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Teleportation of an atomic state between two cavities using nonlocal microwave fields
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Implementing the ideas of Bennett et al. [Phys. Rev. Lett. 70, 1895 (1993)], we present an experimentally
feasible scheme for the teleportation of an unknown atomic state between two high-Q cavities containing a
nonlocal quantum superposition of microwave field states. This experiment provides alternative tests of quan-
tum nonlocality involving high-order atomic correlations.

PACS number(s): 03.65.Bz, 32.80.—t, 42.50.Wm

Quantum nonlocality is one of the most striking predic-
tions of modern physics [2,3]. Two quantum-correlated sys-
tems cannot be considered to be independent even if they are
far apart. Local hidden variable theories lead to results con-
cerning correlation measurements in contradiction with the
quantum-mechanical predictions [3] verified in several ex-
periments [4].

Possible implications of quantum nonlocality have ranged
from cryptography [5] to computers [6]. More recently, Ben-
nett et al. [1] have shown that an entangled pair of spin-3
particles could be used, with the addition of information
transmitted through a classical channel, to teleport an un-
known quantum state from one observer to another. Telepor-
tation, according to their scheme, would involve measure-
ments made by one of the observers on four possible
independent entangled states, consisting of the particle to be
replicated and one of the spins of the correlated pair. Infor-
mation on these measurements, transmitted through classical
channels to the other observer, would allow him to recon-
struct the original state on the second spin of the correlated
pair, even though the original state remains necessarily un-
known to the first observer, since he disposes of only one
particle.

Cavity quantum electrodynamics provides new methods
to build and measure nonclassical coherent superpositions of
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states of the electromagnetic field [8]. It is in particular pos-
sible to prepare nonlocal ficld states simultaneously occupy-
ing two cavities [9,10]. We show here that such nonlocal
fields can be used to build a “teleportation machine”: an
atom, sent across the first cavity, has its quantum state rep-
licated on another atom sent across the second cavity. As
opposed to previous discussions of this question, we describe
in a concrete way the sequence of measurements necessary
to teleport the state. We also estimate the efficiency of detec-
tion necessary for teleporting a state with a certain precision.
Our discussion makes clear the fact that the proposed scheme
constitutes a new generation of high-order atomic correlation
experiments. Bell’s inequalities, as well as the experiments
discussed in [9], refer to measurements on correlated pairs of
particles. Teleportation involves on the other hand at least
three-atom correlations (the scheme proposed in this paper
involves actually a four-atom correlation).

A sketch of the teleportation experiment is displayed in
Fig. 1. The setup consists of two identical and initially empty
high-Q cavities (Cy and C,), and three atomic beams (C, A,
and B) made of identical two-level atoms (levels |e) and
|g)). The e— g transition is close to resonance with the cav-
ity mode frequency. After switching on beam C, the first
atom ¢ of this beam that crosses the two cavities establishes
the nonlocal correlation between them. The atom a to be
duplicated belongs to beam A, which crosses only C;. Iis
state is reconstructed on an atom b of beam B, which crosses
only C,. In practice, e and g must be circular Rydberg levels
with adjacent principal quantum numbers. Due to their
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FIG. 1. Sketch of the two-cavity teleportation experiment.

strong coupling to microwaves and their very long radiative
decay times, circular levels are ideally suited [11] for prepar-
ing and detecting long-lived correlations between atom and
field states. Atoms in circular Rydberg states, which can be
prepared on each beam at a given time with a well-defined
velocity, are counted with high efficiency by state-selective
field ionization detectors D,, D,, and D .. By applying
timed sequences of pulsed electric fields on the cavity mir-
rors, and taking advantage of the Stark effect of ¢ and g, the
atoms can be tuned in and out of resonance, making the
atom-cavity interactions resonant or dispersive during a pre-
set time interval. Auxiliary microwave zones (R;,R, on
beam A, R; on beam B) play the role of atomic state ‘“po-
larizers” and “analyzers” and are used to perform the ma-
nipulations required by the teleportation scheme. Finally, two
other microwave zones P, on beam A and P, on beam B are
employed to prepare the state to be teleported and to analyze
the fidelity of the teleportation process.

The teleportation machine is first prepared by sending
across both cavities an atom c in state |e). This atom is made
resonant with the cavities and undergoes, on the e—g tran-
sition, a 7r/2 pulse in C; and a w7 pulse in C,. This can be
easily achieved by properly setting, through Stark field ad-
justments, the times during which the atom is resonant with
each cavity. The atomic transitions are accompanied by cor-
responding photon number changes. When ¢ has undergone
the first m/2 pulse, the second cavity is still empty and the
“atom ¢+ C;” system is in a state which corresponds to a
linear superposition with equal weights of the e and g atomic
states correlated to zero and one photon, respectively, in
C,. If ¢ is still in level e after leaving C, in its vacuum state,
it will, with unit probability, be transferred to g by the
pulse in C, and leave a photon in the second cavity. If it
emits a photon in C and exits it in level g, it will be unaf-
fected by its coupling with the vacuum in C, and will leave
the second cavity empty. It is thus easily seen that the atom
always exits C, in state g, while the field is left in the en-
tangled state

[Py =(]0)4]1),+]1)1]0)2)/ V2 , 1)

where the index 1 or 2 refers to the first or second cavity,
respectively. The presence of one photon (|1)) in either one
of the cavities implies that the other is in the vacuum state

(]0)), with a maximal quantum entanglement between the
two possibilities. Once atom ¢ is detected in D, the “tele-
portation machine” is ready and one can send across C, the
atom a to be teleported.

This atom is prepared by the microwave zone P, in an
arbitrary e,g superposition |¢,)=c.le,)+c,lg,) (suppos-
edly unknown to the observers). The combined “atom
a+field” state is then the tensor product of |'¥_) and |¢,).
This product can be conveniently expanded as

1
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where we have introduced Bell’s basis [13] of the “atom
a+C” states:
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Each Bell state of “a+C;” is correlated with a certain su-
perposition of one- and zero-photon field states in C,, which
contains information on the state of the atom to be tele-
ported. Bennett et al.’s idea [1] transposed to our situation is
to perform a measurement on “a+ C;” which collapses this
system in one of the Bell states, automatically projecting the
C, field in one of the four combinations appearing in Eq. (2).
These combinations are obtained from the initial state |,)
by known unitary transformations of a two-level system in
which |0), and |1), have replaced |e,) and |g,). Our tele-
portation problem is thus twofold: (i) How to perform on
“a+ C,” a measurement whose eigenstates are given by Eq.
3? This important point was not addressed in [1] and only
partially solved in [12]. (ii) How to replicate on an atom b
the information contained in the C, field state ?

Let us start with the first question, which requires a two-
step approach and involves appropriate atomic manipulations
in zones R; and R,. These zones are first set so that a un-
dergoes 7/2 pulses in each of them. Furthermore, a is funed
to have a dispersive interaction with the field in C,;. This
setup is equivalent to a recently demonstrated Ramsey
atomic interferometer [11]. For a given setting of the micro-
wave in R, and R, the probability for an atom to undergo an
e— g transition exhibits fringes versus the photon number in
C,. Changing this photon number does indeed shift the
atomic transition frequency (light shift effect), which trans-
lates into a periodic change of the e — g transition probability
induced in the two separated oscillatory field zones Ry and
R,. By choosing properly the detuning between a and C,,
the phase of the fringes can be shifted by 7 when the photon
number varies by one unit. Moreover, the Ramsey interfer-
ometer can be adjusted so that the e — g transfer probability
is one when C; is empty (and thus zero when C, contains
one photon). Since the atom-field interaction is dispersive,
the photon number in the cavity always remains unchanged.
When a crosses the interferometer, the “a+ C” system thus
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undergoes the transformations: |e,)|0);— —|g,)|0)¢,
le) | D= ~le)D) 1, [g)[0)1—1e)0), g1

—|g4)| 1)1, which can be derived from the formulas given in
Ref. [8]. Applying these transformations to the Bell states of
Eq. (3a), one gets
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State selective detection of atom a by D, thus indicates
whether the a+ C system is in a “¥” or a “®” Bell state.

In order to completely determine the a+C, state, one
must now decide between the alternatives left for each pos-
sible outcome of the measurement on atom a. This can be
done by sending through the same system a second reference
atom a’, prepared in the [g) state. Fields in P, and R, are
now switched off and @’ is tuned to interact resonantly with
C, undergoing a 7 pulse and leaving the cavity empty if it
initially contains one photon. The second zone R, still pro-
duces a /2 pulse. The joint state of the system atom
a’+C, thus evolves in the following way:
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The first arrow in this equation refers to the transformation
undergone when a’ crosses C; and the second to the evolu-
tion in R,.

Therefore, after measuring atoms a and a’, one gets com-
plete information on the Bell state characterizing the
a+C, system, with the following correspondences:
ga:ga’_'*I'\I’“-)): ga:ea’_’l\P(_)>: ea:ga’_’lq)(+‘)>7
egreqr—| P,

We have then fulfilled the requirement (i), and, after the
measurement on the a¢,a’ atom pair, C, contains a field that,
within a known unitary transformation, replicates the un-
known state ¢,. If we want to replicate this state on an
atom, we must now address question (ii). Atom b, prepared
in state |g), is then sent across C, and tuned to resonance in
order to produce a 7 pulse if there is one photon in C,. In
this case, it leaves the cavity in the vacuum state:
lgs)1)2— |e5)|0),. On the other hand, nothing happens to
the system if C, is in the vacuum state before atom b crosses
it. In this way, the information stored in the field state is
completely transferred to atom b:

(a| 1)+ Bl0)) @ |gp)— (alep) + Blgp))®[0)2,  (6)

with a,f=*c,,*c,. Atom b thus leaves C, in a state
which differs from ¢, by a known unitary transformation.
Applying the inverse transformation in Rz, one can thus re-
construct the initial state, completing the teleportation
scheme. Note that the setting of the R; microwave zone re-
quires the knowledge of the a,a’ measurement outcomes,
which has to be transferred from D, to R; by a classical
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information channel (“wire” in Fig. 1). The teleportation
scheme is thus completed, in a realistic way, on atoms cross-
ing the two cavities separately.

We have assumed so far perfect atomic detection effi-
ciency, which is certainly not achieved in a real experiment.
Inefficient detection will affect the average success of the
teleportation scheme. In order to measure the fidelity of the
teleportation process, a stream of atoms a could be prepared
in a well defined state by P,, and the state of a beam of
atoms b could then be analyzed, with the help of the micro-
wave zone P, followed by the detector D, . Each measure-
ment would imply the sampling of a large number of detec-
tion events (which would involve preparing repetitively the
correlated two-cavity system and the measurements of atoms
a, a', and b on a large ensemble of particles, with at least
two different settings of zone P;). If the detection efficiency
is not unity, the result of these measurements will yield a
two-by-two density matrix p, which describes the state of
atom b, statistically averaged over all kinds of partially in-
efficient atomic detections. One could then compare the rep-
lica with the initial state by defining a teleportation fidelity
coefficient for a given state ¢, as the matrix element
I=(¢,|ps|b,). One can also define an “average” fidelity I
by averaging I over all possible states ¢, .

For perfect teleportation, we should have I =1. Easy esti-
mates of the possible values of this quantity in several situ-
ations are obtained by representing | ¢,) in terms of spherical
coordinates, which amounts to writing quite generally an
atomic state as | @) = cos(&2)|e) +sin(4/2)e’?|g), and

ba .2 0
I=cos? > p,,,‘,3,3+s1n2 = Pbes
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Suppose we reconstruct the state of particle » at random,
without having received any information from the first cav-
ity. This corresponds to p, equal to half the unit matrix and
I=1/2. Suppose now that the detection efficiency is unity,
but that only the first bit of information is used to reconstruct
the state (atom a’ is not detected). In this case, only the
®/¥ character of the Bell state is determined, and it is easy
to see from Eqs. (2) and (6) that the probabilities of finding
the atom in levels e and g are well reproduced, but
the phases of the correspondmg amplitudes are not. We
should thus set p;, ., =cos 2(6,/2) and p, ,gg— Sin 2(8,/2) in
Eq. (7), with a random phase for p,.,. We get then
I=(1/2)(1+cos 0a) For 6,=0, this is equal to 1, as one
should expect, since then no atomic coherence is initially
present. On the other hand, for 6,=w/2 we have I=1/2,
equivalent therefore to complete absence of information (the
original populations are then equal, and therefore transmit-
ting just the atomic population information is equivalent to
having a complete statistical mixture). The average fidelity
coefficient 7 when only population information is transferred
is equal to 2/3.

Finally, let us consider the case in which there is no quan-

“tum coherence between the two cavities. This would corre-

spond to having a classical alternative for the location of the
single photon: if it is not found in one of the cavities, one can
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then say that it was in the other cavity even before the mea-
surement was made. This situation may be mimicked by in-
troducing a random phase ¢ in (1), which becomes then
|y =(]0)4] 1),+ €| 1)10);)/ V2. It is easy to see that this
phase, carried over to (2), is equivalent to transferring no
information at all about the relative phase of c, and ¢, , thus
yielding the value 2/3 for I. This means that, under this
condition, the second bit of information (that is, the measure-
ment of atom a’) becomes superfluous. _

The above discussion makes it clear that J=2/3 corre-
sponds to the fidelity of “classical teleportation” [7]. In or-
der to test quantum mechanical nonlocality, one needs there-
fore to have I>2/3. We examine in the following the
requirements on detection efficiency imposed by this con-
straint.

The triggering atom ¢ must be the first one to cross the
initially empty C; and C, cavities. If D fails to detect it, the
experiment is triggered by a subsequent atom and fields hav-
ing more than one photon are generated, which reduces the
quantum correlation between the two cavities required for
teleportation. In the worst possible case, / is then reduced to
1/2. If 7, is the probability of detecting atom c, this yields:
I[= 5. X1y +(1— 5.) X 3, where I, is the average fidel-
ity coefficient now taking into account the detection efficien-
cies of atoms a, a’, and b and assuming that atom c is
detected. A similar argument can be applied to the other at-
oms. If we do not detect the first atom in beam A, this dete-
riorates phase information, but does not change population
information, which can be retrieved by detecting another
atom in the beam, since the interaction of these atoms is
dispersive. If atom a is detected, but atom a’ is not, this
would have no consequence on the population information,
which depends only on the first bit. Finally, if atom b is not
detected, complete information would be lost, since it would
absorb the single photon present in C,, and the following
atoms would exit in a superposition of e and g with equal
weights. Denoting by #, and 7, the detection efficiencies of
D, and D, respectively, one can write therefore

Iaa’bké(l—q 77b)+ 771)[ 773_{_ %na(l_ﬂa)—l- %‘(1_ 774)] .

®
Assuming finally 7,= n,= .=, we get
_ 1 172 174
= - +—+—. :
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The condition 7>2/3 is satisfied for 7>0.7, a quite mild
requirement, as compared to other tests of quantum nonlo-
cality. The dispersion in the velocities of the atomic beams
can also be easily accounted for. It would imply a departure
from the ideal pulse area in each of the cavities and the
Ramsey zones, thus leading to wroag bits of information. It
can also be assimilated therefore to an effective efficiency.
Detailed calculations show that a 10% velocity dispersion
would increase the lower bound in the detection efficiency
by about 5%, for I>2/3. Of course, the total time involved in
the preparation of the correlated state and the subsequent
detection of the atoms should be much smaller than the dis-
sipation time of the cavities.

We have shown that coherent nonlocal superpositions of
fields in cavity quantum electrodynamics can be used for
teleportation of an atomic state between two cavities. Such
an experiment would provide tests of quantum nonlocality.
These phenomena correspond to a new generation of experi-
ments based on atomic correlations of higher order, such as
“entanglement swapping,” [14] as opposed to the second-
order correlations involved in the demonstrations of Bell’s
inequalities.

Note added. We just learned that a similar scheme of cav-
ity QED teleportation is reported by T. Sleator and H. Wein-
furter (unpublished).
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