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We calculate the lifetime of the vacuum trapping state in a micromaser, using both the Monte Carlo
wave-function method and an analytic approximation, and show it to be a rapidly changing function of the
average number of atoms in the cavity, when this number is much smaller than one. Our method leads to a
realistic simulation of experiments, allowing for different field profiles, temperatures, and atomic velocity
spreads.@S1050-2947~96!09509-1#

PACS number~s!: 42.50.2p, 42.55.2f, 32.80.2t

Cooperative atomic effects play a minor role in usual la-
sers@1#. The dynamic and quantum behavior of these devices
is well described by theories based on one-atom Hamilto-
nians, the cavity field being built by the incoherent sum of
the individual atomic contributions@2#. Three notable excep-
tions should be mentioned, however. Under some conditions,
it is possible to conceive a superradiant laser@3#. Also, co-
operative effects seem to play an important role in a recent
microlaser experiment@4#, where laser oscillation has been
demonstrated for a beam of136Ba atoms traversing a single-
mode cavity, with less than one atom on the average inside
the resonator. Indeed, one-atom theories predict a field inten-
sity appreciably smaller than the observed one@4#. This may
be accounted by the fact that the Poissonian distribution of
the atoms in the beam leads to a probability of 26% for
having two atoms inside the resonator, when the average
number of atoms inside the cavity is equal to one. Finally,
trapping states in micromasers@5,6# are highly sensitive to
cooperative effects@7,8#. These states are predicted to occur
in a high-Q cavity crossed by a monokinetic beam of excited
two level atoms, resonant with a cavity mode. Whenever the
number of photons in the cavity is such that a single atom
from the beam undergoes a full set of Rabi turns while cross-
ing the cavity, the field in the cavity will not evolve. Even
though trapping states are rendered unstable by dissipation,
the vacuum state is weakly affected at low temperatures, so
this state is a preferred candidate for the observation of the
trapping effect~which will occur when the vacuum Rabi
angle developed by each atom is a multiple of 2p). The
presence of a second atom in the cavity would spoil this
effect, however. This fact may actually preclude observation
of these states, for Poissonian atomic beams.

It was shown in Ref.@8# that collective effects may
change dramatically the photon-number steady-state distribu-
tion, even when more than 99% of the atoms participate in
one-atom events. From an experimental point of view, how-
ever, it would be important to know how much time it takes
for the trapping state to leak, for a given value of the atomic

flux. In the present work, we address the question of the
stability of trapping states, calculating the lifetime of the
vacuum state as a function of the average number of atoms in
the cavity, for a Poissonian beam of resonant two-level at-
oms, with a mean velocity chosen so that the vacuum is a
trapping state. Two methods are used to calculate this life-
time: the Monte Carlo wave-function approach~MCWF!, as
introduced by Dalibardet al. @9#, and an approximate ana-
lytical solution, motivated by that method. The agreement
between the two results is excellent, for a wide range of
situations, which include different temperatures, atomic ve-
locity dispersions, and field profiles in the cavity. We do not
include here the incoherent atomic relaxation due to stray
electrostatic fields@10#, which may affect the lifetime of the
vacuum state in an important way. Even though this effect
can be treated by the Monte Carlo approach, its inclusion
requires a careful consideration of the experimental configu-
ration, which is beyond the scope of this paper.

The MCWF simulations involve two steps@9#. In the first
one, the Schro¨dinger equation is numerically integrated from
t to t1dt with the effective non-Hermitian Hamiltonian
Heff5H(t)2( i\/2)(mCm

†Cm , whereH(t) is the interaction
Hamiltonian. We consider for simplicity that the atoms are
resonant with a cavity mode, and neglect the atomic decay.
Assuming that the atom can be approximated by a two-level
system, and adopting the usual electric dipole and rotating
wave approximations, it may be written as
H(t)5( ik i(t)\(as i

11a†s i
2), wherek i(t) is the coupling

constant between atomi and the field,a and a† are the
creation and destruction operators for the cavity mode, and
s i

1 ands i
2 are the Pauli spin-flip matrices corresponding to

atomi . The number of atoms included in the Hamiltonian for
each time intervaldt is determined by random choice: before
the integration of the Schro¨dinger equation for each realiza-
tion, the arrival times of the successive atoms are drafted
according to the distribution for time intervals corresponding
to a Poissonian pumping@P(t)5tat

21exp(2t/tat), wheretat is

PHYSICAL REVIEW A SEPTEMBER 1996VOLUME 54, NUMBER 3

541050-2947/96/54~3!/2510~4!/$10.00 2510 © 1996 The American Physical Society



the average time interval between successive atoms#. The
interaction time between each atom and the cavity mode,
which depends on the atomic velocity, is also determined by
random choice, previously to the integration of the Schro¨-
dinger equation. In the present work, we consider up to two
atoms inside the cavity. This restriction is implemented in
the following way: whenever the random choice leads to
three atoms inside the cavity~this will happen when the ar-
rival times of the first and third atoms differ by a time less
than the transit time of the first atom inside the cavity!, the
third one is delayed. In order not to change the average
atomic flux, this delay is compensated by advancing one or
more of the following atoms in the sequence, in such a way
as to avoid the occupation of the cavity by three or more
atoms. One should note, however, that three-atom events are
very rare, for the small atomic fluxes considered in the
present work. The operatorsCm are obtained from the master
equation for the reduced density matrixr corresponding to
the subsystem atoms-field mode~obtained by tracing out the
reservoir variables for both the atoms and the field!, written
in Lindblad’s form @11#: ṙ52( i /\)@H,r#1(m@CmrCm

† 2
1
2(Cm

†Cmr1rCm
†Cm)]. The interaction of the field in the

cavity with the reservoir is taken into account by the opera-
tors C15@G(11n̄)#1/2a and C25@Gn̄#1/2a†, where
G[1/tcav is the decay rate of the field mode andn̄ is the
average number of thermal photons in the mode, given by
Planck’s formula.

In the second step, the subsystem is subjected to quantum
jumps @9# in each intervaldt, according to the probability
dP5(mdpm , wheredpm5dt^C(t)uCm

†CmuC(t)&. If there
is no jump, we have only to normalize the wave function,
since the time evolution withHeff is not unitary. If a quantum
jump occurs betweent and t1dt, the wave function is pro-
jected according touC(t1dt)&5CmuC(t)&/(dpm /dt)

1/2.
The operatorCm to be used in this equation is chosen ac-
cording to the probabilitydpm /dP. This procedure is re-
peatedtmax/dt times fromt50 to t5tmax. The expectation
value of any operator may be calculated for a single realiza-
tion at each time intervaldt, while the mean value over an
ensemble is obtained by making an average over many real-
izations.

Figure 1 shows the evolution of the number of photons in
the cavity for a single realization of the micromaser, as a
function of time, for a beam of Poissonian-pumped excited
two-level atoms crossing a cavity at zero temperature. The
mean number of atoms in the cavity isN[t int /tat50.1,

wheret int is the atomic transit time through the cavity. The
electric field profile is taken to be constant along the cavity
andNex[tcav/tat510. The field starts in the vacuum, which
is a trapping state (kt int5p). Between atoms, the field is in
a Fock state, so in this case the figure displays the actual
number of photons in the cavity, while when one or more
atoms are in the cavity, the expected number of photons is
shown. The atoms are measured right after leaving the reso-
nator. During the transit time of one atom a rapid oscillation
of the expected number of photons^a†a& can be observed. If
during this time there is only one atom in the cavity, the
atom emerges completely inverted, since the vacuum is a
trapping state. For this simulation the leaking of the photon-
number distribution occurs around timet52.6tat ~eventa!,
due to a collective event of two atoms. Att'7tat ~eventb! a
photon dissipation occurs while one atom is crossing the
cavity. Between timest58tat and t59tat two free-decaying
events can be observed~eventsc!. At time t'10.2tat a sec-
ond trapping state is reached, corresponding to a Rabi angle
of 4p ~eventd!.

Figure 2 shows the steady-state normalized variance and
mean photon number versus the mean number of atomsN in
the cavity, for zero temperature, withNex510 and
kt int5p. We compare our results~obtained by averaging
over 2000 realizations! with those obtained in Ref.@8# ~con-

FIG. 1. Single realization of a Poissonian-
pumped micromaser with collective effects. The
initial state of the field is the vacuum, which is a
trapping state. The temperature and the velocity
dispersion are zero, the field profile is constant,
and the incoming atoms are excited and resonant
with the cavity mode. The dashed lines corre-
spond to quantum jumps. HereNex510 and the
average number of atoms in the cavity is
N50.1.

FIG. 2. Steady-state normalized variances and average number
of photons as a function of the average number of atoms in the
cavity, s[@^(a†a)2&/^a†a&2^a†a&#1/2. Atomic vacuum Rabi
angle is equal to 2p andNex510. The Monte Carlo results~dots!
are compared with those from Ref.@8#, for a constant field profile
with k5p/t int ~full curve!. For a sinusoidal field profile, with
k(t)5(p2/2t int)sin(pt/tint), our results match a scaled version of the
same curve~dashed curve!.
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tinuous lines!, where the collective effects are represented by
letting pairs of atoms enter and leave the resonator simulta-
neously, the decay of the photon field during the passage of
the atom pair is neglected, and the field profile is assumed to
be constant. Our Monte Carlo results are represented by dots,
and correspond to both a constant and a sinusoidal field pro-
file ~with just one antinode!. The dashed lines correspond to
the results of Ref.@8# but with the interaction time replaced
by an effective time (t int→2t int /p), while still keeping
kt int5p, so as to simulate the sinusoidal profile. For the
range of parameters here considered, the agreement between
the two results is excellent.

The dots in Fig. 3 display the results obtained for the
lifetime of the trapping states versus the mean number of
atomsN using the MCWF method. The one-atom vacuum-
Rabi angle is again taken as 2p. This lifetime is obtained by
taking the average of the leaking times over 2000 realiza-
tions, starting from the same initial conditions. The continu-
ous lines in the same figure correspond to an analytical ap-
proximation, inspired by the MCWF method, and described
in the following. The agreement between the two results is
excellent.

The analytical approximation is based on the probability
dp of having a field transition from the zero-photon state
u0& to u1& or u2& during a small time intervaldt, which can
be written asdp5dt/tT , wheretT is the lifetime of the trap-
ping state. This probability is calculated by writing it as the
sum of three contributions:

dp5dt/tT5dpr1dpc1dpd , ~1!

wheredpr is the probability to have a photon excitation in
the cavity due to the interaction with the reservoir,dpc ex-
presses the probability that the trapping stateu0& is destroyed

by a collective event, anddpd is the probability that the
vacuum state is destroyed by a single-atom event, due to the
dispersion in velocities.

We calculate in the following each of the above contribu-
tions, up to first order in the average number of atoms in the
cavity. The probability dpr can be approximated by
dpr'Gn̄dt(11^a†a&). Note that there is a double average
over the photon number in this equation. The brackets refer
to the average number of photons betweent andt1dt, while
the bar stands for the time average of this quantity~note that
even when the field is in the vacuum state between atoms,
the average photon number is different from zero while an
atom crosses the cavity!. For an average number of atoms in
the cavityN!1 and a constant electric field profile along the
resonator,

^a†a&5
1

tat
E
0

t int
sin2~pt/t int!dt5N/2,

where sin2(pt/tint) is the probability that one atom gets deex-
cited at timet after it enters the cavity, if there is no other
atom in the resonator. Therefore, one may write

dpr5Gn̄dt~11N/2!. ~2!

Our calculation ofdpc includes only two-atom collective
events. It is given by the following expression:

dpc5~dt/tat!~ f 1ug1u21 f 2ug2u2!. ~3!

The factordt/tat represents the probability to have one atom
leaving the cavity during the time intervaldt. The factorf 1
( f 2) represents the probability that this emerging atom is the
first ~second! one of a two-atom event, whileug1u2 stands for
the average probability to have the first of the two atoms of
a pair emerging from the cavity in the lower resonant state.
The quantityug2u2 is the average conditional probability that
the second atom emerges from the cavity in the lower reso-
nant state, if the first one was detected in the upper state.
Therefore, Eq.~3! expresses the fact that the trapping state
will leak if one of the two atoms is found in the lower state
after exiting the cavity. The probabilitiesf 1 and f 2 are given
by @8#: f 15 f 25(e2 2N2e23N)[ f . The probabilitiesug1u2

and ug2u2 are calculated, for a constant field profile, accord-
ing to the following procedure. The first atom of the pair
enters the cavity at timet and leaves it at timet1t int . The
second atom enters the cavity at timet1t and leaves it at
time t1t1t int . For a collective event to occur, one must
have 0,t,t int . The Hamiltonian evolution of the atoms-
field state~valid for Gt int!1) is first calculated fromt to
t1t int . At this time the probabilityug1(t)u2 of finding the
first atom in the lower state is calculated, and the wave func-
tion is projected onto the subspace corresponding to atom
one in the upper state, and normalized. This wave function is
then evolved fromt1t int to t1t1t int and the probability
ug2(t)u2 of finding the second atom in the lower state is
calculated. The mean probabilityb5ug1u21ug2u2 is given by

b5@~12e2N!tat#
21E

0

t int
@ ug1~t!u21ug2~t!u2#e2t/tatdt.

FIG. 3. Lifetime of the vacuum trapping state as a function of
the average number of atoms inside the cavity. Atomic vacuum
Rabi angle is equal to 2p andNex5100. Dashed lines correspond
to sinusoidal field profile~one antinode!, while continuous lines
stand for constant field profile.~a! and~b! denote zero temperature,
monokinetic atomic beam;~c! and ~d! denoten̄50.5, monokinetic
beam;~e! and ~f! denoten̄50.5, and velocities uniformly distrib-
uted betweenvT(12a) andvT(11a), with a50.06.
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In zeroth order inN, we findb50.27.
Finally, the probabilitydpd , associated with deviations

from the ideal single-atom trapping-state atomic velocity, is
written as the product of the probabilitydt/tat that one atom
is leaving the cavity during the time intervaldt by the prob-
ability ugu2 that the emerging atom be found in the lower
resonant state when leaving the cavity, averaged over the
velocity distribution. We assume that the atoms have a nar-
row distribution of velocities around the trapping velocity
vT , so that we may take the velocity distribution as constant
betweenv25vT2avT andv15vT1avT , with a!1. For
an atom with velocityv, the probability of leaving the cavity
in the lower state isugu25sin2(pvT /v). The average value is
thus ugu25(1/2vTa)*v2

v1sin2(pvT /v)dv5(p2/3)a21O(a4),

so that dpd'(dt/tat)(p
2/3)a2. From this result and from

~1!, ~2!, and ~3!, one getsdt/tT5(dt/tat)@ tatGn̄(11N/2)
1 fb1(p2/3)a2#, and therefore

tat
tT

5
n̄

Nex
~11N/2!1~e22N2e23N!b1

p2

3
a2. ~4!

This expression is plotted in Fig 3~continuous curves!, using
that, for a constant field profile,b50.27. For a sinusoidal
field profile, we choose the value ofb so as to fit the curves
to the dots @the best value isb50.27(2/p)'0.17#. The

agreement with the results obtained using the MCWF
method is excellent. Figure 3 shows that the lifetime is very
sensitive with respect to the average number of atoms in the
resonator. For an average number of atoms in the cavity
equal toN50.1, with n̄50, a50, and a sinusoidal field
profile, the lifetime corresponds to the passage of about 76
atoms through the cavity. This value may decrease to about
54 atoms, if the number of thermal photons isn̄50.5 and
Nex5100.

In conclusion, our results show that the lifetime of the
vacuum trapping state is strongly dependent on atomic col-
lective effects. The application of the Monte Carlo wave-
function method in this case allows a realistic simulation of
the experimental situation, since it is easy to include effects
such as the field profile in the cavity, the atomic velocity
distribution, the temperature of the cavity environment, the
decay of the field while the atoms are in the cavity, and the
atomic decay. Furthermore, we have derived an analytical
expression for the lifetime which includes collective effects,
and also takes into account finite temperatures and the
atomic velocity spread. This expression is in excellent agree-
ment with the Monte Carlo results.
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