couples the modes inside and outside the
detection of the outgoing field yields generalized distribu-cavity, allowing the creation of a photon outside through the
tions for the initial field inside the cavity. Furthermore, for a annihilation of one photon inside the cavity anide versa
proper choice of the homodyning field, the measured distriThe weakness of the coupling implies that the modes of the
bution may coincide exactly with the initial state of the field internal and external fields are still represented approxi-
in the cavity. Two examples are discussed in Sec. V, and oumately by Egs(1) and (2). The corresponding Hamiltonian
conclusions are summarized in Sec. VI. is given by
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; ; . - GO
H=%hwa'at | AQb'(Q)b(Q)dO F(s)/2+|5(s)=f dQ————.
0 s+iQ)
+J' #G(Q)[a'hb(Q)+ab’(Q)]dQ, (3) We assume thaG({1) is a broad function of, centered

aroundw.,,- In this cased(s) andI'(s) should be approxi-
mately independent of. For example, taking5({}) as a

where the first two terms represent the free-field Hamilto ;
é_orentman,

nians for the internal and external fields, and the last on
describes the interaction mediated by the mirror. The form A2
factor G(£1), taken to be real for simplicity, may be thought G)=g—~ 5,
of as representing the frequency-dependent mirror transmis- (Q=wea) " A
sion function.
As a matter of fact, when the mirror is not perfect, the two
regions cannot be considered as independent anymore, and
the field modes should be defined for the whole space, taking T(s)/2+i8(s)=—
into consideration the boundary conditions associated with
the cavity mirror[23]. However, for highQ cavities, such
that the mode linewidth is much smaller than the intermodeAssuming thal™ and & are constants and small compared to
distance, it is a good approximation to define interacting in- gnq weay, TESpectively, the largest contributions fé)(rs)
ternz_al and external modes, and to neglect the change in the, e from a pole close t6=i(we) —I'/2, resulting, con-
spatial dependence of these modes. , sistently, in['~27g® and §<w.,,. These conditions corre-
We proceed to calculate now, from E), the time evo-  g,qnq 1o the Markov approximation. The quantilyis a
lution of the field operators. small frequency shift that renormalizes the frequemgy, to
wp= weat 6 andI’ corresponds to the decay constant of the
Ill. EVOLUTION OF THE FIELD OPERATORS field inside the cavity, as we will show below. Taking the

In the Heisenberg picture, the time evolution of the fieldinverse Laplace transform af(s) we obtain
operatorsa(t) and b(€},t) is described by the differential

and extending the integration fromo to o, we have

TNG? 2N —i(wea—iS)
2 [wcav_i()\"_s)]z.

(10

equations a(t)=f(t)a0+f g(Q,t)by(Q)dQ, (11)
da(t) .
T:_|wcava(t)_|f G(Q)b(Q,1)dQ, (4) where
db(Q,t) _ f(t)=e 'eot= (112, (12
Y Li0b(Q,) —iG(Q)a(t), (5)
dt and
with the initial conditionsa(0)=a, and b({2,0)=by(Q2). (e 1wot=T/2t_ g-i0t)
Taking the Laplace transform of these equations we get g(Q,1)=G(Q) - (13
wo—Q—iT/2
sa(s)—ag= —iwca\ﬁ(s)—if dQG(Q)b(Q,s), (6) For the inverse Laplace transformof(},s) we obtain
sB(Q,5) —by(Q)=—iQb(Q,s)-iG(Q)a(s), (7) b(Q,t):g(Q,t)a0+f h(Q,Q H)by(Q)dQ’, (14)
wherea(s) andb((,s) are the Laplace transforms eft) where
andb((,t). From Egs.6) and(7) we have
~ ag i h(Q,Q',t)=e " 5(Q-Q")+G(Q)G(Q')
)= T2 ((weyt 8)  STTI2+ H(@eayt 0) 1 Y
X .
bo(2) (Q'—Q)| (0= Q—iT/2)
XJ' dQG(Q)m, (8) o
e
and (wo— Q' —iT/2)
B bo(Q)  G(Q)-~ o iwgt—iT/2t
b(Q,8)= ra i a9, (9) + .
(Q— wo+iT/2)(Q — we+iT/2)
where (15
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An immediate application for these time-evolved opera-
tors is the calculation of time-dependent normally ordered D1

correlation functions for both internal and external operators.
We recover then the relation established22]. In order to
compare our results with those of R¢R2], we define an
outgoing operatob,«(t), given by

E ext
bou(t) \Ff b(Q,1)dQ (16) H o .6 >
=i\/— , .
out m A D2
Assuming that the initial state is a product of an arbitrary E
state inside the cavity and the vacuum outside it, one gets i

from Eqgs.(11), (14), and(16),

FIG. 1. Homodyne scheme. The intracavity field leaks through

t t
(Poyi(ts) - - Poutn)Pout(tn+1) - - - Poutltns+m)) the semitransparent mirror and is mixed with the local oscillator
~ field at the beam splitter. The signals detectedatandD2 are
—_1(m+n)/2 T ...at
r (Tla'(ty)---al(ty)] subtracted.

XT[a(tn+l)' : 'a(tn+m)]>y (17) . . . .
This equation shows that the time evolution of the character-

distic function inside the cavity is equivalent to a change of
scale on its parameters. Therefore, the time evolution of any
éwrmal—ordered product is given by

whereT, T are time-ordering and antiordering operators, re
spectively. This relation is exactly the one found22], as it

should be since the model so far is very similar to the on
developed there. However, as we have already stressed, we

will be interested in calculating more than just normally or- <aTman>t:f*(t)mf(t)n<aTman>0

dered correlation functions. Our goal is to relate the Wigner — giwo(m=nitg=T(m+muz gtmgny (21)
function of the inside field with measurements done on the

outside field.

. . For the external modes, a more careful procedure is
More generally, Eqs(11) and (14) yield the dynamics of needed, since they are defined over a continuum. We turn

any field observable of the internal and external fields, relatfherefore t0 an operationally defined phase-space distribu-
ing its value att>0 to the corresponding initial value ( P y P P

=0). In particular, they can be used to calculate, at any timélon’ obtained through tomographic methods from homodyne

t, the characteristic functions for the internal and extema[neasurements of the outgoing field.

fields[24].
The normal-ordered characteristic function for the internallV. THE WIGNER FUNCTION FOR THE FIELD OUTSIDE
field is given by THE CAVITY

We derive in this section the phase-space distribution ob-
tained from homodyne measurements on the external field.
. ) ] . In doing so, one should take into account that any measure-
wherep is the density operator of the field. The functi@f ~ ment deals not with a single frequency but with some fre-
contains all information about the field inside the cavity andquency band, defined both by the detectors and the field hit-
provides mean values of cavity operators in the normal ordefing them. We assume that the field which leaves the cavity,
by simple derivatives ovex and\*. o _ resulting from the decay of the internal field, is homodyned

The Wigner function for the internal field is obtained by with an intense, classical pulse. The two fields are combined
Fourier transforming the symmetric characteristic functionjn 3 peam splitter as shown in Fig. 1 and the two resulting
CCa"()\,)\*)=C§a"()\,)\*)e“”2’2 [1], signals coming from the beam splitter, and detected by de-

tectorsD, andD, are subtracted. The result is proportional
cav N d2n 5 0k ~cay . to a quadrature of the quantum field. We consider here bal-
W, %) = f 79” THCEINAT). (19 anced homodyning (50% transmission of the beam splitter
photon flux-sensitive detectors that do not distinguish the

If the initial field is totally concentrated inside the cavity, Photon energy, and a dc detection where the signals on the
that is the total density operator is initially given py= p;, detector are integrated for a time long enough for the entire
® Pexts With pex=|0)(0| being the vacuum state for all ex- PUlSe to be detecte(d].

ternal modes, we obtain, using EdJ) in Eq. (18), _ Thebexternal field operator in the Heisenberg picture is
given by

CSYN Y =tr{perafe "2y (18)

C’(i‘aV()\’)\* ,t) :tr[pe)\f*(t)aoTe—)\*f(t)ao] hQ
ZCCNaV[)\f*(t),A*f(t),O]. (20) EexI(X,t):J V?Oc[b(ﬂ,t)'f-bT(Q,t)]Sln(QX/C)dQ,
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while the pulse field of the local oscillator is taken as VO~ Jw, (this amounts to replacing the intensity by the
. B photon flux[9,25]). We get then
EL(Xlt) = EL (X,t) + EL (X,t),
i(e=2)
where E;" (x,t) is the positive-frequency part of the local Fcav:ﬂ (28)
field, VAAZ+ (y+T)?
. and
Ef(x,t)zf E(w)e ¥, (22)
i
andE| (x,t)=E; (x,t)*. &,(w) is analytic in the upper half 2w At 2 (y=1)
plane so thaE;" (x,t) is zero fort—x/c<0. We also assume Fed M) ==\ 7 m'zcav' (29)
that&,(w) has a peak, with widthy, at a frequencyn close
t0 w.ay, When its phase ig. For example, we may take it as whereA=w —wq and{=tan *(y+T)/2A.
having a Lorentzian spectrum At this point it is important to note that the measured
_ , quadrature does not correspond to a single-frequency mode,
1 iEqe™'? but to the operatoB,+B, which is a collective operator

Ew)= (23

2 (0= )+iyl2 involving modes with different frequencies. The direction of
. the quadrature depends on the relative phase between the
In this case we have local oscillator and the field which left the cavity, and the
e (t—x/c)— i Wigner function determined by the tomographic procedure is
+ _ To| (t—=x/c)—(yl2)t—i¢ _
Bl (x,7)=Eqe ™" o(t—xic). the one associated with the collective opera®esB, and
Let | be the path length of both pulses to the detectorsB' =B;- In our model this Wigner function is given by the

The signal measured in each detector is proportional to afourier transform of the characteristic function,
integral of the total normal-ordered intensity(l,t) INETS \BT 2*B
=:[E(I,1) + Eoill,)|? overT, the time window of the de- CZANY) =e M r{per® e B (30
tector, assumed to be much larger thah Bhd 1f. The
difference in the integrated intensities in detectbrs and
D, is proportional to an average quadratig+ B!, defined P0= Peav.d® Pext o (31)
by ' '

If the initial density matrix operatgp, is a direct product

we have

;
— - iQllc
Bw_zj0 E, (o,r)drf dQ\Qb(Q,r)ee, (24 CoANS ) —e N ar L AFeatle N Fiu)

whereZ is chosen as a real and positive normalization con- Xtr{pext’(ﬁ)‘-’.Fext(Q,)bT(Qrvo)dQ’
stant such thafB,,B]]=1. Notice that in Eq.(24) there
appearse'®!¢, which corresponds to the part &,,, that

contributes to the detected fluxes. Substituting the value of ) o . .
b(Q,t) given by Eq.(14) into Eq. (24) we have Furthermore, if the initial field is totally concentrated in

the cavity, so that the initial state of the external field is the
. . ) vacuum, the trace over the external modes yields the identity,
By,=Fcafot j Foxd(2)b(Q",00dQ ¢y, (25 leaving us with the very simple formula

Xe~ x*szxt(Q’)b(Q’,O)dQ’}.

where CEXt(}\:)\*):9(7‘}\IZIZ)(lichan)Ccav()\Fcavv)\* F:avlo)i
. (32
Fca\,=Zf”cthf(|,t)f dQVOf*(Q,t)sinQl/c), which relates the symmetric characteristic functions corre-
(26) sponding to the external field and the initial field in the cav-
ity.
and The Wigner function determined by the tomographic pro-
cedure described above is given by the Fourier transform of
T Eq. (32
Fexm'):zf th,f(I,t)J d0JOh* (0,07 1) a.(32
I/c
X sin(Ql/c) (27 Wed 71 ”*):f eI el

2

[ i d-n
We takeT much larger than the inverse of the widths of both X CNF oy N*FE,0) =, (33

pulses, so that all their energy is absorbed by the detectors,
which allows us to safely extend the time integration from
zero to infinity in Eqs.(26) and (27). We also approximate which may also be written as
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* PN the sense of having maximum sensitivity to the quantum
Wex( 7, 7*) = f el(7"/Feadd = 1(7/F ca)"] characteristics of the state, is thi#h,,J = 1. This result has a
simple physical interpretation: the best way to determine the
outgoing field by homodyne detection is to probe it with a
2’ (34) local oscillator field that reproduces exactly its mode shape,
thus matching precisely the weights given to each frequency
involved in the spread of the information contained in the
initial state. This behavior should be expected on the basis of
1 the analysis of Ref.9], where it was shown that the relevant
-—. (35 part of the field in pulsed quantum tomography was the one
|Fead® mode-matched to the mode defined by the local oscillator.

. i ) One should remark, however, that our aim here is quite dif-
Cahill and Glaubef1] defined a generalized phase-spacetgrent from the one in Refd], where the authors were in-

2

% es(\z\zlz)ccaV(Z’ 7* )
7T|Fca

where

s=1

representation terested in analyzing the information which could be ob-
42z tained on a running field by using pulsed tomography. Here,

W a, a*, S):f ea* zfaZ*eS(IZ\Z/Z)C(Z,Z*)_, (36)  One is interested, along the lines of REZ2], in relating the
™ information obtained on the field outside the cavity with the

labeled b . deri hich phase-space distribution of the internal field. That is why it
abeled by a continuous ordering paramelgvhich can as- y,q actually necessary to solve the dynamical problem in
sume any value in the complex plane. In the special casegg. .

wheres=—1,0,1, we recover the Husin@ function, the It would seem from the above relations that full informa-
Wigner function, and the Glaubé? function, respectively. jon on the internal field is obtained even if the local oscil-

Knowledge of any of these representations over the phasgyr nyise does not match the outgoing field. The worst case,
space gives a complete description of the field state. s=—c, corresponds to the two extreme cases of a single-
Comparing Eqs(36) and(34) we have mode or a very narrow local oscillator field. However, the
above discussion has not taken into account the actual pro-
* cess of reconstructing the phase-space distribution of the
Weal@,a,9). - (37) field outside the cavity from homodyne measurements. In
fact, the factor|F,|?, which measures the matching be-
Equation(37) shows that, in principle, we may obtain com- tween the cavity mode and the local oscillator, plays here the
plete information on the initial field inside the cavity from role of a detection efficiencyy, so that the parametsrmay
measurements of the quadratuBes B, although what one be expressed as=1— 1/7 [8,9]. The remarks made in Refs.
determines in this homodyne experiment is in general th¢26,27] should then be applied to this case: as the parameter
phase-space functio’V ,(«,a*,s), and not the usual sgets smaller, compensation of the “losses” gets more dif-
Wigner function. From Eqgs(28) and (35 we see that ficult, and may eventually become practically impossible.

Wl aF L, a* Fog) =——
ex cav cav/ |Fca\ll2

|Feal=<1 and that Quantum details become more and more smoothed out, and
the retrieval of the original quantum information becomes
(y—T)2+4A2 harder. For example, at=1/2, corresponding te= — 1, we
- 44T get the HusimiQ function, from which we cannot retrieve in

practice the density matrix in the Fock basis due to the di-
is upper bounded by zero. Therefore the phase-space distsergence of statistical fluctuations of the corresponding ma-
bution measured outside the cavity is usually smoother thatrix elementq27].
the Wigner function of the state originally inside the cavity.

The smaller the detuning and the closer the widths of the

local oscillator and the cavity mode, the closer one would be V. EXAMPLES

to the Wigner function of the internal field. The best result is ) ) ) o
obtained when the local oscillator field has the same fre- Figure 2 compares the Wigner functit,, for an initial
quency dependence as the cavity mode, which means catlike state of the field inside the cavity5],

=wy and y=T". In this case|F.,/ is equal to one and the

measurement of the external Wigner function reproduces ex-

actly the Wigner function of the initial state of the field in- la)+|—a)
side the cavity. Another interesting limit is obtained when W)= T (39
A=y andy=T, in which cases= —1 and the measurement V(2+2e72lF)

of the outside Wigner function reproduces exactly Qe

function of the initial state of the field inside the cavity. In

this case the complete quantum information would still bewith o= 3, with the Wigner function/N,, corresponding to
there, but it would be harder to find, since the experimentathe external field, for zero detunindh&0) andy=T" or y
errors would play a more important role in view of the =0.5I" [Figs. 2a) and 2Zb)], and also forA=y=I" [Fig.
smoothness of th& function. The best possible choice, in 2(c)], which corresponds to th® function (s= —1). These
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(a)

2

W(o,a*®) |
1

0.5

[0

-0.5]

-11

-1.53

(b)

FIG. 2. Wigner function for the catlike state with=3 recon-
structed outside the cavity whém) y=T" andA=0 (in this case,
the Wigner function coincides with the original onéb) y=0.5I"
andA=0; (c) y=I'=A (Q function).
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K&'=1-2AXE",

where the variance\ X ;= (X2)—(X,)? may be simply re-
lated to the symmetric characteristic  function
C™(IN|e"'"|\e'’) by

d2C(|x|e™ % |\[e) [dCY(|A|e ", |x[e'%)]2

AXeXt: ,
o d|n|2 dA|
(39
calculated af\|=0. Using Eq.(32) we obtain
k5= |Feal k5 g, (40

whereF .,,=|Fal€'?, and K+ p=1+AXY, 4 is the squeez-
ing in the internal field quadratureXy, ;= (aé(*#
+afe '(?*A)y Equation (40) shows that the external
squeezing <5 associated to the quadratu;=(Be'’
+B'e™'%) is proportional to the squeezingy, , in the
quadratureae (’*#) +a’e~(?*A) of the initial internal field.
Also, k9"< k', - Of course, we can always majg=0 by
suitably choosing the local field phage

Again, the best situation, for which there is no squeezing
depletion, is reached whex=0 andy=1I". One should note
that the above results coincide with those corresponding to
the situation in which there is perfect mode matching but a
finite detector efficiencyp=|F,J?, in agreement with the

discussion ir{8,9].

VI. CONCLUSION

We have shown, within the framework of a simple model,
that it is possible to retrieve complete information about the
quantum state of a field that was originally inside a cavity,
through a detailed analysis of a pulsed homodyne measure-
ment. The Wigner function of the external field, defined in
terms of collective field operators, corresponds to a general-
ized phase-space distribution for the original field in the cav-
ity. When the shape of the local-oscillator pulse coincides
with the shape of the emerging field, one obtains precisely
the Wigner distribution for the original internal field. Other-
wise, smoother distributions are obtained. For equal widths,
and a detuning equal to the common width, @é&unction is
obtained. As examples we have discussed the measurement

figures clearly display the decrease in the fringe contrast, ags 5 Schidinger-cat-like state and of a squeezed field.
the width or the central frequency of the homodyning pulse previous work has derived relations between normal-

become different from those of the measured field.

ordered correlation functions of extern@ut) and internal

As a second example we consider the relation between thgn) operators[22]. Here we have considered the relation

measurement of the squeezi®&g] of the outside field and
the squeezing of the initial field inside the cavity.
The squeezing in the quadratxg'= (Be'’+B'e %) of

between the quantum states of the external and internal
fields. Crucial to our derivation was the operational defini-
tion of the Wigner function of the external field in terms of

the external field may be expressed through the parametercollective operators, which arise naturally from the analysis
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