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Single-trapped-ion vibronic Raman laser
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We propose a model for a single-trapped-ion vibronic Raman laser and study its dynamics by using
guantum-trajectory methods. In our treatment, it is essential that both the cavity field of the high-finesse optical
cavity and the center-of-mass vibrational motion of the trapped ion be quantized. A transition from a super-
Poissonian light source to a Poissonian lasing regime is obtained by increasing the Raman coupling constant.
Furthermore, we demonstrate that a nonclassical regime can be realized, where the photon statistics becomes
sub-Poissonian and the photons leak out of the cavity in an antibunched manner. This is achieved by exploiting
nonlinear Stark shifts inherent in the model, which depend on both the number of cavity photons and the
number of vibrational quanta.
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[. INTRODUCTION crucial importance for the lasing phenomenon. The latter
system, however, is difficult to realize, since the inversion in
The possibility to obtain a laser operating with a singlethe considered model occurs on the second vibronic side-
atom as the active medium recently became feasible, thanksand. Since the Lamb-Dicke regime is considered, the cou-
to developments in experimental quantum optics. There haveling to a quantized cavity field on the second sideband is
been several theoretical contributions on one-atom lasers wery weak so that lasing is difficult to achieve.
the past decadel—4]. An analysis showing that laser action ~ The aim of our paper is to propose a single-trapped-ion
is possible with one atom was performed in Réi. In Refs.  Raman laser that differs from previous models in the follow-
[2,3], the spectral properties of a single two-level atom inter-ing respects. First, the laser action requires the quantized
acting with one lasing mode have been studied. Moreover, motion and the inversion is obtained already on the first vi-
single-atom laser consisting of a three-level system has aldaronic sideband. Second, the Lamb-Dicke regime is not nec-
been discusse@]. In the microwave domain, maser action essary to obtain laser action. The first point is important to
with a very small mean number of atoms was already demproduce a sufficiently strong coupling between the inverted
onstrated in the micromasgb,6] some years ago. More re- atomic transitions and the quantized cavity field mode, which
cently, a microlasef7] has been realized in which a weak is realized by Raman coupling. The second point may be
beam of excited atoms traverses an optical cavity. used to increase the atom-field coupling strength. Moreover,
Nowadays it is possible, instead of using weak atomit is known that the atom-radiation interaction outside the
beams as the active medium, to trap single atoms in a cavitf.amb-Dicke regime may display significant nonlinear effects
Recent experiments have successfully realized the trappind.5,16], which can be of interest here to modify the quantum
of a single cold atom in a high-finesse optical cayiy-10. statistical properties of the laser field. In particular, we will
In these cases, the atoms are trapped by the radiation fieldee that nonlinear Stark-shift effects can be controlled in or-
Alternatively one may also combine a quadrupole trap toder to produce a nonclassical laser source emitting sub-
localize a single trapped ion in a high-optical cavity, Poissonian and antibunched radiation. The atomic energy-
which would allow one to control the trapping conditions level scheme under study is close to the situation in
and the atom-field interaction independently of each other. experiments with a singléBe" ion [17,18, which might be
The first analysis of an experimental realization of aused to implement the laser model under consideration.
trapped-ion laser has been given by Megeal.[11,12. The The paper is organized as follows. In Sec. I, we introduce
authors have shown that the operational regime of a singlesur model for the single-trapped-ion Raman laser and we
trapped-ion laser, in contrast to conventional lasers, can hawgerive the master equation for the system under study. In
two thresholds, namely self-quenching effects and lasingec. Ill, we present the basic ideas for solving the master
without inversion. Effects of quantized center-of-mass mo-equation by using quantum-trajectory methods. In Sec. IV,
tion on the action of a single-trapped-ion laser have alsave demonstrate that, depending on the strength of the atom-
been analyzedl13,14. In Ref.[13], the inversion required field coupling, the radiation inside and outside the laser cav-
for the lasing is realized, in analogy to standard laser modelsty undergoes a transition from a super-Poissonian, bunched
by using an electronic three-level scheme. In this case, thight field to a Poissonian laser regime, with only about three
guantized motion modifies the laser action to some extenphotons inside the cavity. In particular, we focus our atten-
but it is not necessary for realizing the lasing itself. In Ref.tion on the electronic-state inversion, the photon-number
[14], the inversion rests upon the existence of vibronic tranprobability distribution of the intracavity field, the photon-
sitions, so that the quantization of the ion's motion is of number probability distribution of the photons detected out-
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side the cavity, and the second-order intensity correlatiogyherea anda' are the annihilation and creation operators of
function. In Sec. V, we show how a nonclassical regime Carajuanta of vibrational motion, and the interaction Hamil-

be obtained by appropriate control of Stark shifts that depenghnian of the atom with the lasers and the cavity field,
on both the motional quantum state and on the state of the

cavity mode. Clear signatures of sub-Poissonian photon sta- ¢
tistics zind photon antib(;mching are Iobs_erved. In Sec. VI, we lfi :Qinc(t)ei(kim&fwinct)A21+Qlei[klif(wfr 5w1)t]A42
present a summary and some conclusions.

+Q,€ (X 0D A, 4 g cog Kek + o) DA+ H.c.
()

Il. MODEL AND BASIC EQUATIONS

Let us consider a trapped ion placed inside a high-finesse
optical cavity. The scheme under consideration is shown i
Fig. 1. We denote by the secular frequency of the RF-Paul
trap along thex direction, coinciding with the axis of the

optical cavity. In our configuration, a laser beam of fre- . . "
quencyw, and the cavity mode of frequenaye provide a transition. The phasec describes the position of the har-

Raman coupling between the electronic leviels and |2), monic trap with respect to the cavity standing wave. More-

being detuned byA from the intermediate electronic level OVEr Aii:|'>_<!| (i,j=1,...,4) are flipoperators for elec-
|4). In this way, the vibrational quantum state of the centerronic transitions |j)—[i), and the amplitude of the
of-mass motion of the trapped ion is coupled to the field ofincoherent laser is given by
the cavity mode. We also introduce an adjustable frequency _
shift Sw, for the first laser. A second laser of frequenay, Qine(t) = Qince’#®, (4)
tuned to the first red sideband, couples directly ley&}sand
|3). Moreover, an incoherent field of frequeney,. is reso-  whereg(t) is a stochastic phase.
nant with the transition1)« |2). The properties of the par- In this scheme, a population inversion is obtained by com-
tially transmitting mirror are described by the parameter bining a cooling mechanism with a resonant incoherent laser
the cavity photon escape rate. The relaxation rates from levelrive. The second laser together with the spontaneous emis-
|3) to levels|1) and|2) arey andy’, respectively. sionsy,y’ produce the cooling mechanism for the motional
The master equation for the trapped ion under the influstate of the ion. The incoherent laser is used to destroy co-
ence of the laser fields and the cavity mode is given by  herence between levels) and|2) and it saturates the tran-
sition |1)«|2). We will show that the cooling to the mo-
e 1 . o oyty oL L tional ground state together with the saturation provides the
at E[H(t)’g] N T(A%Q +0Ag) desired population inversion on the first vibrational sideband,
that is, the|2k)«|1k+1) transitions, wher&k=0, . .. e
! A gk S iaka A labels the vibrational states.
* 7]_1dq W(a)Ageerige e Ag In order to eliminate fast oscillating terms in the dynamics
described by the Hamiltonian given in E@), it is conve-

rI]-|ere01, Q,, andQ;,; are the Rabi frequencies of the first,
second, and incoherent laser, respectively. Moreayisrthe
coupling strength between the cavity mode and|the-|4)

1 " ) ~ A ) ~ A
+vy' f_ldq W(q) A, 'k p e iakaX A,

: |4)
,

B). (1) 3)
) N

Hereé(t) is the density operator that describes the electronig
degree of freedorti) (i=1, ... ,4), themotion of the center
of mass of the ion in th& direction, and the quantum state of
the cavity-mode field. Moreoveksz;= w3;/C, k3= wss/cC,
andw(q) = 3(1+q?) is the angular distribution of the spon-
taneously emitted radiation. The terms in Ef). containing

vy andy’ describe recoil effects of the spontaneously emitteqns
photon of modulo wave vectdt, andks,, respectlveIAy. The and the cavity mode of frequenay: provide a Raman coupling
last term in Eq(1) describes the cavity losses, whér@nd  between the electronic levels) and|2), here detuned by from
b' are the annihilation and creation operators of a photon ithe intermediate level4). The frequency difference)c—w; is

the cavity mode. The Hamiltonidﬁ(t) _ |:|o+ F'I(t) is com- tuned c!ose tav,,— v, wheredw, is an adjustz.ible frequency ;hiﬁ
P for the first laser. A second laser of frequeneyis tuned to the first
posed of the free Hamiltonian ) ) L X
red sideband relative to the transitibh)«<|3). The dipole relax-
4 ation rates from level3) to level|1) and|2) arey andy’, respec-
HOZhvéTé-i-hchTB-i- Z hwiA” ’ 2 tively, and « is the photon escape rate of the cavity. An incoherent
i=1 field of frequencywi, is resonant to the transitigil ) | 2).

w2
12) g

vy

FIG. 1. Scheme for the vibronic laser. A trapped ion is placed
ide a high-finesse optical cavity. The first laser of frequengy
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nient to change into the interaction picture with respect tqparameters related td,. and to k,, respectively @,

fﬁAA44- This yields the following interaction Hamil- = \/zk2/2M v). Moreover, the effective HamiltoniaH ¢ is
tonian: expressed by
Fli(t . o ) AR QS
";;( ) :{Qinc(t)elkmcx(t)A21+ Qlel[klx(t)—éwlt]A42 Heft Heff+ Heff’ (10)
+Qze‘[k2;‘(‘)*””A3l+g COS{kC;((t)'f' oc] where the Raman HamHtomaH and the Stark-shift term
H are given, before el|m|nat|on of fast-oscillating terms,
X e "bAy+H.cl+AA,, (5) by
where now thex operator is time-dependent HR(t) . .
p p e; = — Qpcoskex(t) + (Pc)e|[k1x(t)—(§wl+v)t]
” t)= h A —ivt+AT ivt (6) Apn
X(O=\ 5y lae " raer), xbtA,+H.c., (11)

with M being the mass of the ion. From Ed) we calculate where
the differential equations for the electronic density-matrix

elements(i|g|j) and insert the adiabatically solved off- ) :g*Ql

diagonal elements, due to the far-detuned situation, into the R A

equations for the other elements. In the weak driving-field

limit it is possible to obtain an equation describing the evo-is the Raman coupling constant, and

lution of the electroni¢1)«|2) transition together with the

quantized vibrational center-of-mass motion and the cavity I:ISﬁ(t) 9|2 . 10,2,
field. Similar to the derivations ifi19], we keep only the =~ —S-"= ——[cos(kcx(t)+goc)]szbAll— 2 Ay,
leading terms in the Rabi frequencies and we adiabatically h A (13
eliminate@s3 andg 4. In this way, it is possible to obtain the

following master equation for the density operajorthat The three different jump operators in E) are defined
describes the electronic degrees of freeddnand|2), the by

motional subsystem, and the cavity field:

(12

- A 4yw(q) o Sia ain .
ap 1 . . .. T — ID(t)= [ ——=0,e'%xVF (aTa; a)A,q,
—p=.—[H’p—pH'T]+f dq\](l)(t)pJ(l)T(t) q ( ) (y+ ’)/,)2 2 1( 7]2)(7]2 ) 11
ot ik g d (14)
1 ~ A A ~ A A
+f dqdP(t)pdPT(t) +IcpIL. 7) ) W)
h K= ﬁﬁ ,6920F, (218 7,)(7,8) Agy,
~ Y
The non-Hermitian Hamiltoniahl’ reads (15
A7 Ay Jc=1kb. (16)
= Qi )To(@"8; 710 gyt H.C ¢

4, The jump operator{" andJ{?’ describe the cooling effects
2 ~t ~ta due to electronic transitiond)—|1) and|1)—|2), respec-

- 2a'g[f.(a'a; aA,;+«b'd

{( +v') 722 oL n)fFahurt ] tively (the transitions include the levEs), which was adia-

batically eliminated, and therefore does not appear explic-

itly). The jump operatcfﬂc describes a photon emission from
the cavity, i.e., the annihilation of a photon in the cavity
mode. Moreover, the stochastic phase related to the ampli-
tude of the incoherent laser, see ), satisfies the equation

8

where the operator functiorﬂ%n are given by

fn(a'a; n)—E In)(n| LM (52)e" 772, (9)

(n+m)' e(t+dt)=o(t)+ V2, dW, (17)
with L{™(x) being generalized Laguerre polynomials. In or-whereT';. is the linewidth of the laser and\W is the incre-
der to write Eq(8), we have eliminated fast-oscillating terms ment of the corresponding Wiener process.

in the interaction with the incoherent laser and the second After elimination of fast-oscillating terms, see Appendix
laser, see Appendix A. Herg,,. and 5, are the Lamb-Dicke A, Eq. (13) transforms into
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|:|§ff gl
7 = 2A —[1+cog2¢c)fo(a’a; 7,0)]
P (A1
Xb bAll_ TAzz, (18)

where 7,¢ is the Lamb-Dicke parameter related t&2
Moreover, if we chooseSw;=0, Eg. (11) becomes, under
the same approximation, see Appendix A,
HE 1 o mmain
TEﬁ=—§QRe""C(in+aT)f1(aTa; 7:)b"A,+H.c.,
(19

where 77, is the Lamb-Dicke parameter related to, ¢ k¢)
and we have neglected the terms with , the Lamb-Dicke
parameter related tok{—kg), since n_<1. It is also

PHYSICAL REVIEW A65 013811

BecauséH' is non-Hermitian, the nornff (t))||? is not con-
stant, and it is actually decaying from its initial value equal
to 1. To determine the time when a jump occurs, we proceed
as follows[21]. A jump occurs when % ||| #(t))||?= €, with
€e[0,1] being a random number drawn from a uniform dis-
tribution. To determine which one of the three jumps occurs,
we make use of the relative probabilitiek,, I1,, andIl;

for jump one, two, and three to occur, respectively, given by

1 . A
Iy = ()] f eI OIPOlww), (29
=l [ aad0IPwluw). @8
1 ata
=g (¢(HPE (b)), (27

often useful to neglect the constant Stark-shift term
—#(]Q4]?/A)A,, in Eq. (18). This can be done as described where

in Appendix A. In this way we obtain the following expres-

sion for H;:
Igl2 i
= [1+C05(290c)f (a'a; 7,0)1bDA ;.
(20

Ill. QUANTUM-TRAJECTORY SIMULATIONS

A direct solution of Eq(7) is not an easy analytical task.
This is why we are led to use numerical methods in order to

solve this equation. Using Eqé&l4)—(16), it is easy to see
that

> ntir ata ~
> n5a'[fi(a'a; n,)1%aA,,

(21)

1 N R 4v(Q)
f dqID ()31 = A 2
-1 )
4y'|Q,)?
—)2 na'[fi(a'a; n,)]%aA,,

(22)

l ~ ~
f dqdPT(1)3P )=
-1

JL3c=«b'b. (23

This shows that Eq(7) is in the so-called Lindblad form, so

that it can be solved by quantum-trajectory meth@fs-24.

=0 [ dal3TIP+ 301+ 3l pev).
-1
(28
Writing |(t)) =[1)[ 1 (t)) +[2)] #2(t) ), where now ¢ (1))

and |,(t)) refer to the vibrational and cavity modes, and
using Egs(21)—(23), we can write these probabilities as

14
I, = i (y 7—'|— ,|)2 (g (H)|afi(@’a; 7,)1%al (1)),
(29
1 4y'[Qy?

2= H(‘*'—/)z 75 yu(v)]aT[fi(@%a; 72)1%al (1),

(30)
M= (w(0[BBly(1), @1
where
H—i”iﬂwl(t |a"[F1(a"a; n,)1%8 g (t)
+ e ((t)|bTBl y(1)). (32)

In order to perform our quantum-trajectory simulations,If a jump one, Eq(14), or a jump two, Eq(15), occurs, we
we proceed as follows. We start with the ion in its motionalhave to use a new random numlepe[ —1,1] drawn from
and electronic ground state, and with no photon inside thehe distribution given byw(q)=2(1+q?). After the action

cavity field, so that the initial quantum statgs(0))

of a jump operator, the state is renormalized and the next

=|1,0,0), where the first index in the ket corresponds to thejump is determined again as described above. We repeat this
electronic state, the second to the motional state, and therocedure folN trajectories. The density matrix at a tirhes
third to the cavity field, respectively. For each trajectory weobtained by averaging over all realizations

start from the initial staté(0)) and then we integrate the

Schralinger equation

hM—H'wf). (24)

p(t)= NOAGIE (33

1N
—gllw‘”(t)

with [0 (1)) =[Ol yO ).
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IV. LASING REGIME p270;270(t) — Pl,l;l,l(t)

In this section, we are going to demonstrate that, under
chosen conditions, the system considered here allows one t 0.6}
approach a lasing regime. We will first demonstrate that
population inversion is obtained even in the presence of the 0}

losses inherent to the system, including the cavity loss anc o al k‘« (1)

spontaneous emission. The quantum-trajectory simulation: it . Ao A,

render it possible to study the statistics of both the intracav- ¢ .3}

ity field and the external field as well as the intensity corre- @)

lation behavior of the external field. It will be shown thata ©-2f

mean number of cavity photons between two and three is o1t L (3)

sufficient to obtain typical signatures of a transition from a = St i b Ao o '

super-Poissonian, bunched light source to a Poissonian lasin 4 | . ‘ ‘ . . ‘

regime. 0 10 20 30 40 50 60 70
In the simulations we have chosen the following Kt

parameters. For the Lamb-Dicke parametess =7,c FIG. 2. Electronic-state inversig o.o {t) — p1.1.1 {t). The fig-

=0.2, 7inc=0.001, 2,=0.14. Moreover, Qjp;=1I'jn.=1 ures are obtained for different values of the param@esg: 40

MHz, «=0.1 M,HZ’ A=600 MHz, »=100 MHz, 0,=10 1y, (1), 50 MHz (2), and 60 MHz(3). The ensemble average is
MHz, and y=vy'=5 MHz. The parametef); was chosen performed over 5000 trajectories.

equal tog and its range was tested from a value(df=g
=40 MHz to a value ofQ};=g=60 MHz. This corre-
sponds to varying the Raman couplifyz from a value
01z=2.66 MHz to a valueQ)g=6.0 MHz. Note that the Photon emission into the cavity mode is obtained via
condition{),,y<<v is satisfied, so that we have a resolvedthe Raman coupling. This is described by the term
sideband. Moreover,(2,<(y+y') and€,,9<A so that 31} (3%3;,)b'A,, in Ay, see Eq.(34). The electronic

the adiabatic elimination of the leve|8) and|[4) can be  yansition|2)—|1) is accompanied by the creation of both a

done. photon in the cavity mode and a quantum of vibrational mo-

It i.S zélsozi(r)nporr:grrl]t (}0 cargfully l():or;]sicriler the bStarI;-sEift tion. Of course, there is also a competing mechanism that
term in Eq.(20), which depends on both the number of pho-enqg 15 suptract photons from the cavity, formally the
tons and the motional excitation. In the Lamb-Dicke limit, Hermitian conjugate in Eq. (34), ie., the term

where fo(a'a; 7,0)—1, the contribution of the Stark shift f,(a'a; 7. )abA,;. Photon emission dominates over absorp-

disappears if we choose for the phase of the cavity the valugon if there is a vibronic population inversion, that is
¢c=m/2. In this section we will choose.= /2, even if ’ ’

we haver,c=0.2. This allows us to minimize the effects of Pok 2k Piks1iki1, K=0,... 2, (36)
the motion- and field-dependent Stark shift. We get then

A. Electronic-state inversion

|:|eff 1 o o with
|g|? 2 o otn. LR A _ “ m;m
- ﬁ[l_fo(a a; 720 Ib'bA;, (34 Pi,k;i,k(t)_mE:O Pikik- (37

and the dynamics of the system is considerably simplified.

The consequences of more dominant Stark shifts will belhe cooling to the motional ground state together with the

studied in Sec. V. saturation due to the incoherent laser provides the desired
The density matrixp(t) used in the present section is population inversion on the first vibrational sideband, that is,

obtained as discussed in Sec. lIl, i.e., from B8). It can be the[2k)«<|1k+1) transitions. In Fig. 2, the population in-

expressed in the basis of atomic and photon states using ti&rsion is shown fok=0. Due to the cooling mechanism
notation this is the dominant transition, but also for-0 a population

inversion is obtained in the simulations.

2 o0 o0
~ _ m;n . .
p(t)—i’jzzo k,Iz:O m,;:O piicillkm)ilnl, (39 B. Intracavity field

The average number of photons inside the cavity is ob-

whereli), |j) are the electronic level$k), |I) are number tained fromp(t) via
states for the vibrational motion, amoh), |n) denote num- o o
ber states for the cavity mode. (b'b)=Tr[bbp(t)]. (39
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(bTh); Fr
. . : : : : 0.6 1
3.5f (1)
3t (3) 0.4
2.5 0.2
2
B (2) O
0 2 4 6 8101214 p
1.5}
(1 P"
1 0.6 (2)
0.5}
0.4
0 L
0 10 20 30 40 50 60 70 0.2
Kt IIIII
FIG. 3. Average number of photons inside the cavity, for differ- 0
ent values of the paramet€&y;=g: 40 MHz (1), 50 MHz (2), and P 04 % 6 ©lalald n
60 MHz (3). The ensemble average is performed over 5000 trajec- "
tories. 0.6 (3)
As shown in Fig. 3, after a transient regime, which is prac- 0.4
tically concluded after less than ten cavity decay times, a
stationary regime is reached. As the Raman coupling con- 0.2
stantQ)g, see Eq(12), increases from a value of 2.66 MHz IIIII.
to a value of 6.0 MHz, the average number of photons inside 0

the cavity goes from a value of approximately 0.8 to a value 02 4 6o l0laldy

of approximately 3.5. _ o FIG. 4. Photon-number probability distribution for the photons
In order to characterize the intracavity field, the meaniysige the cavity at the time="70/x. The figures are for different

number of cavity photons is of course not sufficient. It is,gjyes of the parametéd,=g: 40 MHz (1), 50 MHz (2), and 60

useful to consider the photon-number probability distribution, ;.. (3). The values fo(An)2/n are 1.84(1), 1.73(2), and 1.26

P, . This is obtained fronp(t) by (3). The ensemble average is performed over 5000 trajectories.

Pr=Tr[In)nlp(t)]. (39 simple case of a coherent light source of constant intemsity

o i it is known thatP,(T) is given by a Poissonian distribution
This distribution is shown, for different values of the Raman

coupling constant, in Fig. 4. From it one can calculate the nn _
expression for the relative variance of the photon number Pn(T)= mexq—n), (40

statistics, (An)zlﬁ, where (---)=2,---P,. As is well
known, for a Poissonian distributiofAn)?/n=1. In our

caseP, is changed from a super-Poissonian distribution to avheren is proportional tol T.

Poissonian distribution by increasing the Raman couplin% To obtain the distributiorP,(T) we have proceeded as
constant. ollows. We have chosen a time intervalin the stationary

regime region, i.e., fot>10/x, and we have counted for
each trajectory how many clicks were registered|[trt
+T). In our case, this is equivalent to the number of cavity
Let us consider a detector situated outside the cavity. Fgumps occurring in this time interval. This number differs, in
a detector of unit efficiency every emission of a photon fromgeneral, from one trajectory to the other. Repeating this pro-
the cavity produces a photoelectric count or a “click” in the cedure for a large number of trajectories, a probability dis-
detector. To characterize the field emitted from the cavitytribution is obtained. The photon-number probability distri-
one has to analyze the statistics of the photoelectric countdutions are shown, for different values of the Raman
The photon-number probability distributioR,(t,T) is ob-  coupling constant, in Fig. 5, where the integrating time was
tained by considering a given time interval (integration  chosenT=1/x. From these distributions we can obtain the
time), and by looking at how many clicks are recorded in therelative variance of the click number statistics. A transition
time interval[t,t+T). The number of clicks registered in a from a super-Poissonian light source to a coherent one is
given time interval is not constant and its value is a numbenobserved.
that is distributed around an average value. This average Let us compare the photon number distributions inside
value increases with the size of the time interval. For theand outside the cavity as given in Fig. 4 and Fig. 5, respec-

C. External field
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2
P, g( )(7-)
0.6
(1) oLy
0.4
1.5t
0.2 @)
00 2 4 ¢ 8101214 b e
n 3
P,
0.6 @) 0.5
0.4
0
0 2 4 6 8 10 12 14
0.2 KT
0 FIG. 6. Second-order intensity correlation for different values of
P 0 2 4 6 8101214 the parametef); =g: 40 MHz (1), 50 MHz (2), and 60 MHz(3).
b The ensemble average is performed over 5000 trajectories
0.6 g p J .
' (3)
No restriction is placed on the number of counts recorded
0.4 outside these intervals. The normalized second-order corre-
lation function is defined in terms of these multicoincidence
0.2 rates ag25|
t,t+7)
0 @t t4 5o 2LED)
0 2 46 8101214 ¢ g(t,t+7) W OWL(tF 1) (41

FIG. 5. Photon-number probability distribution for the photons
detected outside the cavity for an integration tifie 1/x. The
figures are for different values of the paramefer=g: 40 MHz

If the light source is in a stationary regimg(®)(t,t+ 7) is
independent of, and we have

(1), 50 MHz (2), and 60 MHz(3). The values fo{An)%n are 1.74 g@(t,t+71)=9g3 (7). (42)
(1), 1.58(2), and 1.19(3). The ensemble average is performed over
5000 trajectories. Photon bunching and antibunching are traditionally defined

in term of this quantity. In the simulations, in order to obtain

tively. It is obvious that the relative nois€An)?/n, in the ~9'”(7), we have considered for each trajectory only the pho-
output field is less than in the intracavity field. To understandO€missions that have occurred at a titmelO/k. According
this fact, we remind the reader of the basic principles oft@ Fig. 3, we are already in a stationary regime. If a click is
photocounting theory; for details, see, e[@5]. In particu- recorded _at tlme_, we look to see if another click hz?\s.been
lar, for recording the statistics of photoelectric counts of arécorded in the time intervgt + 7,t+ 7+ At). No restriction
traveling light field, one needs to choose a measurement-timé Placed on the number of counts recorded in the interval
interval T over which the events are counted. By increasing(t,t+ 7). In order to ensure that only one click is registered
the size of this interval, the statistics becomes more and mor® the interval[t+7,t+ 7+ At), it is necessary foat to be
Poissonian. In our case, the chosen interval siZB=of /x is ~ Small in comparison to the cavity decay time. We have cho-
already close to the correlation time of the field, which ex-SenAt=0.05k. The results forg®)(r) obtained from the
plains the tendency of the output field to approach a Poisscsimulations, for different values of the Raman coupling con-
nian statistics. stant, are shown in Fig. 6. Note that, as the photon-number

Another fundamental quantity to characterize the externaflistribution evolves from super-Poissonian to Poissonian
field is the second-order intensity correlation function(S€€ Fig. 3 photon bunching is reduced, in agreement with
g@(t,t+ 7). It corresponds to the joint probability for re- OUr expectation.
cording photoelectric counts in the intervdlst+ At) and

[t+ 7,t+ 7+ At), normalized by the probability for two in- V. NONCLASSICAL REGIME
depende_nt photoelect_nc_ measurements. More precisely, let In this section, we will show how it is possible to reach a
us consider the multicoincidence rateg,(tq,to, ... ty),

. s lasing regime with a clear nonclassical behavior. In order to
that one photcelecire sount i recorded in each of the norl0 S0 It 18 NECeSSaIy 0 tackle in a more direct way the
overlapping intervalstg<t,<- - - <t,.): motion- and field-dependent _Stark-shlft term of E{q_8).

2 ms: This can be done by appropriately choosing the adjustable
frequency shiftSw,. As shown in Appendix A, it is possible

[ty,ty+ AL, [t 1o+ AL), ... [ty t T Aty). to choosedw; so as to remove the constant Stark-shift term
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—7(]Q4]%/A)A,, of Eq. (18). In this section, we will choose ng to this resonance conditiqn. In this regime, one shou_ld

Sw; SO as to remove not only the constant Stark-shift termexpect the laser system to emit antibunched photons. Having

but also set to zero the contribution from the motion- andS€t this chosen transition on resonance, let us see how

field-dependent Stark-shift term for a chosen Raman transPig the frequency shift is for the neighboring transition

tion |Lk+1,m+1)«|2k,m), that is, |1,2,2+|2,1,1). This frequency shift is obtained by setting
k'=m’'=1 in Eq. (48),

1042 |g|? — 2
Swr=—3—— 5 [1+c082¢c)L{ 1) r30e 7] lol” O)( . Je T2
Aw= 5 {2[1+cos 200 L 70e” 2]
X (m+1). (43)

2
—[1+cog2¢c) L (20 e 722 49
The chosen transition will be tuned to resonance, while other [ $2¢0)L1 (20 il 49

transitions remain off-resonance. As is shown in Appendix B.gpstituting in this equation the expressions for the Laguerre
when we choose this resonance condition the eﬁeCt'V%olynomials we obtain

. . ~ ~ ~ U ~ . .
Hamiltonian becomes$l ,q=H%+ H3;, whereHY, is given

by Eq.(19) and ?

v A‘*’:%[1+cosz¢c><1—3néc+n‘z‘c)e*”gdz]-
As 2 i mn Cn

Te =- %{[1"’ cog2¢c)fo(a’a; 7,0)1b"d %9

, In our scheme we usg,-=0.2, so that77§C<1. This gives
_[1+005(2<Pc)|—g811)(77§c)97 72d2](m+1)}A;.

|g|?
(44) Aa)zﬁ[l'i'COiZ(pc)]. (52
To get insight into the state-selectivity of the present dy- _ i .
namics, let us consider the flip operator For ¢=0, which corresponds to setting the position of the
center of the trap on an antinode of the standing wave of the
Agj,;i?‘l";il:|2,k’,m’><1,k’+1,m’+l| (45  cavity field, the value\ w=|g|%/A attains its maximum.

To get some idea about the values of the parameters, we
for an arbitrary Raman transition |1,k’+1’m’ consider the situation ngZGOO MHz, A=600.0 MHz,

. am’m’ +1 and »=100 MHz. In this case, the maximum separation
T2k m ) Th-e cgmtn;tator betweehzyk_’?lvk’“ and (¢c=0) of the neighboring state relative to the chosen state
the Stark-shift Hamiltoniat 5, see Eq(44), gives of interest isAw=6.0 MHz. The minimum separationpf

9l? =7/2) is Aw=3|g|?75J(2A)=0.36 MHz. In this case,
[A;“l;;ﬁq';il,ﬂef}]: _ﬁS_AA?;m’;il the transition|1,2,2)«|2,1,1) is quite close to resonance.

Having chosen in Eq44) the resonance condition for the
) 2\ 2 transition|1,1,1)«|2,0,0), we have seen from E¢51) how
X{[1+cod2¢c)L 1 1)(ma0)e™ 72¢7] the frequency shifAw for the [2,1,1)«|1,2,2) transition
, . (0) can be changed by varying the position of the center of the
XM+ 1)~ [1+cod2¢c)L i) trap with respect to the standing-wave cavity field. The de-
— 2 f this frequency shift on the phageresults in a
X (n2)e” 2d2|(m+ 1)}, 46 pendence o q y phaser
(720) I )} (“46) selective transition for the casg-=0, and basically no se-

so that the evolution caused by the Stark shift alone is lective transition for the casec= w/2. This selectivity has
an evident impact on the cavity-field properties. In Fig. 7, we

AmUm L = ATm L giset (47)  see how, changing only the phase of the cavity field, we
ZKGLK 2Kk observe a significant change of the average number of pho-
where tons inside the cavity. Figure 8 displays, on the other hand,

how the strongly selective tuninge=0) yields a clear
nonclassical regime, with sub-Poissonian statistics in the
number probability distribution of the intracavity field.
. Moreover, sub-Poissonian statistics and antibunching occur
—[1+cog2¢c)L{) 1y (n30e "2d?(m+1)} (48  in the external field, as shown in Fig. 9 and Fig. 10, respec-
tively. These results show how, by appropriately handling the
is the frequency Stark shift for the|lk’+1m’ motion- and field-dependent Stark shift, one has the possibil-
+1)<|2k’,m’) transition. In the following we will choose ity to significantly influence, through the choice of the phase
k=m=0 in Eq.(43), which tunes thé1,1,1)«|2,0,0) tran-  of the cavity field, the properties of the intracavity and the
sition on resonance. The reason to consider this case is bemitted field.
cause, due to the cooling mechanism, the transition Let us again compare the statistics of the intracavity field
[1,1,1)«-]2,0,0) is the dominant one. Moreover, no more (Fig. 8 with that of the external fieldFig. 9). As already
than a single cavity photon exists for the states correspondiiscussed in the previous section, the integration over a finite

Aw 5A

{[1+cos2¢0)Ly), 1 (ndd)e” 72 (m’ +1)
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(bTh); P
‘ ‘ ‘ 0.8
3.5t 1
(3) 0.6
3
0.4
2.5
0.2
i g 0 2 4 6 8
1.5 P, n
(2)
b 0.8 (2)
0.5} (1) 0.6
Ot . 0.4
0 10 20 30 40 50 60 70
Kt 0.2
FIG. 7. Average number of photons inside the cavity. The value 0 0 ? 4 6 8 n
for Q,=g is 60 MHz. The figures are for different values of the P;
parametekpe: 0 (1), w/4 (2), andw/2 (3). The ensemble average is
performed over 5000 trajectories. 0.8 (3)
0.6
0.4
0.2
0
P, 0 2 4 6 8mn
0.6 (1) FIG. 9. Photon-number probability distribution for the photons
) detected outside the cavity for an integration tifie 0.25/«. The
0.4 value for{Q);=g is 60 MHz. The figures are for different values of
’ the parametepc: 0 (1), 7/4 (2), #/2 (3). The values fo(An)?/n
0.2 are 0.96(1), 0.97(2), and 1.06(3). The ensemble average is per-
' formed over 5000 trajectories.
0
. 0 2 4 6 81012 ¢ measurement interval of siZE in the case of the external
L field leads to a photocounting statistics that is closer to a
0.6 (@) Poissonian one than that for the intracavity field. Conse-
quently, for a sulfsupel -Poissonian number statistics of the
0.4 intracavity field, the noise in the output statistics is expected
to be increase(ecreased in full agreement with the results
0.2 of our simulations.
=0 2 72 6 8 1012 n VI. SUMMARY AND CONCLUSIONS
F, . . .
" We have presented a scheme for a single-trapped-ion vi-
0.6 (3) bronic Raman laser where both the laser mode and the
center-of-mass motion of the ion are quantized. The quanti-
0.4 zation of the center-of-mass motion in our scheme is a pre-
requisite for obtaining the inversion that is necessary for the
0.2 lasing phenomenon. The combination of resolved-sideband
laser cooling with an incoherent punipn the resolved elec-
0 tronic carriej saturating the vibronic transitions allows one

a2 a8 012 m to realize population inversions on the first vibronic side-

FIG. 8. Photon-number probability distribution for the photons bands. These inversions are used for lasing in a Raman
inside the cavity at the timé=70/«x. The value forQ);=g is 60  scheme, in which a classical field is combined with a quan-
MHz. The figures are for different values of the parametgr 0  tized cavity field mode to realize the coupling between the
(1), w/4 (2), w/2 (3). The values fo{An)2/n are 0.80(1), 0.84(2),  Vibronic transitions and the cavity field. Moreover, the model
and 1.28(3). The ensemble average is performed over 5000 trajecaccounts for cavity losses and the spontaneous electronic
tories. transitions of the ion that are needed for sideband cooling.
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0.2 (1)
0 APPENDIX A
0 2 4 6 8 1
g (1) kT The approximate non-Hermitian Hamiltonian, E(),
1.2 and the relative effective Hamiltonian, EGL0), have been
1| ettt obtained using the following consideratioffss]. When we
0.8 have a term akXx(t) we write it as
0.6 . o o
0.4 kx(t)=p(a'e+ae '), (A1)
0.2 2 . .
0 ® where 7 is the Lamb-Dicke parameter relatedkoThen we
g(2)(r)0 2 4 6 Sm 10 use the Baker-Campbell-Hausdorff formula
1.2 exp(i pa'e! " +inae ")
1
0.8 =exp(i pa’e' ") exp(i nae ")
0.6
2
0.4 /BN
0.2 3) X exy{ - 7[a,a*] . (A2)
0
0 2 4 6 8,.;7 10 Using Egs.(Al) and (A2) we can obtain, neglecting terms

) ) ) oscillating with the vibrational frequency, the following
FIG. 10. Second-order intensity correlation. The value®r  t5rmula:

=g is 60 MHz. The figures are for different values of the parameter

¢c: 0 (1), m/4(2), andw/2 (3). The ensemble average is performed ) [ (i néT)m?m(éTé; 7), m=0
over 5000 trajectories. explikx(t)—mwvt)—y . ... -

flm(@%a; n) (i na)m, m<0,
We also take into consideration the nonlinearities that in gen- (A3)

eral occur in the light-field assisted vibronic interaction of
the trapped ion. In particular, we analyze the role played bX/vherefm(éTé; 7) is defined in Eq(9). Using this result it is

nonlinear Stark shifts depending on the quantum states of tr@asy to see that the two exponentials in Bfj.related with

fg(laelgtron, the quantized motion of the ion, and the cavityy,e jncoherent laser and the cooling laser can be written as
ield.

After deriving the basic master equation for the laser eikinc;(t)qfo(éTé; Tine)s (A4)
model, quantum-trajectory methods have been used for its A
solution. When the Stark-shift effects are minimized, a tran- ellkx®+11_ % (aTa: 5,)(i 7,3). (A5)

sition of the system from a super-Poissonian and photon-

bunched light source to a Poissonian lasing regime is obEquations(A4) and (A5) are used in Eq(5) to obtain Eq.
served as the strength of the Raman coupling is increase(B). The terms related to the Raman coupling in £, i.e.,
Such a transition to a lasing regime occurs already when th#he terms withg and (), have to be treated together. They

mean number of cavity photons is as small as about three.produce the effective Hamiltoniaﬁeﬁ, see Eq.(10), with

When the nonlinear Stark shift is appropriately adjustedy,q expressions fdi%(t) andFS(t) given, before neglect-

by changing the trap position, one can apply this effect tqy, ,qeiliating terms, by Eq11) and Eq.(13), respectively.
realize the laser action on a preferential vibronic transitiony¢ |\ o choosedw; =0, see Eq(11), and use Eq(A3), it is

the other vibronic transitions being oﬁ-re_sonant. For ex'easy to see that
ample, one may support the laser action in such a manner
that it is most probable to have zero or one photon inside thgogk x(t) + (Pc)ei[kl%(t)fvt]
cavity. In such a case the intracavity field becomes sub-

Poissonian. Consequently, also the output field is sub- 1

Poissonian and displays photon antibunching. = E(ei[kcx(t)Wd+efi[kcx(m“’d)ei[klx(t)*"t]
ACKNOWLEDGMENTS elvc L. el L L.
~—-(in.ahfy@'a;n,)+——(in-ahfia'an.),
This work was supported by Deutscher Akademischer
Austauschdienst(DAAD), Deutsche Forschungsgemein- (AB)
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where
(ki +ko)x(t) =17 (a'e"'+ae™ ™), (A7)
(k;—keo)x(t)=5_(aTe"+ae™ "), (A8)
Moreover, we can obtain in the same way
[cogkex(t) + <Pc)]2“%[1+ cos2¢c)fo(a’a; 7201,
(A9)
where
2kex(t) = po(ale”+ae ™), (A10)

Using Eq.(A9) the Stark-shift Hamiltoniarhtlsﬁ(t) given by

Eq. (13) is transformed into Eq(18). Moreover, using Eq.

(A6), the Raman Hamiltoniai,(t) given by Eq.(11) is

transformed into Eq(19), where we have neglected the term

with %_ in Eq. (A6) because we assume thkf — k| <k;.
Let us now consider the Stark-shift HamiltoniathS,

given by Eq.(18). It is often useful to neglect the constant
Stark-shift term—7(|Q1|%/A) A,, in this equation. Formally,

PHYSICAL REVIEW A65 013811

constant Stark-shift term, but also set to zero the contribution
from the photon- and motional-number-dependent Stark shift
for a chosen1k+1m+1)«|2k,m) transition. Let us con-
sider Hq¢ as given by Eq(10), together with Eq(11) and

Eqg. (13). We now change to an interaction picture with re-

spect toH|, given by

__lo" N
7o [1+C05{2¢C)L(k+1)(772C)e 2c”]
~ 1047
X(m+21)A;— A ——Ay. (B1)

From the Heisenberg equation of motion for a generic opera-
tor F' in the interaction picture

(B2)

we obtain then

this is equivalent to choosing an appropriate frequency shift

dwq for the first laser. Changing to an interaction picture

with respect to —#(|Q4|%A)A,, and choosing dw;
=]04|% A, we obtain for the effective HamiltonialH o« de-

. |g|2 L,
A'u(t):exp,' S [1+c082¢0)L{, 1) (m30)e 72
| l|2 ~
X(m+1)+ — A trAL,, (B3)

fined in Eq.(10), the expression, before elimination of oscil- where in the following we will usé\,, for Al,. If we choose

lating terms,

Heff(t)

=~ Qg coskeX(t) + @) el kX0 IRTA L H ¢ ]

lgl?

[Cos(kcx(t) +¢d)]2b"bA,;. (A11)

Using the substitutionA6) and (A9) we obtain the follow-
ing expressions foHR; and H3;:

HY 1 Aia miaaia
TEﬁ =— EQRe' ec(in,ahfi(ata; 7, )bTA,+H.c.
(A12)
and
Hsff lgl?
Te: [1+005(2<Pc)f0(aTa 7,0)]0™bA;,

(A13)
as given by Eq(19) and Eq.(20).

APPENDIX B

As we have seen in Appendix A, it is possible to choose
remove the constant Stark-shift term

—1(]Q4]?/A)A,, from Eq. (18). In this appendix, we will

dwy SO as to

for dw, the value given in Eq43), we obtain a new effec-
tive Hamiltonianﬂ,’eﬁ(t) given by the following expression:

He(t)

=~ QgcoskeX() + e kX0~ IBTA 1 H.c]

—|g|?A{ [cogkex(t) + ¢)]%b ™D

1 2
- 5[1"‘ coq2¢c) Lg(k)lrl)( ni0e "ad?]

X (m+1){A. (B4)

At this point we neglect oscillating terms as done in Ap-
pendix A. This yields

H. . Apa o mia el
=~ 30ge'%c(i 7,801,387, )b Aspt Hec

2
|g| D ([1+cos200)Fo(83; ma0) 10D

~[1+c052¢0)LD, 1 (n3e "2 (m+ 1)}Ay,,
(B5)

see how we can choos#w; so as to remove not only the as given forH e=H%+ H3, « by Eq.(19) and Eq.(44).
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