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Production and detection of highly squeezed states in cavity QED

L. G. Lutterbach and L. Davidovich
Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro 21945-970, Brazil

~Received 16 August 1999; published 18 January 2000!

We propose simple experiments in cavity quantum electrodynamics leading to the generation and detection
of highly squeezed states of the electromagnetic field, even in the presence of experimental constraints like
dissipation, atomic velocity spread, and detection inefficiency. Our proposal gives an operational meaning to
the rotational and translational widths of a squeezed state.

PACS number~s!: 42.50.Dv, 03.65.2w
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I. INTRODUCTION

The ability to construct high-quality cavities in the micr
wave domain and to manipulate Rydberg atoms with h
dipole moments@1# has allowed the testing of fundament
aspects of quantum mechanics, such as different manife
tions of the quantization of the photon number@2,3#, deco-
herence@4,5#, teleportation@6#, quantum nondemolition mea
surements @7–10#, quantum logic gates @10#, and
complementarity@11#. Quantum states of the electromagne
field such as Schro¨dinger-cat-like states@4,5,9# and Fock
states@12# have been actually built in recent experiments

Several methods have been proposed to engineer qua
states of the electromagnetic field in a cavity, using a
quence of two-level atoms that are sent through a highQ
superconducting cavity and interact with its field, being d
tected afterwards by level-selective ionizing counters@13#.
Before and after the cavity, the atoms may also interact w
electromagnetic fields in low-Q cavities, used to manipulat
its internal states. The interaction between the atoms and
field in the superconducting cavity may be resonant or d
persive. In the resonant case, the atom may exchange
tons with the cavity, while in the dispersive regime, the at
plays the role of a refraction index in the cavity, leading
phase shifts in the field or tuning the cavity into resonan
with an external source@14#. In both cases, quantum corre
lations between the field and the atomic internal state
created. It is possible to tailor the entanglement between
atom and the field by proper choices of the interaction
rameters, such as the interaction time, the field strength,
detuning, etc. Detection of the atom in one of the two sta
then projects the field onto the desired state. For most of
procedures proposed so far, the probabilistic nature of qu
tum mechanics implies that the atom may be detected in
undesired state, leading to a state of the field different fr
the one that is sought. In some cases, it is possible to s
another atom to correct the state of the field, depending
the result of the first measurement, thus implementin
feedback procedure@15#. Most often, one restarts the expe
ment, discarding the unsuccessful realization. In this ca
we say that the experiment is based on the postselectio
events@16#. This has two consequences. First, the probabi
of production of the desired state usually decreases as
number of atoms needed to engineer the field increases.
ond, a high detection efficiency is required because, i
happens that an atom is lost, it may cause the field to bec
1050-2947/2000/61~2!/023813~9!/$15.00 61 0238
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a statistical mixture of the desired state and undesired o
Because of this and the fact that one wants the prepara
time to be shorter than the dissipation time, a small num
of required atoms is highly desired.

Recently a method for the construction of a generic
perposition of coherent states of the electromagnetic fi
using dispersive interactions of atoms and photons in cav
was presented, and shown to lead to a good approxima
for arbitrary states of the field@17#. It was shown that a
superposition of even a small number of coherent sta
along a straight line or on a circle in phase space can
proximate nonclassical states of the field with a high deg
of accuracy. In that procedure, the number of coherent st
in the superposition grows linearly with the number of d
tected atoms.

In this paper, we propose a method for the construction
a squeezed state@18# in a cavity, using as in Ref.@17# a
superposition of coherent states. We show, however, t
within the realm of present-day cavity QED techniques, it
possible to devise a procedure by which the number of
herent states in the superposition growsexponentiallywith
the number of detected atoms. Therefore, we are able
achieve high values of squeezing after a few atoms.
show that the probability of getting the desired state is s
reasonably high. Furthermore, we take into account the
fect of nonunity detection efficiency and the role of the d
sipation, as well as the spread of the atomic velocity.
using realistic parameters, we show that this procedur
experimentally viable, and that it is rather insensitive to t
detection efficiency~of the order of 50% in recent exper
ments@5#!.

In the next section, we describe our method in det
taking into account the possible experimental constra
mentioned before. In Sec. III, we explain how the squeez
properties of the field inside the cavity may be measured
show how this measure is related to phase-space repres
tions of the corresponding density operator. Our propo
gives an operational meaning to two possible definitions
the width of a squeezed state: the rotational and the tran
tional widths~cf. @19#!. Our conclusions are summarized
Sec. IV.

II. GENERATION AND DETECTION
OF SQUEEZED STATES

A. Method for squeezed-state generation

While several of the methods proposed in the literat
could be used in principle to generate squeezed states o
©2000 The American Physical Society13-1
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field, the procedure presented here has the advantage of
plicity, and of close connection with recently held expe
ments@2,5,10#. The basic experimental scheme is illustrat
in Fig. 1. A high-Q superconducting cavity C is placed b
tween two low-Q cavities (R1 and R2 in Fig. 1!. The cavities
R1 and R2 are connected to the same microwave genera
Another microwave source is connected to cavity C, allo
ing the injection of a coherent state in this cavity. This s
tem is crossed by a velocity-selected atomic beam, such
an atomic transitione↔g is resonant with the fields in R1
and R2, while another transitione↔ i is quasiresonant~de-
tuning d) with the field in cavity C. The relevant leve
scheme is shown in Fig. 2. Just before R1, the atoms are
promoted to the highly excited circular Rydberg stateue&
~typical principal quantum numbers of the order of 50, c
responding to lifetimes of the order of some millisecond!.
As each atom crosses the low-Q cavities, it ‘‘sees’’ ap/2
pulse, so that ue&→@ ue&1ug&]/A2, and ug&→@2ue&
1ug&]/A2. The atom interacts dispersively with the field
cavity C, so that transitions from levelse and g can be ne-
glected, but there is a state-dependent energy shift of
atom-field system~Stark shift!, which dephases the field, a
ter an interaction timet int between the atom and the cavi
mode ~the quantity t int is actually an effective interaction
time, which takes into account the Gaussian profile of
cavity mode!. We assume that there is a dephasing off per

FIG. 1. Experimental scheme.

FIG. 2. Atomic level scheme. The transitioni↔e is detuned by
d from the frequencyv of a mode of cavity C, while the transition
e↔g is resonant with the fields inR1 and R2. State ug& is not
affected by the field in C.
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photon if the atom is in the statee, while there is no dephas
ing at all if the atom is in stateg. This may be implemented
through the level scheme displayed in Fig. 2: the cav
mode is close to resonance with a transitioni↔e, but tran-
sitions from levelg are sufficiently off resonant so that th
corresponding energy shift is negligible. The one-pho
phase shift is given byf5(V2/d)t int , where the Rabi fre-
quencyV measures the coupling between the atom and
cavity mode. Our scheme can also be easily applied to
situation in which both levelse andg suffer energy shifts.

The generation of a squeezed state of the field in C
volves the following steps. One turns on the microwa
source connected to cavity C for some timeDt, so that a
coherent stateua& is injected into the cavity. For definitenes
we assume thata is real. An atom in stateue& is then sent
through the system. The velocity of the atom is chosen
that f5p. After the atom crosses R1, C, and R2, the en-
tangled atom-field stateucatom1field& becomes

ucatom1field&5 1
2 @ ue&~ u2a&2ua&)1ug&~ ua&1u2a&)].

~1!

Finally the internal state of the atom is detected by two fie
ionization detectors~see Fig. 1!. Upon detection of the
atomic state, the state of the field is projected onto eithe
sum or a difference of two coherent states:

u6&5
1

N6
@a&6u2a&], ~2!

whereN6
2 5262 exp(22a2). One should note that this firs

step is similar to the one realized by Bruneet al. @5#, where
a superposition of two coherent states was also obtained~al-
beit not with the phase difference between the two cohe
states equal top).

Let us consider now the quadratures

X̂5
â1â†

A2
, ~3!

Ŷ5
â2â†

iA2
, ~4!

where â and â† are the annihilation and creation operato
corresponding to the field mode in the cavity. The varian
of the Ŷ quadrature may be written as

~DY!25
12x

2
,

where the squeezing parameter is defined by

x5^â21â†222â†â&22^Ŷ&2. ~5!

One should note thatx50 for a coherent state andx51 for
a Y-quadrature eigenstate. It is easy to show that the squ
ing parameters corresponding to the statesu6& are given by
3-2
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x656
4a2e22a2

16e22a2 , ~6!

so that the statesu2& do not exhibit squeezing, while th
statesu1& exhibit a squeezing that is maximum fora'0.8
~one attains then a squeezing of'55.7%). The probability
of getting theu1& state is equal to the probability of dete
tion of the atom in theug& state:

Pg,15u^gucatom1field&u25
1

4
N1

2 .

The process of getting this squeezed state, starting f
the vacuum state in the cavity, is illustrated in Figs. 3~a!–
3~d!, where each coherent state in the superposition is re
sented by a circle. We see therefore that one may g
squeezed field in a cavity so long as one selects events
which the atom is detected in stateug&. This occurs, for the
value ofa that maximizes the squeezing, with a probabil
of 63.9%. One should note that this class of states was s
ied by Schleichet al. @20#.

In order to get higher amounts of squeezing, one proce
in the following way. After measuring the atom in stateug&,
one turns on the microwave sourceS, so as to inject in the
cavity a coherent field with amplitude 2a. The effect of the
microwave source may be represented by the displacem
operatorD̂(z,z* )5exp(z* â2zâ†), where z is the complex
amplitude of the injected field. This operator is, up to
phase, the evolution operator~in the interaction picture! cor-
responding to the interaction between the field and a class
current oscillating with the field frequency. Its action on
coherent state is given by

FIG. 3. Field evolution in cavity C during the construction
the squeezed state.~a! The field in the cavity starts in the vacuum
state.~b! A coherent stateua& is injected into the cavity.~c! An
atom, prepared in a superposition of the statesue& and ug& in the
first Ramsey zone, crosses the cavity; if the atom crosses cav
in ue&, the field is dephased byp. ~d! If the atom is detected inug&
after the second Ramsey zone, the field in the cavity is collap
onto a superposition of two coherent states, which exhibits squ
ing. ~e! The field is then displaced by 2a. ~f! A second atom goes
through the same system; if the atom is detected again in stateug&,
a higher-squeezed state is obtained.
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D̂~z,z* !ua&5exp~za* 2z* a!ua1z&.

Note that the phase in the above equation is zero ifz anda
are both real or imaginary.

In this way, the field in the cavity gets displaced, leadi
to the configuration shown in Fig. 3~e!. One then sends a
second atom through the cavity, prepared in the same wa
the first one. If the second atom is again detected in the s
ug&, one generates the state of the field:

uF2&5
1

N 2
2 @ u23a&1u2a&1ua&1u3a&].

This state is represented in Fig. 3~f!. If one wants to stop at
this step, one must look for the value ofa that maximizes
squeezing. Otherwise, if this procedure is continued, one
after detecting theNth atom,

uFN&5
1

NN
(

n5122N21

2N21

u~2n21!a&, ~7!

where

N N
2 52N1 (

k51

2N21

2~2N2k!e22a2k2
. ~8!

The variation of the squeezing as a function of the am
tudea is displayed in Fig. 4, when the number of detect
atoms isN51, 3, 5, and 10. This figure clearly shows th
the squeezing becomes quite insensitive to the choice ofa as
the number of detected atoms increases.

The probability of detection ofN atoms always in the
same stateg is given by

PN5 )
n51

N

Pg,n5S 1

4D N

N N
2 .

A better way to visualize the state is through the correspo
ing Wigner distribution@21#, which can be written in the
following way @22#:

W~z,z* !52 Tr@ r̂D̂~z,z* !eipâ†âD̂21~z,z* !#, ~9!

where the density operatorr̂ describes the state of the ele
tromagnetic field in the cavity, andz is a complex amplitude
in phase space.

The Wigner representation for the state withN53 and
a'0.7 is plotted in Fig. 5. As its shape suggests, this stat
highly squeezed along they axes~the squeezing parameterx
in this case is close to 0.9!. It is also clear from that figure
that the Wigner function exhibits in this case negative v
ues. In fact, the state given by Eq.~7! does not belong to the
class of minimum-uncertainty states, and cannot be obta
from a coherent state by a simple scale transformation. F
general value ofN, we get from Eqs.~5! and ~7!:

C

d
z-
3-3
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FIG. 4. Squeezing as a function ofa when the number of detected atoms isN51 ~squares!; N53 ~crosses!; N55 ~circles!, andN
510 ~lozeanges!. As the number of detected atoms increases, the squeezing becomes quite insensitive to the value ofa.
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NN
2 (

k51

2N

~2N2k!k2e22a2k2
. ~10!

Given someN, one must choose the best value ofa for
getting maximum squeezing. Figure 6 displays the maxim
squeezing, the best value fora2, and the probability for con-
structing the state as a function ofN. This result shows that
squeezing reaches virtually 100% with a small number
detected atoms, while the state production probability is s
large enough to make the experiment worthwhile. This c
be explained by the fact that the number of coherent sta
composing these states is doubled by each detected a
One should note that the limit of 100% squeezing cor
sponds to the construction of a quadrature eigenstate.
show in the Appendix that this limit is actually attained
the double limitN→`, a→0, with 2Na2@1.

Our procedure leads thus to the construction of squee
states of the electromagnetic field through the superposi
of coherent states. An analogous decomposition has b
considered before@23#, in terms of a continuous integration
Our proposal leads instead to a discrete sum, and give
operational meaning to such a decomposition.

All the calculations done above were made for an id
experiment. A realistic analysis must contemplate the ac
experimental conditions, and take into account the roles
dissipation, velocity spread, and detection efficiency.

B. Role of dissipation

We consider first the effect of dissipation. We start fro
the master equation for a field in contact with a zer
temperature reservoir:
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~ra†a1a†ar22a†ra!. ~11!

One should note that for typical experimental setups@10#, the
average number of thermal photons is of the order of 0.1
less, and therefore can be safely neglected in the pre
analysis.

From this equation, it follows that the evolution of th
normal-order characteristic function@22#,

CN~l,l* ,t !5Tr~rela†
e2l* a!,

is given by@24#

CN~l,l* ,t !5CN~le2gt/2,l* e2gt/2,0!. ~12!

From the definition of this characteristic function, it fo
lows that

^~a†!paq&~ t !5~21!q
]p1q

]lp]l* q
CN~l50,l* 50,t !.

Thus, we have

^~a†!paq&~ t !5e2(p1q)gt/2^~a†!paq&~0!. ~13!

This relation, which is valid for any state of the electroma
netic field, implies that both the squeezing and the inten
decay at the same rate. Therefore, dissipation plays a m
milder role here than in decoherence experiments@5#.
3-4
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C. Role of the atomic velocity spread

We now analyze the effect of the spread in the velocity
the atoms. Theu pulse at the cavities R1 and R2 and the
phase shiftf at cavity C depend on the velocity of the a
oms, since they are proportional to the time the atoms sp
in each cavity. The state of the atom-field system right bef
atomic detection, and for arbitrary values ofu and f, is
given by

S cos2
u

2
ueifa&2sin2

u

2
ua& D ^ ue&

1cos
u

2
sin

u

2
~ ueifa&1ua&) ^ ug&. ~14!

It is clear that when the values ofu andf are different from
the prescribedu5p/2 andf5p, the state of the field is no
longer that given by Eq.~7!, and the squeezing may b
spoiled.

The main effect is due to changes in the phase shif
cavity C. WhenfÞp, the coherent states in the superpo
tion are not aligned and thereforeDY is increased. The fluc
tuations of u act in second order and do not change

FIG. 5. ~a! Wigner function for the state obtained after the d
tection of the third atom, witha'0.3. The high degree of squee
ing is evident in the picture.~b! Projection of the same Wigne
function on thex axis; the negative values signal the fact that t
state is not obtained from a coherent state via a scale transfo
tion.
02381
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weights of the coherent states in the superposition, as lon
the atom is detected inug&. Only the probability of produc-
tion is affected~if the rotations in R1 and R2 are not equal,
this is not true anymore, but the effect is still of seco
order!. Figure 7 displays the squeezing achieved when
fluctuations off ~or the velocity spread! are kept within 1%.
Since the value actually obtained is different for each re
ization, the error bars represent the standard deviation of
squeezing after many attempts. They increase withN, while
the mean value of the squeezing decreases compared t
ideal case. The behavior displayed in Fig. 7 implies t
there is a compromise between velocity spread, reproduc
ity, and squeezing. It is clear from that figure that the b
choice would beN53 in this case, with'89.960.4% of
squeezing.

D. Role of detection efficiency

The efficiency of the atomic counters available for th
kind of experiment is at present around 40615% @5#. It

FIG. 6. Maximum squeezing, best choice for the square of
amplitude a of the initial coherent state, and the probability
formation of the squeezed statesuFN& as a function of the numbe
of atomsN.

FIG. 7. Squeezing as a function ofN, for a velocity dispersion
of 1%. The error bars represent the standard deviation of
squeezing for several realizations.

a-
3-5
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would seem that a lost atom could change dramatically
state, since its construction is based on a postselection o
measured atomic states. Fortunately, this is not the cas
long as the field injection is conditioned to the detection
the atom. Let us consider the state just before the first ato
detected:

uc1&5 1
2 ~ ue1&uF2&1ug1&uF1&), ~15!

whereuF6&5@ u2a&6ua&]). When the first atom is lost, if
no field displacement takes place, the state after the se
atom is

uc2&5 1
4 ~2ue2&ue1&uF2&1ug2&ug1&uF1&). ~16!

There is therefore, as pointed out already in Ref.@9#, a
complete correlation between the state of the first atom
the subsequent ones~in the absence of dissipation!. It is easy
to see that the same property holds for any of the st
uFN&. Note also that the field will collapse in the same st
as it would if the first atom had been detected. In the pr
ence of dissipation, this remains true as long as the ave
time interval between detected atoms is much smaller t
the field decoherence time.

III. MEASUREMENT OF SQUEEZING

We now address the problem of how to measure
squeezing of the field inside the cavity. We start by adapt
to the level scheme under consideration a general proce
for measuring the Wigner function of the field@25#, which is
closely related to the one used above to generate
squeezed states. We show then that, even without maki
full measurement of the Wigner function, it is possible
characterize the amount of squeezing of the state by m
of simple measurements. Letr̂ be the density operator of th
field in the cavity, and suppose we turn on the microwa
source connected to C, so as to inject a coherent field w
complex amplitudez. As we have seen, this is equivalent
the action of the operatorD̂(z,z* ) on the state of the field
that now becomesr̂85D̂(z,z* ) r̂D̂21(z,z* ).

We then send a probe atom through the same apparat
before. We associate the dephasings suffered by the fie
cavity C, and due to the dispersive atomic state-depen
interaction, to the unitary operatorT̂e if the atom crosses
cavity C in the stateue&, and T̂g , if it is in ug&. We assume
for the sake of generality that the field in R2 is dephased by
h from the field in R1, so that in R2 we haveue&→@ ue&
1exp(ih)ug&]/A2 and ug&→@2exp(2ih)ue&1ug&]/A2. It is
then straightforward to show that the state of the atom1field
system is given just before detection by

1
4 @ ue&^eu ^ ~ T̂e2e2 ihT̂g!r̂8~ T̂ e

†2eihT̂ g
†!1ug&^gu

^ ~ T̂g1eihT̂e!r̂8~ T̂ g
†1e2 ihT̂ e

†!

1~ terms nondiagonal in atomic space!#. ~17!
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Note that the first step in the squeezed-state constructio
recovered by settingr̂5u0&^0u, h50, z5a, T̂g51, and T̂e

5eifa†a, with f5p.
The atom is detected and the experiment is repeated m

times, for each amplitude and phase of the injected fieldz,
starting from the same initial state of the fieldr̂. Finally, the
probabilitiesPe andPg of detecting the probe atom in state
e or g are determined. It is easy to show that

DP5Pg2Pe

5Re$eihTr@D̂~z,z* !r̂D̂21~z,z* !T̂ g
†T̂e#%. ~18!

Expression~18! is very useful and leads to several inte
esting special cases. Choosingh50, T̂g51, T̂e5eipa†a, and
comparing the resulting expression with Eq.~9!, we can see
that

DP5Pg2Pe5W~2z,2z* !/2. ~19!

Therefore, the difference between the two probabilit
yields a direct measurement of the Wigner function~one
should note that, due to the fact that hereug& does not inter-
act with the field in cavity C, this expression differs from th
one given in Ref.@25#!. Suppose nowr̂5uc&^cu, h50, and
z50 ~no field is injected into the cavity!; in this case,DP is
the real part of the overlapping between the stateuc& and the
transformed stateT̂ g

†T̂euc&. Let T̂g51 andT̂e5eifa†a: DP is
now a measurement of the ‘‘rotational width’’ of the sta
uc&, as shown in Fig. 8~a!. The definition of the rotationa
width as a measure of squeezing was proposed in Ref.@20#,
and it is given an operational meaning here. Applying t
method to the statesuFN& given by Eq.~7!, we can see tha
the largerN is, the fasterDP will decrease as a function o
f, as shown in Fig. 9~one may span several values of th
dephasingf by changing the atomic speed or the detuni
d). One should note that the measurement of the rotatio
width according to the above prescription amounts to
measurement of the values at the origin of phase space
family of phase-space representations closely related to
Wigner function. As shown in Ref.@25#, this family corre-
sponds to an imaginarys parameter in the Cahill-Glaube
characterization of phase-space representations@22#.

FIG. 8. The probability differenceDP is sensitive to the overlap
between the field distributions before and after interacting disp
sively with a probe atom.~a! Rotational width can be measured b
a rotation byf. ~b! Translational width is measured by a stat
dependent displacementib of the field.
3-6
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A different kind of measurement of squeezing can be
tained by settingT̂g51 and T̂e5D( ib). One would then
measure the intersection between the state and a trans
version of it, yielding the ‘‘translational width’’ of the state
This may be achieved by using the quantum switch sche
proposed in Ref.@14#. In this case, the microwave sourc
attached to cavity C is off resonant with respect to the ca
frequency, so that no field is injected into the cavity, wh
no atom is present. However, when an atom crosses the
ity in the stateue&, the frequency of the cavity changes
such a way~due to the atomic refraction index! that it be-
comes resonant with the source field, which is then allow
into the cavity. On the other hand, when the atom cros
cavity C in the stateug&, nothing happens, since as befo
this state does not interact with the cavity mode. Choosinb

real would allow a measurement of the quadratureŶ as de-
picted in Fig. 8~b!. Applying this measurement to the stat
uFN&, one verifies thatDP decreases as a function ofb
faster for the states of largerN ~higher squeezing!—see Fig.
10. Settingb85 ib, we have

DP52Re$eih Tr@ r̂D̂~b8,b8* !#%, ~20!

FIG. 9. DP as a function of the rotation anglef for the rota-
tional width measurement for the statesuFN&.

FIG. 10. DP as a function of the displacementb along theY
axis for the translational width measurement for the statesuFN&.
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corresponding to the value of the symmetric-ordered cha
teristic function at the pointb8, which is given a physical
interpretation here as a measure of the translational widt
the state.

Before proceeding, let us consider the effect of the fin
detection efficiency. If an atom is not detected after intera
ing with the cavity mode, the next atom will find a fiel
described by the reduced density operator obtained from
~17! by tracing out the atomic states:r̂95 1

2 (T̂gr̂8T̂g
†

1T̂er̂8T̂e
†). The value ofDP for this second atom is then

DP52 1
2 Re$Tr@~ T̂gr̂8T̂ g

†1T̂er̂8T̂ e
†!T̂ g

†T̂e#%, ~21!

which reduces to Eq.~18!, since@ T̂g ,T̂e#50. If the lost atom
and the detected atom have different interaction times, du
velocity spread or field inhomogeneities, these operators m
no longer commute. Such will be the case for the translat
measurement, which will thus be spoiled. For rotations, ho
ever, the corresponding operators will still commute, a
therefore the rotation measurements will be insensitive
these effects.

IV. CONCLUSIONS

The recent development of techniques for manipulat
and measuring electromagnetic fields in high-Q supercon-
ducting cavities has led to fundamental tests of quantum
chanics and to the possibility of manufacturing and meas
ing nonclassical states of the electromagnetic field
cavities. We have shown in this paper that it is possible
realize experiments leading to the construction and detec
of highly squeezed states of the electromagnetic field i
cavity. In particular, we have proposed a simple procedur
measure the rotational and translational width of the
squeezed states, and have shown that the rotational wid
closely related to the value of a generalized Wigner distri
tion at the origin of phase space, while the translational m
surement is related to the corresponding characteristic fu
tion. In the method proposed here, a squeezing close
100% is achieved with a small number of detected ato
and with a state production probability still large enough
make the experiment worthwhile. Furthermore, our meth
is rather insensitive to the detection efficiency: the only
quirement is that enough atoms are detected within the
sipation time.
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APPENDIX

We show in this Appendix that the squeezing parametex
given by Eq.~10! goes to one in the double limitN→`, a
→0, with 2Na2@1. From Eqs.~8! and ~10!, we have

x5

8a2(
k51

2N

~2N2k!k2e22a2k2

2N1 (
k51

2N21

2~2N2k!e22a2k2

. ~A1!

WhenN→` anda→0, with 2Na2@1, we have

(
k51

2N

~2N2k!k2e22a2k2→2N(
k51

`

k2e22a2k2
~A2!

and

(
k51

2N21

~2N2k!e22a2k2→2N(
k51

`

e22a2k2
. ~A3!

It follows from ~A1!, ~A2!, and~A3! that
y,

r,

.

.
et

d

e

er

N

N

02381
x→ lim
a→0

8a2(
1

`

k2e22a2k2

112(
1

`

e22a2k2

5 lim
a→0

22a2

] lnS 112(
k51

`

e22a2k2D
]~a2!

. ~A4!

The sum in the above expression can be calculated by u
Poisson’s formula,

(
k51

`

e2a2k2
5

1

2 SAp

a
21D

1
Ap

a (
k51

`

e2p2k2/a2→ 1

2 SAp

a
21D , ~A5!

so that, finally,

x→22a2

] lnSA p

2a2D
]~a2!

51. ~A6!
.M.

.

t.

.P.
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