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Single-trapped-ion vibronic Raman laser
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We propose a model for a single-trapped-ion vibronic Raman laser and study its dynamics by using
quantum-trajectory methods. In our treatment, it is essential that both the cavity field of the high-finesse optical
cavity and the center-of-mass vibrational motion of the trapped ion be quantized. A transition from a super-
Poissonian light source to a Poissonian lasing regime is obtained by increasing the Raman coupling constant.
Furthermore, we demonstrate that a nonclassical regime can be realized, where the photon statistics becomes
sub-Poissonian and the photons leak out of the cavity in an antibunched manner. This is achieved by exploiting
nonlinear Stark shifts inherent in the model, which depend on both the number of cavity photons and the
number of vibrational quanta.
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I. INTRODUCTION

The possibility to obtain a laser operating with a sing
atom as the active medium recently became feasible, tha
to developments in experimental quantum optics. There h
been several theoretical contributions on one-atom laser
the past decade@1–4#. An analysis showing that laser actio
is possible with one atom was performed in Ref.@1#. In Refs.
@2,3#, the spectral properties of a single two-level atom int
acting with one lasing mode have been studied. Moreove
single-atom laser consisting of a three-level system has
been discussed@4#. In the microwave domain, maser actio
with a very small mean number of atoms was already de
onstrated in the micromaser@5,6# some years ago. More re
cently, a microlaser@7# has been realized in which a wea
beam of excited atoms traverses an optical cavity.

Nowadays it is possible, instead of using weak at
beams as the active medium, to trap single atoms in a ca
Recent experiments have successfully realized the trap
of a single cold atom in a high-finesse optical cavity@8–10#.
In these cases, the atoms are trapped by the radiation
Alternatively one may also combine a quadrupole trap
localize a single trapped ion in a high-Q optical cavity,
which would allow one to control the trapping condition
and the atom-field interaction independently of each othe

The first analysis of an experimental realization of
trapped-ion laser has been given by Meyeret al. @11,12#. The
authors have shown that the operational regime of a sin
trapped-ion laser, in contrast to conventional lasers, can h
two thresholds, namely self-quenching effects and las
without inversion. Effects of quantized center-of-mass m
tion on the action of a single-trapped-ion laser have a
been analyzed@13,14#. In Ref. @13#, the inversion required
for the lasing is realized, in analogy to standard laser mod
by using an electronic three-level scheme. In this case,
quantized motion modifies the laser action to some ext
but it is not necessary for realizing the lasing itself. In R
@14#, the inversion rests upon the existence of vibronic tr
sitions, so that the quantization of the ion’s motion is
1050-2947/2001/65~1!/013811~12!/$20.00 65 0138
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crucial importance for the lasing phenomenon. The la
system, however, is difficult to realize, since the inversion
the considered model occurs on the second vibronic s
band. Since the Lamb-Dicke regime is considered, the c
pling to a quantized cavity field on the second sideband
very weak so that lasing is difficult to achieve.

The aim of our paper is to propose a single-trapped-
Raman laser that differs from previous models in the follo
ing respects. First, the laser action requires the quant
motion and the inversion is obtained already on the first
bronic sideband. Second, the Lamb-Dicke regime is not n
essary to obtain laser action. The first point is important
produce a sufficiently strong coupling between the inver
atomic transitions and the quantized cavity field mode, wh
is realized by Raman coupling. The second point may
used to increase the atom-field coupling strength. Moreo
it is known that the atom-radiation interaction outside t
Lamb-Dicke regime may display significant nonlinear effe
@15,16#, which can be of interest here to modify the quantu
statistical properties of the laser field. In particular, we w
see that nonlinear Stark-shift effects can be controlled in
der to produce a nonclassical laser source emitting s
Poissonian and antibunched radiation. The atomic ene
level scheme under study is close to the situation
experiments with a single9Be1 ion @17,18#, which might be
used to implement the laser model under consideration.

The paper is organized as follows. In Sec. II, we introdu
our model for the single-trapped-ion Raman laser and
derive the master equation for the system under study
Sec. III, we present the basic ideas for solving the ma
equation by using quantum-trajectory methods. In Sec.
we demonstrate that, depending on the strength of the at
field coupling, the radiation inside and outside the laser c
ity undergoes a transition from a super-Poissonian, bunc
light field to a Poissonian laser regime, with only about thr
photons inside the cavity. In particular, we focus our atte
tion on the electronic-state inversion, the photon-num
probability distribution of the intracavity field, the photon
number probability distribution of the photons detected o
©2001 The American Physical Society11-1
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side the cavity, and the second-order intensity correla
function. In Sec. V, we show how a nonclassical regime c
be obtained by appropriate control of Stark shifts that dep
on both the motional quantum state and on the state of
cavity mode. Clear signatures of sub-Poissonian photon
tistics and photon antibunching are observed. In Sec. VI,
present a summary and some conclusions.

II. MODEL AND BASIC EQUATIONS

Let us consider a trapped ion placed inside a high-fine
optical cavity. The scheme under consideration is shown
Fig. 1. We denote byn the secular frequency of the RF-Pa
trap along thex direction, coinciding with the axis of the
optical cavity. In our configuration, a laser beam of fr
quencyv1 and the cavity mode of frequencyvC provide a
Raman coupling between the electronic levelsu1& and u2&,
being detuned byD from the intermediate electronic leve
u4&. In this way, the vibrational quantum state of the cent
of-mass motion of the trapped ion is coupled to the field
the cavity mode. We also introduce an adjustable freque
shift dv1 for the first laser. A second laser of frequencyv2,
tuned to the first red sideband, couples directly levelsu1& and
u3&. Moreover, an incoherent field of frequencyv inc is reso-
nant with the transitionu1&↔u2&. The properties of the par
tially transmitting mirror are described by the parameterk,
the cavity photon escape rate. The relaxation rates from l
u3& to levelsu1& and u2& areg andg8, respectively.

The master equation for the trapped ion under the in
ence of the laser fields and the cavity mode is given by

]%̂

]t
5

1

i\
@Ĥ~ t !,%̂#2

g1g8

2
~Â33%̂1%̂Â33!

1gE
21

1

dq w~q!Â13e
iqk31x̂%̂e2 iqk31x̂Â31

1g8E
21

1

dq w~q!Â23e
iqk32x̂%̂e2 iqk32x̂Â32

1
k

2
~2b̂†b̂%̂2%̂b̂†b̂12b̂%̂b̂†!. ~1!

Here%̂(t) is the density operator that describes the electro
degree of freedomu i & ( i 51, . . . ,4), themotion of the center
of mass of the ion in thex direction, and the quantum state
the cavity-mode field. Moreover,k315v31/c, k325v32/c,
andw(q)5 3

8 (11q2) is the angular distribution of the spon
taneously emitted radiation. The terms in Eq.~1! containing
g andg8 describe recoil effects of the spontaneously emit
photon of modulo wave vectork31 andk32, respectively. The
last term in Eq.~1! describes the cavity losses, whereb̂ and
b̂† are the annihilation and creation operators of a photon
the cavity mode. The HamiltonianĤ(t)5Ĥ01ĤI(t) is com-
posed of the free Hamiltonian

Ĥ05\nâ†â1\vCb̂†b̂1(
i 51

4

\v i Âi i , ~2!
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whereâ andâ† are the annihilation and creation operators
quanta of vibrational motion, and the interaction Ham
tonian of the atom with the lasers and the cavity field,

Ĥ I~ t !

\
5V inc~ t !ei (kincx̂2v inct)Â211V1ei [k1x̂2(v11dv1)t]Â42

1V2ei (k2x̂2v2t)Â311g cos~kCx̂1wC!b̂Â411H.c.

~3!

HereV1 , V2, andV inc are the Rabi frequencies of the firs
second, and incoherent laser, respectively. Moreover,g is the
coupling strength between the cavity mode and theu1&↔u4&
transition. The phasewC describes the position of the ha
monic trap with respect to the cavity standing wave. Mo
over, Âi j 5u i &^ j u ( i , j 51, . . . ,4) are flipoperators for elec-
tronic transitions u j &→u i &, and the amplitude of the
incoherent laser is given by

V inc~ t !5V ince
iw(t), ~4!

wherew(t) is a stochastic phase.
In this scheme, a population inversion is obtained by co

bining a cooling mechanism with a resonant incoherent la
drive. The second laser together with the spontaneous e
sionsg,g8 produce the cooling mechanism for the motion
state of the ion. The incoherent laser is used to destroy
herence between levelsu1& and u2& and it saturates the tran
sition u1&↔u2&. We will show that the cooling to the mo
tional ground state together with the saturation provides
desired population inversion on the first vibrational sideba
that is, theu2,k&↔u1,k11& transitions, wherek50, . . . ,̀
labels the vibrational states.

In order to eliminate fast oscillating terms in the dynam
described by the Hamiltonian given in Eq.~3!, it is conve-

FIG. 1. Scheme for the vibronic laser. A trapped ion is plac
inside a high-finesse optical cavity. The first laser of frequencyv1

and the cavity mode of frequencyvC provide a Raman coupling
between the electronic levelsu1& and u2&, here detuned byD from
the intermediate levelu4&. The frequency differencevC2v1 is
tuned close tov212n, wheredv1 is an adjustable frequency shi
for the first laser. A second laser of frequencyv2 is tuned to the first
red sideband relative to the transitionu1&↔u3&. The dipole relax-
ation rates from levelu3& to level u1& andu2& areg andg8, respec-
tively, andk is the photon escape rate of the cavity. An incoher
field of frequencyv inc is resonant to the transitionu1&↔u2&.
1-2
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SINGLE-TRAPPED-ION VIBRONIC RAMAN LASER PHYSICAL REVIEW A65 013811
nient to change into the interaction picture with respect
Ĥ02\DÂ44. This yields the following interaction Hamil
tonian:

Ĥ int~ t !

\
5$V inc~ t !eik incx̂(t)Â211V1ei [k1x̂(t)2dv1t]Â42

1V2ei [k2x̂(t)1nt]Â311g cos@kCx̂~ t !1wC#

3eintb̂Â411H.c.%1DÂ44, ~5!

where now thex̂ operator is time-dependent

x̂~ t !5A \

2Mn
~ âe2 int1â†eint!, ~6!

with M being the mass of the ion. From Eq.~1! we calculate
the differential equations for the electronic density-mat
elements^ i u%̂u j & and insert the adiabatically solved of
diagonal elements, due to the far-detuned situation, into
equations for the other elements. In the weak driving-fi
limit it is possible to obtain an equation describing the ev
lution of the electronicu1&↔u2& transition together with the
quantized vibrational center-of-mass motion and the ca
field. Similar to the derivations in@19#, we keep only the
leading terms in the Rabi frequencies and we adiabatic
eliminate%̂33 and%̂44. In this way, it is possible to obtain th
following master equation for the density operatorr̂ that
describes the electronic degrees of freedomu1& and u2&, the
motional subsystem, and the cavity field:

]r̂

]t
5

1

i\
@Ĥ8r̂2 r̂Ĥ8 †#1E

21

1

dqĴq
(1)~ t !r̂ Ĵq

(1)†~ t !

1E
21

1

dqĴq
(2)~ t !r̂ Ĵq

(2)†~ t !1 ĴCr̂ ĴC
† . ~7!

The non-Hermitian HamiltonianĤ8 reads

Ĥ8

\
5

Ĥeff

\
1@V inc~ t ! f̂ 0~ â†â;h inc!Â211H.c.#

2
i

2 H 4uV2u2

~g1g8!
h2

2â†g@ f̂ 1~ â†â;h2!#2âÂ111kb̂†b̂J ,

~8!

where the operator functionsf̂ m are given by

f̂ m~ â†â;h!5 (
n50

`

un&^nu
n!

~n1m!!
Ln

(m)~h2!e2h2/2, ~9!

with Ln
(m)(x) being generalized Laguerre polynomials. In o

der to write Eq.~8!, we have eliminated fast-oscillating term
in the interaction with the incoherent laser and the sec
laser, see Appendix A. Hereh inc andh2 are the Lamb-Dicke
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parameters related tokinc and to k2, respectively (h2

5A\k2
2/2Mn). Moreover, the effective HamiltonianĤeff is

expressed by

Ĥeff5Ĥeff
R 1Ĥeff

S , ~10!

where the Raman HamiltonianĤeff
R and the Stark-shift term

Ĥeff
S are given, before elimination of fast-oscillating term

by

Ĥeff
R ~ t !

\
52VR cos„kCx̂~ t !1wC…e

i [k1x̂(t)2(dv11n)t]

3b̂†Â121H.c., ~11!

where

VR5
g* V1

D
~12!

is the Raman coupling constant, and

Ĥeff
S ~ t !

\
52

ugu2

D
@cos„kCx̂~ t !1wC…#

2b̂†b̂Â112
uV1u2

D
Â22.

~13!

The three different jump operators in Eq.~7! are defined
by

Ĵq
(1)~ t !5A 4gw~q!

~g1g8!2
V2eiqk31x̂(t) f̂ 1~ â†â;h2!~h2â!Â11,

~14!

Ĵq
(2)~ t !5A4g8w~q!

~g1g8!2
V2eiqk32x̂(t) f̂ 1~ â†â;h2!~h2â!Â21,

~15!

ĴC5Akb̂. ~16!

The jump operatorsĴq
(1) andĴq

(2) describe the cooling effect
due to electronic transitionsu1&→u1& and u1&→u2&, respec-
tively ~the transitions include the levelu3&, which was adia-
batically eliminated, and therefore does not appear exp
itly !. The jump operatorĴC describes a photon emission fro
the cavity, i.e., the annihilation of a photon in the cav
mode. Moreover, the stochastic phase related to the am
tude of the incoherent laser, see Eq.~4!, satisfies the equation

w~ t1dt!5w~ t !1A2G inc dW, ~17!

whereG inc is the linewidth of the laser anddW is the incre-
ment of the corresponding Wiener process.

After elimination of fast-oscillating terms, see Append
A, Eq. ~13! transforms into
1-3
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Ĥeff
S

\
52

ugu2

2D
@11cos~2wC! f̂ 0~ â†â;h2C!#

3b̂†b̂Â112
uV1u2

D
Â22, ~18!

where h2C is the Lamb-Dicke parameter related to 2kC.
Moreover, if we choosedv150, Eq. ~11! becomes, unde
the same approximation, see Appendix A,

Ĥeff
R

\
52

1

2
VReiwC~ ih1â†! f̂ 1~ â†â;h1!b̂†Â121H.c.,

~19!

whereh1 is the Lamb-Dicke parameter related to (k11kC)
and we have neglected the terms withh2 , the Lamb-Dicke
parameter related to (k12kC), since h2!1. It is also
often useful to neglect the constant Stark-shift te
2\(uV1u2/D)Â22 in Eq. ~18!. This can be done as describe
in Appendix A. In this way we obtain the following expres
sion for Ĥeff

S :

Ĥeff
S

\
52

ugu2

2D
@11cos~2wC! f̂ 0~ â†â;h2C!#b̂†b̂Â11.

~20!

III. QUANTUM-TRAJECTORY SIMULATIONS

A direct solution of Eq.~7! is not an easy analytical task
This is why we are led to use numerical methods in orde
solve this equation. Using Eqs.~14!–~16!, it is easy to see
that

E
21

1

dqĴq
(1)†~ t !Ĵq

(1)~ t !5
4guV2u2

~g1g8!2
h2

2â†@ f̂ 1~ â†â;h2!#2âÂ11,

~21!

E
21

1

dqĴq
(2)†~ t !Ĵq

(2)~ t !5
4g8uV2u2

~g1g8!2
h2

2â†@ f̂ 1~ â†â;h2!#2âÂ11,

~22!

ĴC
† ĴC5kb̂†b̂. ~23!

This shows that Eq.~7! is in the so-called Lindblad form, so
that it can be solved by quantum-trajectory methods@20–24#.

In order to perform our quantum-trajectory simulation
we proceed as follows. We start with the ion in its motion
and electronic ground state, and with no photon inside
cavity field, so that the initial quantum stateuc(0)&
5u1,0,0&, where the first index in the ket corresponds to t
electronic state, the second to the motional state, and
third to the cavity field, respectively. For each trajectory
start from the initial stateuc(0)& and then we integrate th
Schrödinger equation

i\
]uc&
]t

5Ĥ8uc&. ~24!
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BecauseĤ8 is non-Hermitian, the normiuc(t)&i2 is not con-
stant, and it is actually decaying from its initial value equ
to 1. To determine the time when a jump occurs, we proc
as follows@21#. A jump occurs when 12iuc(t)&i25e, with
eP@0,1# being a random number drawn from a uniform d
tribution. To determine which one of the three jumps occu
we make use of the relative probabilitiesP1 , P2, andP3
for jump one, two, and three to occur, respectively, given

P15
1

P
^c~ t !u E

21

1

dqĴq
(1)†~ t !Ĵq

(1)~ t !uc~ t !&, ~25!

P25
1

P
^c~ t !u E

21

1

dqĴq
(2)†~ t !Ĵq

(2)~ t !uc~ t !&, ~26!

P35
1

P
^c~ t !uĴC

† ĴCuc~ t !&, ~27!

where

P5^c~ t !u E
21

1

dq@ Ĵq
(1)†Ĵq

(1)1 Ĵq
(2)†Ĵq

(2)#1 ĴC
† ĴCuc~ t !&.

~28!

Writing uc(t)&5u1&uc1(t)&1u2&uc2(t)&, where nowuc1(t)&
and uc2(t)& refer to the vibrational and cavity modes, an
using Eqs.~21!–~23!, we can write these probabilities as

P15
1

P

4guV2u2

~g1g8!2
h2

2^c1~ t !uâ†@ f̂ 1~ â†â;h2!#2âuc1~ t !&,

~29!

P25
1

P

4g8uV2u2

~g1g8!2
h2

2^c1~ t !uâ†@ f̂ 1~ â†â;h2!#2âuc1~ t !&,

~30!

P35
k

P
^c~ t !ub̂†b̂uc~ t !&, ~31!

where

P5
4 h2

2uV2u2

~g1g8!
^c1~ t !uâ†@ f̂ 1~ â†â;h2!#2âuc1~ t !&

1k^c~ t !ub̂†b̂uc~ t !&. ~32!

If a jump one, Eq.~14!, or a jump two, Eq.~15!, occurs, we
have to use a new random numberqP@21,1# drawn from
the distribution given byw(q)5 3

8 (11q2). After the action
of a jump operator, the state is renormalized and the n
jump is determined again as described above. We repeat
procedure forN trajectories. The density matrix at a timet is
obtained by averaging over all realizations

r̂~ t !5
1

N (
i 51

N

uc̃ ( i )~ t !&^c̃ ( i )~ t !u, ~33!

with uc̃ ( i )(t)&5uc ( i )(t)&/iuc ( i )(t)&i .
1-4
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IV. LASING REGIME

In this section, we are going to demonstrate that, un
chosen conditions, the system considered here allows on
approach a lasing regime. We will first demonstrate t
population inversion is obtained even in the presence of
losses inherent to the system, including the cavity loss
spontaneous emission. The quantum-trajectory simulat
render it possible to study the statistics of both the intrac
ity field and the external field as well as the intensity cor
lation behavior of the external field. It will be shown that
mean number of cavity photons between two and thre
sufficient to obtain typical signatures of a transition from
super-Poissonian, bunched light source to a Poissonian la
regime.

In the simulations we have chosen the followin
parameters. For the Lamb-Dicke parametersh15h2C
50.2, h inc50.001, h250.14. Moreover, V inc5G inc51
MHz, k50.1 MHz, D5600 MHz, n5100 MHz, V2510
MHz, and g5g855 MHz. The parameterV1 was chosen
equal tog and its range was tested from a value ofV15g
540 MHz to a value ofV15g560 MHz. This corre-
sponds to varying the Raman couplingVR from a value
VR52.66 MHz to a valueVR56.0 MHz. Note that the
condition V2 ,g!n is satisfied, so that we have a resolv
sideband. Moreover,h2V2!(g1g8) andV1 ,g!D so that
the adiabatic elimination of the levelsu3& and u4& can be
done.

It is also important to carefully consider the Stark-sh
term in Eq.~20!, which depends on both the number of ph
tons and the motional excitation. In the Lamb-Dicke lim
where f̂ 0(â†â;h2C)→1, the contribution of the Stark shif
disappears if we choose for the phase of the cavity the v
wC5p/2. In this section we will choosewC5p/2, even if
we haveh2C50.2. This allows us to minimize the effects o
the motion- and field-dependent Stark shift. We get then

Ĥeff

\
5F1

2
VRh1â† f̂ 1~ â†â;h1!b̂†Â121H.c.G

2
ugu2

2D
@12 f̂ 0~ â†â;h2C!#b̂†b̂Â11, ~34!

and the dynamics of the system is considerably simplifi
The consequences of more dominant Stark shifts will
studied in Sec. V.

The density matrixr̂(t) used in the present section
obtained as discussed in Sec. III, i.e., from Eq.~33!. It can be
expressed in the basis of atomic and photon states using
notation

r̂~ t !5 (
i , j 50

2

(
k,l 50

`

(
m,n50

`

r i ,k; j ,l
m;n u i ,k,m&^ j ,l ,nu, ~35!

whereu i &, u j & are the electronic levels,uk&, u l & are number
states for the vibrational motion, andum&, un& denote num-
ber states for the cavity mode.
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A. Electronic-state inversion

Photon emission into the cavity mode is obtained
the Raman coupling. This is described by the te

â† f̂ 1(â†â;h1)b̂†Â12 in Ĥeff , see Eq.~34!. The electronic
transitionu2&→u1& is accompanied by the creation of both
photon in the cavity mode and a quantum of vibrational m
tion. Of course, there is also a competing mechanism
tends to subtract photons from the cavity, formally t
Hermitian conjugate in Eq. ~34!, i.e., the term
f̂ 1(â†â;h1)âb̂Â21. Photon emission dominates over abso
tion if there is a vibronic population inversion, that is,

r2,k;2,k.r1,k11;1,k11 , k50, . . . ,̀ , ~36!

with

r i ,k; i ,k~ t !5 (
m50

`

r i ,k; i ,k
m;m . ~37!

The cooling to the motional ground state together with
saturation due to the incoherent laser provides the des
population inversion on the first vibrational sideband, that
the u2,k&↔u1,k11& transitions. In Fig. 2, the population in
version is shown fork50. Due to the cooling mechanism
this is the dominant transition, but also fork.0 a population
inversion is obtained in the simulations.

B. Intracavity field

The average number of photons inside the cavity is
tained fromr̂(t) via

^b̂†b̂& t5Tr @ b̂†b̂r̂~ t !#. ~38!

FIG. 2. Electronic-state inversionr2,0;2,0(t)2r1,1;1,1(t). The fig-
ures are obtained for different values of the parameterV15g: 40
MHz ~1!, 50 MHz ~2!, and 60 MHz~3!. The ensemble average i
performed over 5000 trajectories.
1-5
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As shown in Fig. 3, after a transient regime, which is pra
tically concluded after less than ten cavity decay times
stationary regime is reached. As the Raman coupling c
stantVR , see Eq.~12!, increases from a value of 2.66 MH
to a value of 6.0 MHz, the average number of photons ins
the cavity goes from a value of approximately 0.8 to a va
of approximately 3.5.

In order to characterize the intracavity field, the me
number of cavity photons is of course not sufficient. It
useful to consider the photon-number probability distribut
Pn . This is obtained fromr̂(t) by

Pn5Tr @ un&^nur̂~ t !#. ~39!

This distribution is shown, for different values of the Ram
coupling constant, in Fig. 4. From it one can calculate
expression for the relative variance of the photon num
statistics, (Dn)2/n̄, where (•••)5(n•••Pn . As is well
known, for a Poissonian distribution(Dn)2/n̄51. In our
case,Pn is changed from a super-Poissonian distribution t
Poissonian distribution by increasing the Raman coup
constant.

C. External field

Let us consider a detector situated outside the cavity.
a detector of unit efficiency every emission of a photon fro
the cavity produces a photoelectric count or a ‘‘click’’ in th
detector. To characterize the field emitted from the cav
one has to analyze the statistics of the photoelectric cou
The photon-number probability distributionPn(t,T) is ob-
tained by considering a given time intervalT ~integration
time!, and by looking at how many clicks are recorded in t
time interval@ t,t1T). The number of clicks registered in
given time interval is not constant and its value is a num
that is distributed around an average value. This aver
value increases with the size of the time interval. For

FIG. 3. Average number of photons inside the cavity, for diff
ent values of the parameterV15g: 40 MHz ~1!, 50 MHz ~2!, and
60 MHz ~3!. The ensemble average is performed over 5000 tra
tories.
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simple case of a coherent light source of constant intensitĪ ,
it is known thatPn(T) is given by a Poissonian distributio

Pn~T!5
n̄n

n!
exp~2n̄!, ~40!

wheren̄ is proportional toĪ T.
To obtain the distributionPn(T) we have proceeded a

follows. We have chosen a time intervalT in the stationary
regime region, i.e., fort.10/k, and we have counted fo
each trajectory how many clicks were registered in@ t,t
1T). In our case, this is equivalent to the number of cav
jumps occurring in this time interval. This number differs,
general, from one trajectory to the other. Repeating this p
cedure for a large number of trajectories, a probability d
tribution is obtained. The photon-number probability dist
butions are shown, for different values of the Ram
coupling constant, in Fig. 5, where the integrating time w
chosenT51/k. From these distributions we can obtain th
relative variance of the click number statistics. A transiti
from a super-Poissonian light source to a coherent on
observed.

Let us compare the photon number distributions ins
and outside the cavity as given in Fig. 4 and Fig. 5, resp

FIG. 4. Photon-number probability distribution for the photo
inside the cavity at the timet570/k. The figures are for different
values of the parameterV15g: 40 MHz ~1!, 50 MHz ~2!, and 60

MHz ~3!. The values for(Dn)2/n̄ are 1.84~1!, 1.73 ~2!, and 1.26
~3!. The ensemble average is performed over 5000 trajectories

c-
1-6
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tively. It is obvious that the relative noise,(Dn)2/n̄, in the
output field is less than in the intracavity field. To understa
this fact, we remind the reader of the basic principles
photocounting theory; for details, see, e.g.,@25#. In particu-
lar, for recording the statistics of photoelectric counts o
traveling light field, one needs to choose a measurement-
interval T over which the events are counted. By increas
the size of this interval, the statistics becomes more and m
Poissonian. In our case, the chosen interval size ofT51/k is
already close to the correlation time of the field, which e
plains the tendency of the output field to approach a Pois
nian statistics.

Another fundamental quantity to characterize the exter
field is the second-order intensity correlation functi
g(2)(t,t1t). It corresponds to the joint probability for re
cording photoelectric counts in the intervals@ t,t1Dt) and
@ t1t,t1t1Dt), normalized by the probability for two in
dependent photoelectric measurements. More precisely
us consider the multicoincidence rateswm(t1 ,t2 , . . . ,tm),
where wm(t1 ,t2 , . . . ,tm)Dt1Dt2•••Dtm is the probability
that one photoelectric count is recorded in each of the n
overlapping intervals (t1,t2,•••,tm):

@ t1 ,t11Dt1!,@ t2 ,t21Dt2!, . . . ,@ tm ,tm1Dtm!.

FIG. 5. Photon-number probability distribution for the photo
detected outside the cavity for an integration timeT51/k. The
figures are for different values of the parameterV15g: 40 MHz

~1!, 50 MHz ~2!, and 60 MHz~3!. The values for(Dn)2/n̄ are 1.74
~1!, 1.58~2!, and 1.19~3!. The ensemble average is performed ov
5000 trajectories.
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No restriction is placed on the number of counts record
outside these intervals. The normalized second-order co
lation function is defined in terms of these multicoinciden
rates as@25#

g(2)~ t,t1t!5
w2~ t,t1t!

w1~ t !w1~ t1t!
. ~41!

If the light source is in a stationary regime,g(2)(t,t1t) is
independent oft, and we have

g(2)~ t,t1t!5g(2)~t!. ~42!

Photon bunching and antibunching are traditionally defin
in term of this quantity. In the simulations, in order to obta
g(2)(t), we have considered for each trajectory only the ph
toemissions that have occurred at a timet.10/k. According
to Fig. 3, we are already in a stationary regime. If a click
recorded at timet, we look to see if another click has bee
recorded in the time interval@ t1t,t1t1Dt). No restriction
is placed on the number of counts recorded in the inter
(t,t1t). In order to ensure that only one click is register
in the interval@ t1t,t1t1Dt), it is necessary forDt to be
small in comparison to the cavity decay time. We have c
sen Dt50.05/k. The results forg(2)(t) obtained from the
simulations, for different values of the Raman coupling co
stant, are shown in Fig. 6. Note that, as the photon-num
distribution evolves from super-Poissonian to Poisson
~see Fig. 5!, photon bunching is reduced, in agreement w
our expectation.

V. NONCLASSICAL REGIME

In this section, we will show how it is possible to reach
lasing regime with a clear nonclassical behavior. In order
do so it is necessary to tackle in a more direct way
motion- and field-dependent Stark-shift term of Eq.~18!.
This can be done by appropriately choosing the adjusta
frequency shiftdv1. As shown in Appendix A, it is possible
to choosedv1 so as to remove the constant Stark-shift te

r

FIG. 6. Second-order intensity correlation for different values
the parameterV15g: 40 MHz ~1!, 50 MHz ~2!, and 60 MHz~3!.
The ensemble average is performed over 5000 trajectories.
1-7
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2\(uV1u2/D)Â22 of Eq. ~18!. In this section, we will choose
dv1 so as to remove not only the constant Stark-shift te
but also set to zero the contribution from the motion- a
field-dependent Stark-shift term for a chosen Raman tra
tion u1,k11,m11&↔u2,k,m&, that is,

dv15
uV1u2

D
2

ugu2

2D
@11cos~2wC!L (k11)

(0) ~h2C
2 !e2h2C

2 /2#

3~m11!. ~43!

The chosen transition will be tuned to resonance, while ot
transitions remain off-resonance. As is shown in Appendix
when we choose this resonance condition the effec

Hamiltonian becomesĤeff8 5Ĥeff
R 1Ĥeff

S8 , whereĤeff
R is given

by Eq. ~19! and

Ĥeff
S8

\
52

ugu2

2D
$@11cos~2wC! f̂ 0~ â†â;h2C!#b̂†b̂

2@11cos~2wC!L (k11)
(0) ~h2C

2 !e2h2C
2 /2#~m11!%Â11.

~44!

To get insight into the state-selectivity of the present d
namics, let us consider the flip operator

Â2,k8;1,k811
m8;m811

5u2,k8,m8&^1,k811,m811u ~45!

for an arbitrary Raman transition u1,k811,m8

11&↔u2,k8,m8&. The commutator betweenÂ2,k8;1,k811
m8;m811 and

the Stark-shift HamiltonianĤeff
S8 , see Eq.~44!, gives

@Â2,k8;1,k811
m8;m811 ,Ĥeff

S8#52\
ugu2

2D
Â2,k8;1,k811

m8;m811

3$@11cos~2wC!L (k811)
(0)

~h2C
2 !e2h2C

2 /2#

3~m811!2@11cos~2wC!L (k11)
(0)

3~h2C
2 !e2h2C

2 /2#~m11!%, ~46!

so that the evolution caused by the Stark shift alone is

Â2,k8;1,k811
m8;m811

~ t !5Â2,k8;1,k811
m8;m811 eiDvt, ~47!

where

Dv5
ugu2

2D
$@11cos~2wC!L (k811)

(0)
~h2C

2 !e2h2C
2 /2#~m811!

2@11cos~2wC!L (k11)
(0) ~h2C

2 !e2h2C
2 /2#~m11!% ~48!

is the frequency Stark shift for theu1,k811,m8
11&↔u2,k8,m8& transition. In the following we will choose
k5m50 in Eq. ~43!, which tunes theu1,1,1&↔u2,0,0& tran-
sition on resonance. The reason to consider this case is
cause, due to the cooling mechanism, the transi
u1,1,1&↔u2,0,0& is the dominant one. Moreover, no mo
than a single cavity photon exists for the states correspo
01381
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ing to this resonance condition. In this regime, one sho
expect the laser system to emit antibunched photons. Ha
set this chosen transition on resonance, let us see
big the frequency shift is for the neighboring transitio
u1,2,2&↔u2,1,1&. This frequency shift is obtained by settin
k85m851 in Eq. ~48!,

Dv5
ugu2

2D
$2@11cos~2wC!L2

(0)~h2C!e2h2C
2 /2#

2@11cos~2wC!L1
(0)~h2C

2 !e2h2C
2 /2#%. ~49!

Substituting in this equation the expressions for the Lague
polynomials, we obtain

Dv5
ugu2

2D
@11cos~2wC!~123h2C

2 1h2C
4 !e2h2C

2 /2#.

~50!

In our scheme we useh2C50.2, so thath2C
2 !1. This gives

Dv.
ugu2

2D
@11cos~2wC!#. ~51!

For wC50, which corresponds to setting the position of t
center of the trap on an antinode of the standing wave of
cavity field, the valueDv5ugu2/D attains its maximum.

To get some idea about the values of the parameters
consider the situation forg560.0 MHz, D5600.0 MHz,
and n5100 MHz. In this case, the maximum separati
(wC50) of the neighboring state relative to the chosen st
of interest isDv56.0 MHz. The minimum separation (wC

5p/2) is Dv.3ugu2h2C
2 /(2D)50.36 MHz. In this case,

the transitionu1,2,2&↔u2,1,1& is quite close to resonance.
Having chosen in Eq.~44! the resonance condition for th

transitionu1,1,1&↔u2,0,0&, we have seen from Eq.~51! how
the frequency shiftDv for the u2,1,1&↔u1,2,2& transition
can be changed by varying the position of the center of
trap with respect to the standing-wave cavity field. The d
pendence of this frequency shift on the phasewC results in a
selective transition for the casewC50, and basically no se
lective transition for the casewC5p/2. This selectivity has
an evident impact on the cavity-field properties. In Fig. 7,
see how, changing only the phase of the cavity field,
observe a significant change of the average number of p
tons inside the cavity. Figure 8 displays, on the other ha
how the strongly selective tuning (wC50) yields a clear
nonclassical regime, with sub-Poissonian statistics in
number probability distribution of the intracavity field
Moreover, sub-Poissonian statistics and antibunching oc
in the external field, as shown in Fig. 9 and Fig. 10, resp
tively. These results show how, by appropriately handling
motion- and field-dependent Stark shift, one has the poss
ity to significantly influence, through the choice of the pha
of the cavity field, the properties of the intracavity and t
emitted field.

Let us again compare the statistics of the intracavity fi
~Fig. 8! with that of the external field~Fig. 9!. As already
discussed in the previous section, the integration over a fi
1-8
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FIG. 7. Average number of photons inside the cavity. The va
for V15g is 60 MHz. The figures are for different values of th
parameterwC : 0 ~1!, p/4 ~2!, andp/2 ~3!. The ensemble average
performed over 5000 trajectories.

FIG. 8. Photon-number probability distribution for the photo
inside the cavity at the timet570/k. The value forV15g is 60
MHz. The figures are for different values of the parameterwC : 0

~1!, p/4 ~2!, p/2 ~3!. The values for(Dn)2/n̄ are 0.80~1!, 0.84~2!,
and 1.28~3!. The ensemble average is performed over 5000 tra
tories.
01381
measurement interval of sizeT in the case of the externa
field leads to a photocounting statistics that is closer t
Poissonian one than that for the intracavity field. Con
quently, for a sub~super! -Poissonian number statistics of th
intracavity field, the noise in the output statistics is expec
to be increased~decreased!, in full agreement with the results
of our simulations.

VI. SUMMARY AND CONCLUSIONS

We have presented a scheme for a single-trapped-ion
bronic Raman laser where both the laser mode and
center-of-mass motion of the ion are quantized. The qua
zation of the center-of-mass motion in our scheme is a p
requisite for obtaining the inversion that is necessary for
lasing phenomenon. The combination of resolved-sideb
laser cooling with an incoherent pump~on the resolved elec
tronic carrier! saturating the vibronic transitions allows on
to realize population inversions on the first vibronic sid
bands. These inversions are used for lasing in a Ram
scheme, in which a classical field is combined with a qu
tized cavity field mode to realize the coupling between
vibronic transitions and the cavity field. Moreover, the mod
accounts for cavity losses and the spontaneous electr
transitions of the ion that are needed for sideband cool

e

c-

FIG. 9. Photon-number probability distribution for the photo
detected outside the cavity for an integration timeT50.25/k. The
value forV15g is 60 MHz. The figures are for different values o

the parameterwC : 0 ~1!, p/4 ~2!, p/2 ~3!. The values for(Dn)2/n̄
are 0.96~1!, 0.97 ~2!, and 1.06~3!. The ensemble average is pe
formed over 5000 trajectories.
1-9
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We also take into consideration the nonlinearities that in g
eral occur in the light-field assisted vibronic interaction
the trapped ion. In particular, we analyze the role played
nonlinear Stark shifts depending on the quantum states o
electron, the quantized motion of the ion, and the cav
field.

After deriving the basic master equation for the las
model, quantum-trajectory methods have been used fo
solution. When the Stark-shift effects are minimized, a tr
sition of the system from a super-Poissonian and pho
bunched light source to a Poissonian lasing regime is
served as the strength of the Raman coupling is increa
Such a transition to a lasing regime occurs already when
mean number of cavity photons is as small as about thre

When the nonlinear Stark shift is appropriately adjus
by changing the trap position, one can apply this effect
realize the laser action on a preferential vibronic transiti
the other vibronic transitions being off-resonant. For e
ample, one may support the laser action in such a man
that it is most probable to have zero or one photon inside
cavity. In such a case the intracavity field becomes s
Poissonian. Consequently, also the output field is s
Poissonian and displays photon antibunching.
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APPENDIX A

The approximate non-Hermitian Hamiltonian, Eq.~8!,
and the relative effective Hamiltonian, Eq.~10!, have been
obtained using the following considerations@15#. When we
have a term askx̂(t) we write it as

kx̂~ t !5h~ â†eint1âe2 int!, ~A1!

whereh is the Lamb-Dicke parameter related tok. Then we
use the Baker-Campbell-Hausdorff formula

exp~ ihâ†eint1 ihâe2 int!

5exp~ ihâ†eint!exp~ ihâe2 int!

3expS 2
h2

2
@ â,â†# D . ~A2!

Using Eqs.~A1! and ~A2! we can obtain, neglecting term
oscillating with the vibrational frequencyn, the following
formula:

exp„ikx̂~ t !2mnt)→H ~ ihâ†!mf̂ m~ â†â;h!, m>0

f̂ umu~ â†â;h!~ ihâ! umu, m,0,

~A3!

where f̂ m(â†â;h) is defined in Eq.~9!. Using this result it is
easy to see that the two exponentials in Eq.~5! related with
the incoherent laser and the cooling laser can be written

eik incx̂(t)→ f̂ 0~ â†â;h inc!, ~A4!

ei [k2x̂(t)1nt]→ f̂ 1~ â†â;h2!~ ih2â!. ~A5!

Equations~A4! and ~A5! are used in Eq.~5! to obtain Eq.
~8!. The terms related to the Raman coupling in Eq.~5!, i.e.,
the terms withg and V1, have to be treated together. The
produce the effective HamiltonianĤeff , see Eq.~10!, with
the expressions forĤeff

R (t) andĤeff
S (t) given, before neglect-

ing oscillating terms, by Eq.~11! and Eq.~13!, respectively.
If we choosedv150, see Eq.~11!, and use Eq.~A3!, it is
easy to see that

cos„kCx̂~ t !1wC…e
i [k1x̂(t)2nt]

5
1

2
~ei [kCx̂(t)1wC]1e2 i [kCx̂(t)1wC] !ei [k1x̂(t)2nt]

'
eiwC

2
~ ih1â†! f̂ 1~ â†â;h1!1

e2 iwC

2
~ ih2â†! f̂ 1~ â†â;h2!,

~A6!

r

1-10
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where

~k11kC!x̂~ t !5h1~ â†eint1âe2 int!, ~A7!

~k12kC!x̂~ t !5h2~ â†eint1âe2 int!. ~A8!

Moreover, we can obtain in the same way

@cos„kCx̂~ t !1wC…#
2'

1

2
@11cos~2wC! f̂ 0~ â†â;h2C!#,

~A9!

where

2kCx̂~ t !5h2C~ â†eint1âe2 int!. ~A10!

Using Eq.~A9! the Stark-shift HamiltonianĤeff
S (t) given by

Eq. ~13! is transformed into Eq.~18!. Moreover, using Eq.
~A6!, the Raman HamiltonianĤeff

R (t) given by Eq.~11! is
transformed into Eq.~19!, where we have neglected the ter
with h2 in Eq. ~A6! because we assume thatuk12kCu!k1.

Let us now consider the Stark-shift HamiltonianĤeff
S

given by Eq.~18!. It is often useful to neglect the consta
Stark-shift term2\(uV1u2/D)Â22 in this equation. Formally,
this is equivalent to choosing an appropriate frequency s
dv1 for the first laser. Changing to an interaction pictu
with respect to 2\(uV1u2/D)Â22 and choosing dv1

5uV1u2/D, we obtain for the effective HamiltonianĤeff de-
fined in Eq.~10!, the expression, before elimination of osc
lating terms,

Ĥeff~ t !

\
5@2VR cos„kCx̂~ t !1wC!ei [k1x̂(t)2nt] b̂†Â121H.c.]

2
ugu2

D
@cos„kCx̂~ t !1wC…#

2b̂†b̂Â11. ~A11!

Using the substitutions~A6! and~A9! we obtain the follow-
ing expressions forĤeff

R and Ĥeff
S :

Ĥeff
R

\
52

1

2
VReiwC~ ih1â†! f̂ 1~ â†â;h1!b̂†Â121H.c.

~A12!

and

Ĥeff
S

\
52

ugu2

2D
@11cos~2wC! f̂ 0~ â†â;h2C!#b̂†b̂Â11,

~A13!

as given by Eq.~19! and Eq.~20!.

APPENDIX B

As we have seen in Appendix A, it is possible to choo
dv1 so as to remove the constant Stark-shift te
2\(uV1u2/D)Â22 from Eq. ~18!. In this appendix, we will
see how we can choosedv1 so as to remove not only th
01381
ift

e

constant Stark-shift term, but also set to zero the contribu
from the photon- and motional-number-dependent Stark s
for a chosenu1,k11,m11&↔u2,k,m& transition. Let us con-
sider Ĥeff as given by Eq.~10!, together with Eq.~11! and
Eq. ~13!. We now change to an interaction picture with r
spect toĤ08 given by

Ĥ08

\
52

ugu2

2D
@11cos~2wC!L (k11)

(0) ~h2C
2 !e2h2C

2 /2#

3~m11!Â112
uV1u2

D
Â22. ~B1!

From the Heisenberg equation of motion for a generic ope
tor F̂ I in the interaction picture

i\
dF̂I

dt
5 i\

]F̂ I

]t
1@ F̂ I,Ĥ08#, ~B2!

we obtain then

Â12
I ~ t !5expH i F2

ugu2

2D
@11cos~2wC!L (k11)

(0) ~h2C
2 !e2h2C

2 /2#

3~m11!1
uV1u2

D G tJ Â12
I , ~B3!

where in the following we will useÂ12 for Â12
I . If we choose

for dv1 the value given in Eq.~43!, we obtain a new effec-
tive HamiltonianĤeff8 (t) given by the following expression:

Ĥeff8 ~ t !

\
5@2VR cos„kCx̂~ t !1wC…e

i [kLx̂(t)2nt] b̂†Â121H.c.#

2ugu2DH @cos„kCx̂~ t !1wC…#
2b̂†b̂

2
1

2
@11cos~2wC!L (k11)

(0) ~h2C
2 !e2h2C

2 /2#

3~m11!J Â11. ~B4!

At this point we neglect oscillating terms as done in A
pendix A. This yields

Ĥeff8

\
5@2 1

2 VReiwC~ ih1â†! f̂ 1~ â†â;h1!b̂†Â121H.c.#

2
ugu2

2D
$@11cos~2wC! f̂ 0~ â†â;h2C!#b̂†b̂

2@11cos~2wC!L (k11)
(0) ~h2C

2 !e2h2C
2 /2#~m11!%Â11,

~B5!

as given forĤeff8 5Ĥeff
R 1Ĥeff

S8 by Eq. ~19! and Eq.~44!.
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